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Introduction. This is a sequel to a paper [1] by R. B. Davies and a paper [4] be
the authors. In [1] Davies addresses himself to a question that can be para-
phrased as follows: Let En {PP,n; 0 E eO} be experiments given by measures

Pa,n on a-fields An. Let F. be the experiment formed by the restrictions Qp,n of
the Po n to a sub-field Bn C An. Suppose that En is a subset of a given Euclidean
space and that the En satisfy the so called LAN assumptions.

What other conditions are needed to insure that the Fn also satisfy the LAN
assumptions, or at least have log likelihoods approximable by a sum of two ran-
dom terms, the first linear and the second quadratic in 0?

Davies gives sufficient conditions. They involve an asymptotic normality
requirement for the conditional distributions given Bn of the log likelihoods of the

P#,n.
In [4] we treated cases where the observations {xi, , xnj are independent

or Markovian and where the passage to subfields is carried out on the individual

xi's. No conditional distributions were involved. However the technique could
not yield the result obtained by Davies in the application to branching processes
of his Theorem 4.1.

Since the study of approximations for conditional distributions is often deli-
cate we took another look at the situation to see, among other things, whether
one could use instead approximations for joint distributions. More precisely we
looked for conditions under which one could take limits of joint distributions and
then look at conditional distributions in these limits.

It turns out that this can be done if the statistics used are "distinguished"
according to a definition of [3], Chapter 7. This property is often, but not
always, readily verifiable. It held trivially for the likelihood ratio approximations
of [4]. It must hold for the pair (p6,Tn) of Theorem 4.1 of [1] and, as shown in
Section 3 below, can be checked without much effort for the branching process
case of [1].

Another aspect of the situation is that both [1] and [4] rely heavily on con-
tiguity restrictions. These may be quite appropriate for the restricted experi-
ments Fn on the subfields, but they cannot be defended easily for the parent
experiments En. A case in point would be the estimation of variances in the
branching processes of [1], as will be shown in Section 3.

The paper is organized as follows. Section 2 contains our main result on pas-
sages to subfields in the form of Theorem 2. It says that, under appropriate res-
trictions on the statistics involved, one can take limits {D#,o;O Eee} of families of
distributions {Do,n; 0 E e} and deduce the asymptotic behavior of the likelihood
ratios of the De,n from that of the likelihod ratios for the Do,O. The passage to
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subfields can also be carried out on the Do,,.. It is also shown (Lemma 2) that a
requirement similar to that imposed in Davies' Theorem 4.1 on conditional distri-
butions does imply the requirements of our Theorem 2.

The results do not make any reference to asymptotic normality or contiguity.
They can be used more generally.

Section 3 returns to the branching processes. It uses arguments similar to
those of Duby and Rouault in [2]. However these authors needed to let the size
of the initial population increase to infinity. We show briefly that their results
remain valid "locally" with initial population size Mo 1 and that the statistics
of [1] are "distinguished" there. It is also shown that an apparently minor depar-
ture from the assumptions makes them lose this property. As already mentioned,
the inappropriateness of contiguity restrictions on the parent experiments En is
indicated.

Further applications of Theorem 2 will await another publication.



2. Stable and distinguished sequences of statistics.

The objects named in the title are described in some detail in [3], chapter 7,
pages 99-108. After recalling their definitions we proceed to give a result relative
to the possibility of interchanging two limit procedures as described in the intro-
duction.

Let E ={P0; 0 E E} be an experiment given by probability measures Pp on a
a-field A of subsets of a set Q. Let X be a compact space. By "statistics with
values in X" will be meant a Markov kernel w -+ f, that assigns to each w E Q a
probability measure f, on X. These probability measures will be identified with
positive linear functionals on the space C(X) of continuous real functions on X.
This is sufficient for all purposes if the family E is dominated. Otherwise we
shall extend the definition, admitting as statistics the more general "transitions"
of [3]. However the main arguments involve only finite sets e. Hence no
difficulty will occur.

