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SUMMARY

Estimation procedures and confidence intervals are given for the median and mean

survival time in the proportional hazard regression model. For median survival, the

methods apply to censored data. The procedures are based on Cox's partial likelihood

estimates of the linear model parameters in the loglinear proportional hazard model and

on Breslow's estimate of the baseline hazard function. The asymptotic properties of

these semiparametric estimates are developed and they are compared with the optimal

parametric estimates for the Weibull regression model. For the parameter values con-

sidered, the more generally valid semiparametric estimate of mean survival loses little
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efficiency relative to the optimal parametric estimates in this model unless the Weibull

shape parameter is close to zero. The efficiency loss for the semiparametric estimate of

median survival is greater but not severe unless censoring is heavy. We also compare

the optimal parametric estimates of mean and median survival with the Weibull shape

parameter known and unknown and find that the efficiency loss for the unknown shape

estimate is small.

Key worda: median and mean regression, partial likelihood, proportional hazard model,

Weibull model.

1. INTRODUCTION

Cox's (1972,1975) proportional hazard model with loglinear hazard specifies the

failure rate for the survival time Y of an individual with covariate vector

= (xl, * * * ,xr)T as

X(t ; x) = X0(t )exp(i3T2). (1)

Here 3 = (/,3, ** )T is a vector of unknown regression coefficients and X0(t ) is

the unknown baseline hazard function.

The influence of the covariates on survival is measured by i3 since #j represents the

increase in log hazard as xi is increased one unit. In some applications, it is also useful

to consider how the median or mean survival time is affected by the covariates and in

this case we need methods for estimating or predicting conditional median or mean sur-

vival time given a value of the covariate vector. For instance, a smoker may be
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interested in by how much stopping smoking will increase his or her mean survival time

and researchers may want n(row by how much a certain medication increases the

median life of patients.

Miller & Halpern (1982) considered the estimate of the conditional median survival

time obtained by solving F(t x) 1/2 for t, where

t

F(t I x) exp{-e zf Xo(8 )ds}
0

and ,B and X0 are Cox's (1972,1975) and Breslow's (1972,1974) estimates of /3 and X0,

respectively. They computed this estimate for the Stanford heart transplant data. In

the case of random right censoring, we derive the asymptotic distribution for this esti-

mate as well as for estimates of the p-th quantile and, for uncensored data, for the

mean of the conditional survival time. These results are used to construct approximate

confidence intervals for the pth quantile and the mean of the survival distribution.

The semiparametric regression methods developed by Cox (1972, 1975), Breslow

(1972, 1974), and others are now frequently used to analyse survival data. However,

many studies still use parametric methods, in particular methods based on the Weibull

model. Thus it is of interest to compare the more generally valid semiparametric esti-

mates with the optimal parametric estimates for the Weibull model, both when the

Weibull shape parameter a is known and when it is unknown.

The expressions for the efficiencies that provide these comparisons are too cumber-

some to yield much insight except when there is only one covariate (p = 1) and when

the regression parameter /3 is near zero. In this case we find that the more generally
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valid semiparametric estimate of the mean of the conditional survival time loses very lit-

tle efficiency in fact, it is fully efficient in the exponential case (a = 1), and the

efficiency is not less than 92o% for a > 0.5, and not less than 99% for a > 1 when

compared with the a unknown Weibull model estimate.

In the case of the semiparametric estimate of median survival based on censored

data, we are able to evaluate the efficiency relative to the a known Weibull model esti-

mate and we find that the efficiency is never below 48% when censoring does not exceed

67%. Let p =- E(X), a2 = var(X) and z = (x -p)r'a. Then as IzI - oo, the

efficiency tends to one. In the uncensored case, the efficiency relative to the a unknown

Weibull estimate is at least 77% for all z > 1, and at least 88% for all z > 2.

In the one sample case, confidence intervals for the median survival time based on

right censored observations have been considered by Brookmeyer & Crowley (1982),

Slud, Byar & Green (1984), and Jennison & Turnbull (1985), among others. The asymp-

totic theory of the one-sample estimate of the mean based on the Kaplan-Meier (1958)

estimate of the survival function has been developed by Susarla & van Ryzin (1980) and

Gill (1983).

In the proportional hazard model with censored data and a parametric baseline

hazard function, Borgan (1984) has developed the asymptotic estimation theory. See

Borgan for further references to the parametric case.

2. MEDIAN AND QUANTILE SURVIVAL TIME

2.1. Estimates and confidence interval.
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Let (Y1,XnT, , (y ,jX ) T be a sampie of independent vectors and suppose

that given X = ,., i 1,YI*,. , Yn follow model (1). We do not

observe the Y.'s, but, I min{Yi,CC} and bi I{T i Yi}. Define

Ni(t) I{Ti < t, bi 1} and

Ji.(t) I Ti{ > t}. Conditionally on Xi = xi, i = 1, , n, Cox's (1972, 1975)

partial likelihood can be written

L()= H Hr| J, (s )exp(T;) dN(d )
i=lO°0 J3(s )exp(/3Tz ) j

i=1

Cox's partial likelihood estimator /3 is the value of , which maximizes L (/).

Let Y(i) < . * < y(k) denote the observed ordered distinct survival times; let

n

Y(o) = 0, Y(k +1) = 00 and set N(s) = N (s For K t < Y

Breslow's (1972, 1974) estimate of the baseline hazard rate Xo(t ) is

XI(t = N(y() - N(y(; )) t=1,**k+1.
{ Y (i )-Y(i -O) jS i ( t )exp(p x

To estimate the integrated hazard

t

AO(t fXO(s )ds,
0

we use

t

A0(t) XO(s )ds.
0

Following Andersen & Gill (1982), set
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1 nO
S(0)( 3,t ) - E Ji (t )exp(!3X )

- nI=

M(O't E X-l Ji (t )exp(/
n

S( ) )= n (i)XYjJ t(t )exp(iTX,)
fl i=1

E (1,t ) ={S()(3,t )}-'S(1)(,d,t )
V(13,t ) - S{S0(,t )}-1S(2)(03,t) - E(/,t )12

where for any r-vector a = (a, * , a,)T, a02 is an r X r matrix with (i,j) entry

equal to a, a . Assume conditions A-D of Andersen & Gill (1982), in particular that

S(k) (pj,t) converges in probability to s(k) (i,t), 0 < t < T, k = 0,1,2, uniformly

in t and in a neighbourhood of /o0, where L00 denotes the true value of /3. Here 10, T I is

the time interval over which the individuals are observed. Set

e (/,t ) = {s(0)(3,t )}'-s(1)(3,t )

v (p3,t ) = {s (0)(3,t )}-1s (2)(3,t ) - e (/3,t )92.
For any covariate value XO and p E (0,1), let

Q(p xo) = ik5-I[{-log(1 - p )}exp(-_T xo)1 be the p-th quantile of the conditional

distribution of Y given xo, where A41(u) inf{t: AO(t) > v }. A natural predictor

of the p-th quantile is

Q (p xo) = A01'[{-1og(l- p )}exp(-WT'o)I
Using the results of Begun, Hall, Huang & Wellner (1983), it follows that this esti-

mate is asymptotically optimal in the sense of having the smallest possible asymptotic

variance in a given class of regular estimates. We next give this asymptotic variance.

For O < P1 < P2 < 1, let qi Q(pi I o), ri =A0(qi)

= fe (O3,u )dAO(u),
0



and

T

= v (9,3 v)s (0)(,3o,u )dAo(u).
0

PROPOSITION 2.1. 4ssume that 0 < a < b < 1 are points such that X0(t ) is

continuous and bounded away from zero for t E [Q(a x0), Q(b x0)l. Then

U(p xo) - n Q(PI Xo) - Q(p I xo)} converges weakly in Dla,bJ to a mean

zero Gaussian process U(p | xo) with covariance

12(P 1,P2 x0) \o(q 1)\o(q2)J-¼^(q1,q2 x0)
where

q,

-y(q I I q xo) f{f[s (Vouu)p-dAO(u) (2)
0

+ fiTE-% - r2x - rxx T E6 + rTr2x TE~ x0}

The proof is deferred to the appendix.

Note that, using Tsiatis (1981) and Andersen & Gill (1982), a consistent estimate

2(P 1P2 X0) of r(p1,P2 xo) results if in (2) the unknowns X0, A0, s(0), e, and v are

replaced by their estimates X0, A0, S(°), E and V as defined earlier. Thus, we can con-

clude

COROLLARY 2.1. Under the conditions of Proposition 2.1, an approximate level

(1 - a) confidence interval for the conditional quantile survival time Q (p I xO) is

Q (P zo) ± Za/2AP 1P I zo), where z/2z i the 1 - a/2)th quantile of the standard

normal distribution.



We let 4(zo) denote the median Q (1/2 | xo) of Y given x0, and we let r(v 'o)

denote the asymptotic variance of the estimate il(xo) = Q(1/2 1 xo) Thus

i(v I x0) = r(1/2, 1/2 xo can be obtained from (2) by substituting

Pi AP2i 1/2, and an approximate level (1 - a) confidence interval for v(xo) is

i'(Xo) ± Za/2NVl xo), where Ni' xo) = i2(1/2, 1/2 1 xo

Proposition 2.1 implies that the efficiency of the semiparametric estimate with

respect to parametric estimates is positive. We now look closer at such efficiencies.

2.2. Comparisone with parametric methode

in the WVeibull model with known ehape parameter.