The restriction to compact X is a matter of convenience. In applications, X
will often be Euclidean and not compact. One can always compactify as follows::
Take a separating algebra P of bounded numerical functions on X, imbed X in
the cartesian product Rr and take its closure there. (The choice of I' does
matter).

In the rest of this section the objects X and e will be kept fixed. One will
consider nets or sequences {E>} of experiments E ={PPp; 0 E e} and statistics
SV with values in X. This gives rise to families of distributions
Dv {DDO,v; 0 E e} where Do, is the distribution of S, under Po, v that is the
image S, Pe ,, of Pe v by the kernel S,. The expectation of a 7 E C(X) for this dis-
tribution will be written 71)p v

Definition 1. Let {Dv} be indexed by the directed set {v}. The Dv converge
vaguely to Doo={Dy,; a e6} if for every GE e and y e C(X) the expectations
^yD ,, converge to 7D& ,.

Note that, for the vague convergence, the set of all families of distributions
indexed by e is a compact space. Thus every directed set of such families will
have cluster points. That is why we have assumed compactness for X.

A family Dv={Do v; 0 E e} is also an experiment in its own right. In [3], we
introduced a concept of "stability" for nets {D,} in terms of a correspondence
between vague convergence as families of distributions and weak convergence as
experiments. It is a property that is not very strong in appearance, but is shown
in [3] to be equivalent to the following approximation property, to be called finite
approximability.
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Let {s,t} be a two point subset of e and let p/, -D5,1 + Dt,. Let fv be the
Radon-Nikodym density of Dt,v with respect to pv.
Definition 2. The net {Dv} is stable if for every two point set {s,t} C e and
every e > 0, there is a finite subset {-7j; j E J} of C(X) and a v(E) such that
v > v(e) implies

infjEJf Ifv - lilddp < e.

A formulation involving finite subsets of e instead of two point sets in given
in [3], Theorem 1, page 101, together with several other equivalent conditions.
For the two points sets {s,t} another equivalent statement is as follows
Lemma 1. The net {D,.>,DtY} is stable if and only if for every subnet {v(()}
such that [D,Y(e),Dt. (f)J converges vaguely to a limit [DS oQ,Dt oIl one has

liminfffv(e)(l - fv(()1dpv(() > ff(I - fOO)dpO

with p140 Ds 00 + Dt,(x and foo = dp

For a proof, see [3], Chapter 7 and below. (An equivalent statement can also
be written in terms of Hellinger affinities f fv(l - fv)dpv).

To state our next result, it will be convenient to look at a particular pair

[DoI ,D1,v] and consider that the elements of X are random variables Xv with pos-
sible distributions D i, 0,1. Each D,Y yields a joint distribution for the pair
(f ,Xv). Convergence of such joint distributions will be the vague convergence on

C([0,11 xX).
Theorem 1. Let [Do,ID1,vJ converge vaguely to [Do o,D1, cJ]. Let

Pv = Do-v+ D1,v and fv = dD1,,/dpHv The following conditions are all
equivalent:

1) lim infff(l - fv)dpv > ffoo(l- f)dp8.
2) For every E > 0 there is a continuous function X such that 0 < X < 1 and

such that flfv - qldpv < E for all sufficiently large v.

3) The joint distribution of (fv,Xv) under Di , i 0,1, converges to that of
(fooXoo) for Di,,.

If any one of those three conditions hold and if, in addition, the set of discon-
tinuties of fO has pco measure zero, then fI - fcjd/v tends to zero.

Proof. Consider a decision problem in which it is desired to select a point z
in the interval [0,1J with a loss function Wi(z) = (i - z)2. A decision procedure is
a Markov kernel K(dz,x). For [Do,DI v] it has a risk sum equal to

ff[z2(1 - fv) + (1 - Z)2f,IK(dz,x)p,(dx) = fv(l - fv)dpv + ff(z - fV)2K(dz,x)p,(dx)-



It follows that the minimum risk sum is rv, ffv,(l - fv)dpc,, attained by the
nonrandomized estimate ft,.

Let 0 e C(X) be such that 0 < X S 1. It can be used to estimate z yielding a
risk sum

Rjo(6 fq!2dD01, + f(i -_0)2dD1,t
- rV + flft- q$2dpt.

Do this also for the limit pair [D0,001Dj c obtaining a risk sum

Ro0(0 - roo + ffoo _ 012di.o.
Note that, according to the first expression for RJ,(O) one will have

lim,Rv,(q) -Roj() for q e C(X). Now select a EE C(X), 0 < << 1, so that

fIfc -)_b2dpHo < E2. One can write

flfv -_5l2dpv = [RJ(q) - R00(0)] - (r,- ro) + Ifoo _ q12dpoo.
Since RJ(O) - Roo(-) 0O and since liminf(rt, - r,O) > 0, this implies that for v

large one will have f lfv- qS)2dpv < E2. Thus (1) > (2). To show that
(2) > (3) it is enough to show that for all Y1 E C[0,11 and q2 E C(X), the expec-

tations Ei,t-(f ) 2(Xt) for D t converge to the corresponding expectations for
Di ,,. However, take a X as done above and consider Ei, [A1(fv) - Y7(0*72(Xv)
This does not exceed

It-12lfkII(5) - y1(fv)Idpv < pvftI-f, 1 > ±1/21+ OSC(71,E)
where Osc(,71,E) is the maximum oscillation of -11 on sets of diameter c1/2.

By Chebyshev's inequality, the first term does not exceed E for all v
sufficiently large. By taking e sufficiently small, one can make Osc(-71,E) as small
as one please. Thus f 11(f,) - -y1(0)Idpv can be made arbitrarily small. The same
applies to f h11(fco) - 'j(k)Idp0, and the conclusion follows by the triangle inequal-
ity.

That (3) implies (1) is immediate. It even implies limr, - r,O. Hence the
equivalence of (1) (2) and (3).

To obtain the final statement, note that if the set of discontinuities of foo has
u00 measure zero, then foif - oldpv tends to Ilf. - 4ldp. < E. Thus

fIfv - fooldpv S fiffv - kldpv + fjq5 - f0jdpt, will eventually be inferior to 2E.
This concludes the proof of the theorem.

Remark. Life would be more pleasant if, under the equivalent conditions (1) (2)
(3) of the theorem, the integrals f If, - f.ldp, would always converge to zero.
This is not the case as shown by the following example.
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Let V/ be a function defined on [0,11, equal to zero at zero and to
1

4(x) - sin | for x E (0,1J. Select c so that fsin | dx 0. This is possible.

There is a value close to 27r with that property.
Let 60 be the probability measure concentrated at zero and let X be the Lebes-

gue measure on [0,11. Let p. = 6O + X and let fOO = -+* -/. For integer
2 4

values v, let Ev -. Take X>(x) = for 0 < x < Ec and let X>(x) = fx,(x)7 v~27rv' 2
for cE < x < 1. Let p,v Xv + X where X. is the Lebesgue measure on [O,EvI
multiplied by E -. Then f vdpv may differ from unity but one can make an fv
such that ffHdp = 1 by letting fv = Xv on [0,EvI and f, = kvqv in (Ec1I for con-
stants kV that tend to unity. Then the conditions (1) (2) (3) of the theorem are
satisfied. However

171i(2lrvy)Idfif - fooldpv > - Isin y

does not tend to zero.

To go further we need an additional definition as follows.
Consider experiments El, as before with statistics S,, whose distributions from

families Dv.
Definition 3. The statistics S,, are pairwise asymptotically sufficient if for every
two point set {s,t} C e the distance between the binary experiments {Ps,1,Pt,}
and {DS ,,D}t,v tends to zero as v increases indefinitely. The St, are called
distinguished. for E1,, if they are pairwise asymptotically sufficient and if their
distributions are stable.