WN:e consider experiments with one covariate (r = 1) which we denote X. The per-

formance of the semiparametric median life estimate i'(xo) will be compared with

parametric estimate appropriate for the Weibull model with baseline hazard function

XO(t) = aXat-, t > 0, a > 0, X > 0. Although our results in Section 2.1 are valid

for arbitrary 40, we find that the expression for the approximate variance of i(xO) is too

cumbersome to yield any useful insights except in the case 4% = 0. Thus, as is the case

with many investigations of properties of partial likelihood methods, we restrict atten-

tion to the case 4% = 0. The results for this case can be expected to be approximately

correct for 40 in a neighbourhood of zero.

Furthermore, we suppose that the conditional survival function G (t xo) of the

censoring variable C given xo has form G(t xo) = exp{-pa t'}, where p > 0. Let
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p and o,.2 denote the mean and variance of X, and set Z. = lxo - pl a-1. Then the

asymptotic variance of il(x O) is

i xO) = a 2X-(log 2)2/a {t1(2# - 1)(log 2)2 +
where 0 = 1 + (p/X)a.

In the case when it is known that X0(t = aXat l, where a is known and X in

unknown, an asymptotically optimal predictor of the median of Y given To is

iJ" ( x o) = exp (-:xo/a)log 2)1/a. Here , and X are the maximum likelihood esti-

mates of 3 and X. The asymptotic variance of i/a(xo) is given by

1(iJ l x0) a-2X-2(Iog 2)2/a 0(l + z2).

Comparing the variance of the semiparametric estimate 4(xo) to the variance of the

Weibull model estimate i'a(xo) in the Weibull model, we find that the asymptotic

efficiency e (iJ, i><) -r(v'a I xo)/ri(i' I xo) depends on X, p and a through 0 only.

This parameter measures heaviness of censoring in the sense that the probability of an

individual being censored is p =-1e- 01. Furthermore, the asymptotic efficiency

depends on the underlying distribution of the covariate X and the value x0 through

z = IxO - pk-' only.

As z -a oo, e (A, va) tends to 1 so that no efficiency is lost by using the more gen-

erally valid estimate i'. On the other hand, as z - 0, e (iJ, i'a) tends to

02(log 2)2 (2° - 1)-1. This limit is equal to 0.4805 when there is no censoring (0 = 1)

and tends to 0 as 0 -a oo.
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Next we consider a table of the asymptotic efficiencies.

Table 1 about here

Table 1 shows that the loss in efficiency in using the more generally valid semi-

parametric estimate is at most 52% when the probability that an individual is censored

is at most 67%. Only when the censoring is extremely heavy does the parametric pro-

cedure perform considerably better than the semiparametric procedure. For large values

of z, the efficiency of the semiparametric procedure is quite high. It does not fall below

82%7 for z > 2 and p < 2/3.

2.3 Comparison with parametric method.s

with unknown s1hape parameter.

In this section we compare the semiparametric estimate with the maximum likelihood

estimate in the case where both the shape parameter a and the scale parameter X, as

well as the regression parameter A, are unknown. For simplicity, we assume that the

data are uncensored.

We compare the semiparametric estimate of median regression with the parametric

estimate

VW ( x0)- 15exp (-'xo/&)(log 2)1/a,
where ,3, X, and 'a are the maximum likelihood estimates of,, X and a.

The asymptotic variance of this estimate is given by
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72(^/W x0) =- 2a-2(log 2)2/a (dc-1 + 1 + z2)

where z = Io - Asj a- c = 1 + r" (2) - {r'(2)}2 and d = {log (log 2) - r"(2))2.

We find that the asymptotic efficiency e (1J, i'w) evaluated at 3 0, does not

depend on X and a.

As z - oo, e (1W,'w) tends to one so that no efficiency is lost by using the more

generally valid semiparametric estimate. As z -_ 0, e (i, V'W) tends to

(1 + dc -1)(log 2)2 0.6624, which is much higher than the value 0.4805 in the case of

e (1, i'a). For z =0, O.5, 1.0, 2.0, 4.0, and 10.0, the values of the efficiency

e (iJ, i'w ) are 0.6624, 0.6986, 0.7720, 0.8845, 0.9611 and 0.9931, respectively. Thus for

> 1, the loss in efficiency using the more generally valid semiparametric estimate is at

most 23%.

Finally, note that the Weibull model can be thought of as a power transformation

model where h (Y) = Y' follow an exponential model with survival function

F(t zx) = exp (-t Xae/fo). From the earlier results of this section, we find that for

z = 0, 0.5, 1.0, 2.0, 4.0, 10.00, the asymptotic efficiency e (V-w,I'a) is 0.7253, 0.7675,

0.8407, 0.9296, 0.9782, and 0.9963, respectively. Thus for z > 1, the loss in efficiency

when estimating a is at most 7%.