With this we can pass to our main goal which is to obtain relations between
pairs of statistics (S,,,T,).

Consider then experiments Ev-={Pe0,; 0 E e}, a pair (X,Y) of compact
spaces and pairs (Sv,T1,) where Sv is a statistic with values in X and TV is statis-
tic with values in Y. Both are defined on El,. Under Pv the pair (Sv,,Tv,) has a
joint distribution D0, =(S,T1)PO91 considered as a positive linear functional on
the space C(XXY). Vague convergence of distributions will be pointwise conver-
gence on C(XXY).

For simplicity we shall consider only the case where e is the two point set
{0,1}. Then one can let mv = Po,v + P1,V, and pv = Do,v + D1,V,. Each joint
measure on XXY has a marginal on X. This will be noted by a "prime" so that
for instance the marginal of !pv on X is pvl. The corresponding marginals on Y
will have double primes, so that the Y-marginal of p, is ,v" .
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With these notations one can introduce likelihood ratios such as

f dD1,1 f dD1, ' f it dD__,`
v dp, ' v dy, v dpvl,

ddPd'
and f, I

- dinm

Note that f1, is a function of the pair (x,y) and that, for instance, f,' is a func-
tion of x only, conditional expectation of fv, given x for the measure p1v.

If the Di,v have vague limits Di,,, the pair (D0,o,D1,,) defines corresponding
densities fO, fooI flj'. It will be convenient to say that Di 00 is the distribution
of a pair (X,Y) on XXY.

With this notation one can state the following.
Theorem 2. Assume that Di,V, converges vaguely to DiX00 Assume in addition
the following:

(A) For the experiments E, the S., are distinguished.

(B) The net of pairs (D0,o ",D1,v" ) is stable.

Then for (Do70oD1, O) the X coordinate is sufficient and the joint distributions
of (f1,,f1,1,f1, ,S1,,T1,) for Divl converge to that of

(f f I f It X,Y) for Di oo

Proof. The proof follows closely the argument used for Theorem 1. Thus we
shall just give a short sketch. A first remark is that one may as well assume that
S. is sufficient for E.. Indeed let fv = f1,ISv be the image of f1, by SV. Let Q
be the measure whose density with respect to m, is f1,. Since SV is asymptotically
sufficient the inequalities of [3], page 72, show that fIf -f* dpld,v- 0.
Equivalently IIP1,1,- IIQ,1,vl I'Q,1vII -0. Then replace Po,v by

Qo v = mv - IIQI,vll',Q,,v. For the pair (Qo,1v,Q1,1v) the statistics Sv are sufficient
and the properties A and B are preserved.

Now, as in the proof of Theorem 1, find functions O' E C(X) and q'" E C(Y)
such that flfoot - qljdpol' <E2 and fIfool - qYf jdp., <E2. Then

f If I - O'fdpv,' <E2 and flff11' - /' jdp 1,' < e2 for all sufficiently large v and one

can repeat the argument that yielded property (3) in Theorem 1. This gives the
result for the systems (f1,,fv,1' ,Sv,,Tv,). The extra part fv need no special attention
since flfv-fIldv -* O for a function ffv defined on XXY by writing

fv,(x,y) = f,1'(x).
The result as stated follows.

Remark 1. The theorem can be extended without difficulty, except for more
complex notation, to finite sets e instead of two point sets.
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Remark 2. Note well that the result is not only that the (f,,fv,' ,fv," ,S,,) have
limiting distributions but that the distribution are those given by the likelihood
ratios in the limits (Do 00,Dl 0)
Remark 3. The result does not remain valid under condition (A) alone, evren if

TV is also exactly sufficient. The stability of the pairs (Do,7,D1,v) is not inherited
by their marginals (Don" ,D, v )

An example can be constructed as follows. Let X be the two point set {0,1}
and let Y be the interval [0,11. Let 2 be [0,1] with its Lebesgue measure X. Let

Xi be the Lebesgue measure on the segment iXY in XXY. Let hv(w) be the vth
binary digit of w in Q. Consider an experiment Ev where for 0 = 0 the distribu-
tion of w E Q is X and where for 0 = 1 the distribution of w has a density 2h,
with respect to X. Map the experiment on XXY by the statistic w -* [hv,(w),Wl.
Here our Di,V have limits on XXY in the sense that f ydDi,v -- fydDi,, for every
bounded measurable function -y on XXY. Each coordinate map is sufficient.
Yet both Do ,0' and DI o are identical to the Lebesgue measure on [0,11. Con-
dition A is satisfied. Condition B is not. The systems (fELfv17ff1, ) have a limiting
distribution, but it is not that of (foofool',f' ).
A natural example of a similar situation will be encountered in Section 3.

If one can establish that our condition (B) holds, our Theorem 2 can be used
to bypass the requirement of convergence of conditional distributions used by
Davies' in Theorem 4.1 of [1]. There the role of our Sv is played by Davies' A n

and the role of TV is played by the pair (1n,rJ).
In the set up of Theorem 2 conditional distributions can be used to establish

(B) as follows.

Consider the joint distributions Di v as distributions of the pair of coordinates

(X,,Y,) in XXY. Let us say that the conditional distributions of X, given Y,
are finitely approximable if for every '3 C(X) and every e > 0 there is a finite
set {4j; j E J} of elements of C(Y) such that, taking conditional expectations for

pv one has

infJEjE I E[y(XV) I Yvl - 4j(Yv) I < E

for all sufficiently large v.

Lemma 2. Consider the situation described for Theorem 2. Let (A) be satisfied
and assume that the conditional distributions of Xv given Yv for p,, are finitely
approximable. Then condition (B) holds.

Proof. As in Theorem 2, one can assume that Xl is exactly sufficient. Let then
f,(x,y) = f,,(x). For pv the conditional expectations-satisfy

E(f,,YV) = E(fV'IYJ) =fv" (Yv)



By assumption (A) and Theorem 1, for each E> 0 there is a q E C(X) such that

flfv' - 5ldp,,' < c for all large v this will give
E E fv" (Yv) - E(qSIYv)I <E.

By the assumption of the lemma, the E(qlYv) can be approximated by elements
of C(Y). Therefore the finite approximability also holds for f,," and the f,,
satisfy the condition given in Definition 2. This gives the desired result.

According to this lemma, the conditions (A) (B) of Theorem 2 are implied by
those used by Davies in his Theorem 4.1. Note, however, that under the other
restrictions imposed there, the type of convergence of conditional distributions
required by Davies is a necessary requirement for his conclusion. This is so
because of the properties of Laplace transforms defined on open sets. It would
not be necessary if one would work with a finite e, as done here.

In conclusion, Theorem 2 offers an alternate approach to that of Davies in a
fairly general framework. The stability property (B) is often easy to verify (as in
the cases treated in [4], where it is entirely obvious). In the branching process
example used by Davies in [1], the stability is obvious once one has established
the required asymptotic sufficiency. Some additional remarks on this case follow.



3. Some remarks on branching processes
In this section we consider on branching process constructed as follows. There

is a probability measure p on the integers {1,2,3,...}. If the nth generation con-
tains mn individuals, each one of them, independently of the rest, produces a pro-
geny whose size is taken at random from the distribution p, leading to a total
population Mn+1 for the (n + 1)St generation.

If ( is a variable with distribution p, it will be assumed that E= p > 1 and
that c2 = E( - p)2 is finite and non zero. There is a huge literature on inference
for such processes. See for instance the references in [1] and [21. Thus we shall
content ourselves with a few simple remarks.

In [1] Davies assume that p depends on a single parameter 0 = p and studies
the asymptotic behavior of the experiment fn in which one observes MO= 1,
MI, * , Mn. This is done through his Theorem 4.1 by introducing a larger
experiment En in which one observes not only the total size of the population but
also the entire genealogical tree for each individual in it. Note that here the ini-
tial population has size MO 1. One can also start with a population of size z as
done in [2] and let both n and z go to infinity. Naturally, the asymptotics will be
different for such a case.

Davies did include a short remark about estimating parameters other than the
mean p. As will be explained below a technique different from that of his
Theorem 4.1 becomes necessary.

Technically it should be noted that the results of Davies depend very strongly
on the fact that he works in contiguous neighborhoods of a fixed distribution p.
By contrast the results of [2] are uniform over a certain class P of measures p,
one of the important features being that it is proved that, asymptotically, the
experiment can be parametrized through the pair (p,u2) independently of all
other features of p.

As said above the results of [2] depend materially on the fact that the initial
population size z goes to infinity. Here are some simple remarks on what hap-
pens if Mo is kept equal to unity.

To begin consider numbers p, a2 bo and co with 0 < u2 < bo < oo and
c0> 0 with p > 1. Let PO be the class of all probability measures on the
integers {1,2,...} that satisfy the following requirements

1) E =p
2) E(( p)2 _ a2
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3) Elj-pl3 < bo
4) supkp(k)p(k + 1) > Eo.

Lemma 3. Let p, a2, bo and c0 be fixed. Consider an experiment f, in which one
observes the entire process MO = 1, M1,M2, * *, .Mn* * Assume that the pos-
sibilities for the distributions of progeny are either p, or q%,, both in PO. Let P.
and Q, be the corresponding distributions for the process.

Then if pIp, - qJl-I 0 so does I IP, - QI 1.
Proof. Consider the behavior of Mn+1 conditionally given the size Mn of the n'h
generation. According to local limit theorems, for which see for instance Petrov
[5], Chapter 7, pages 187 to 216( there are constants b < oo and c E (0,1) such
that for any p E PO one has

IP[Mn+l = kI MnI - e xp{-4(k PMn)}1
± M 2/3cMn]< bt Ml/3 + n/3n]

For any p e PO the series EM -1/3 and EM 2/3cMn are almost surely convergent,
n n

with uniform bounds as p varies in P. Thus, for pairs (p,q) in PO the tail of the
process {Mn} will be uninformative. For our f,, if IIp- qJ,lI tends to zero, the
distance between the two possible distributions of {M1, * * * , Mn also tends to
zero for each fixed n. The result follows.

Remark 1. With Mo = 1 if IIpv - qvlII does not tend to zero the experiment f,
can retain a great deal of information. For instance it could happen that p, and
q, are disjoint so that the first generation allows one to find out which one of the
two is operating.

However, Lemma 3 or a slight modification can still be used to show that the
asymptotic parametrizability by p and a2 only, described in Duby and Rouault
[2] or Swensen [6], remains, valid "locally", see below.

If one maintains condition (1) (2) and (3) but remove condition (4) of the
definition of PO the situation can be entirely different. There are pairs (p,q) satis-
fying (1) (2) and (3) such that p(k) > 0 for all k > 1 but q(2k + 1) 0 for all
integers k. (For the measure q every birth is a twin birth). What happens then
in the process Mo 1, M1,l * , Mn may be complex, but what happens in one

generation is easy to see.

Consider experiments Gn where one observes Mn+1 conditionally given the
size Mn = mn of the nth generation. Assume that the distribution of the progeny
is one of two possibilities fn = (1 - an)q + anP or q, where an is some number
an e [0,1|.
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If mnatn -+ 00, then the (conditional) distribution of Mn+1 under fn differs little
from what it would be under p, even if an ` 0. The conditional experiment Gn
does not degenerate, nor does it become perfect. The same is true if mn °°
and mnan tends to a finite non zero limit. However if mn -- oo and mnca n 0,
the experiment Gn degenerates.

This suggests, but does not quite prove, that experiments fn in which one
observes MO -- 1, M1, , Mn and where the distribution of the progeny is
either fn or q will become perfect if P'nan ` oo for some sequence rn such that
n -rn + 00. This would be so even if an -+0 so thatllfn - ql -+0.

A proof that the fn do tend to the perfect experiment is easy. Assume
Mn = mn and let fj; j = 1,2...,mn be the sizes of the individual progenies from
Mu. Let 7ij = j modulo 2. Then Eilj is a binomial variable with mn trials and
probability of success anir with wr = p{j is odd). If mnan7r is large the probabil-
ity that Eqj is odd will be close to 1/2. Thus, if prnan - oo, with n - rn ` 00,

the probability that some Mk, k < n will be odd will tend to unity under fn but
will be exactly zero under q.

Under such conditions, note that the conditional distribution of - nM_
is asymptotically normal N(0,1) for all f . Thus the statistics

(Mn+l- p,mn)/ux/Wi cannot be stable for the experiments Gn. This is very
much the same thing as the behavior of the Y, in the example of Remark 3, fol-
lowing Theorem 2.

In the class Po the expectation p and variance a2 of the progeny distribution
were kept constant. One can use the local limit theorems to obtain results in
which p and o2 vary. To do this, consider fixed numbers 0 < c< bo < co and
a sequence {J,7 Cn > 0 En - 0. Let PI be the class of distributions p = L(()
such that

1) 1 + co .Ef c bo
2) E0 < E(f - p)2 < bo
3) EI(- pI3 < bo
4) supkp(k)p(k + 1) > CO.
Let Pn be any subset of P1 that has a total variation norm diameter at most en.

The approximation to likelihood ratios described by Duby and Rouault in [2]
is still valid on Pn if one observes Mo= 1, M2, ... , Mn. That approximation
involves only the parameters p and o2 and the expressions

n-i (Mk+1 - PMk)2
k=O u2Mk
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We shall not enter into the details, for which see [2], but end on a remark
concerning what happens in a class such as P. defined here if one keeps p fixed
but vary a.

Let Pn and qn be two elements of Pn. With the same expectation p but
respective variances au2 and r2. Let h2±1 be the conditional square Hellinger dis-
tance

hk+1 =- | [P(Mk+l = i I Mk,Pn)J / -[P(Mk+l = j I Mk,qn)j / 2

Up to terms of order M -1/3 this is approximately 1 - 1 (u2 n) ] /k ~ ~ ~ ~ _ 2 2O'n + 7n
Let Pn be the distribution of Mo = 1, M1, , Mn under Pn. Let Qn be the

corresponding distribution under qn. It follows as in Lemma 3 that if n(an - rn)2
remains bounded then the sequences {PnJ {Q} will be contiguous.

The experiment (P.,Qn) behaves asymptotically as if one observed a variable
T O= 2 where x/2 is a chi-square with n degrees of freedom and 0 is allowed to
take value an or 77.

To apply Davies' Theorem 4.1 one would look at the bigger experiment in
which the genealogies of the individuals in the nth generation are all observed.
This would give other measures, say P * and Qn*. To insure contiguity for {Pn},
{Qn} one needs to have that p/(on - rn)2 remain bounded. Davies' Theorem 4.1
could then be applied, but the reduced experiment (Pn,Qn) would tend to the
trivial uninformative experiment. Thus the note about estimating other parame-
ters at the end of Section 5 of [1] should be given more weight than its short
length seems to suggest.

We would also like to attract the reader's attention to the fact that the condi-
tions (4) imposed on our classes PO and P, are not visible in the formulations of
[1] or [6], but an analogous condition is iiiiplied.

The apparent lack of need for our condition (4) in the paper cited is due to
the fact that the authors work with alternatives qn such that Ilqn - PIl O-+ 0 for a

fixed p, independent of n. A similar remark applies to the third moment require-
ment. As we have seen above a condition such as (4) is needed to obtain uniform
results on classes such as Pn. It is also needed for the uniform results of [2].
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