3. MEAN SURVIVAL TIME

3.1 Eatimate. and confidence interval.

In this section we assume that the data are uncensored. For any covariate value xo
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let p(xo) denote the mean of Y given xo, i.e.

00

>(.To) fF(s I *)ds
0

where F(s | x ) is the conditional survival function of Y given X = x0. A natural

estimator of 11(xO) is

oo

4(xo) = fF(s I xo)ds
0

where F(s x0) = exp[-exp { x(3T20} A(D(s)J. From Tsiatis (1981) and Andersen &

Gill (1982), it follows that n l/2{j(T0)-p('o)} is asymptotically mean zero normal

with variance

xcoo

r( x0) -ff F(q1 z0)F(q2 | Io)e IxIF(qq,q2 x0)dqedq2
0 0

where Y( q 1,q2 xo) is defined in equation (2).

It follows from this that a level (1 - a) confidence interval for P(xo) is '('O) i

I2( x10), where i2(jx10) is obtained from r2(j x1O) by replacing s(0), s(1), s(2), e v,

F(s x0) and /O by their sample counterparts defined earlier.

3.2 Comparison with parametric methods

in the Weibull model with known shape parameter.

We compare the performance of ft with that of the parametric estimate appropriate

for the Weibull model with a known. As in Section 2.2, consider the case of one covari-

ate and /0 = 0. The asymptotic variance of p(xo) is then given by



- 13 -

r2(j x0) - -2 a-2{2ar(2/a) - r(l/a)2(l - 2)}
where z =|xo --I o-1. In the case when it is known that X0(t) a= a-, an

asymptotically optimal predictor of the mean of Y given x 0 is

/4 = Fr(l/a)exp(-/xo/a)/Xca where 3 is the maximum likelihood estimate of 3. Its

asymptotic variance is given by

r(j4 X ) _ \-2 a-4r(1/a)2(l + Z2)

Comparing the variance of the semiparametric estimate j(xo) to the variance of the

Weibull model estimate j(xo) in the Weibull model, we find that the asymptotic

efficiency e (P, 'c,) = 72(ita xo)/172( xo) does not depend on X. Moreover, the

asymptotic efficiency depends on the underlying distribution of the covariate and the

value x 0 through z x - pjor I only.

We note that in the exponential model (a = 1), the more generally valid semi-

parametric estimate ft(x0) of the mean regression is fully efficient for any value of z.

As z -oo, e (i, /) tends to 1 so that again no efficiency is lost by using the more

generally valid estimate it. On the other hand, as z 0, e (it ita) tends to

a-2{2ar(2/a)r(1/a)-2- 1}'-. This limit is equal to 1 for a 1, tends to 0 as a -O 0

or a -. oo. However, this convergence is very slow and for a in the range

0.5 < a < 100, the efficiency is in the interval from 0.6166 to 1.

Next we give a table showing asymptotic efficiencies of the semiparametric and

parametric estimates of conditional mean survival

Table 2 about here
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Table 2 shows that the efficiency of the semiparametric estimate of the mean regres-

sion is quite high and much higher than the semiparametric estimate of the median

regression. In fact for z > 1 and 0.5 < a < 1.5, the efficiency is 0.89 or higher.

3.3 Comparison with the parametric methods

in the Weibull model with unknown ahape parameter.

We compare the semiparametric estimate of the mean regression with the parametric

estimate PW(Zo) = F(11/&)exp (-Ox130/&)/XA&, where /2, X and a are the maximum

likelihood estimates of /3, X and a. The asymptotic variance of this estimate is given by

T'(pwI xo) = X-2a-4r2(1/2)[1 + Z2 + {Fr(2) - tP(1 + 1/a)}2c-11
where ?/(x) is the digamma function b(x) r='(x)/r(x) and c is defined as in Sec-

tion 2.3.

The asymptotic efficiency e (fsi,' W) does not depend on X. For varying a and z,

the entries of Table 3 show that the more generally valid semiparametric estimate is

very efficient for a values in the range from 0.5 to 10. In fact, when a = 1 no efficiency

is lost, and for a between 1 and 10 the efficiency loss is less than 1%o for all values of z.

As z -+ oo, the asymptotic efficiency e (Wi,i w) tends to 1 for all values of a. As

z -. 0, the efficiency tends to

r2(1/a)[1 + {r'(2) - 4(1 + 1 /a)}2/c ] a-2{2ar(2/a) - r(1/a)2}-1, values of which

are given in Table 2.

Finally, the efficiency tends to 0 as a -+ 0 or a -_ oo. However, for a -- oo, this
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convergence is very slow

3.4. Compari,8on between the parametric methods

in the Weibull model.

Finally, we consider the asymptotic efficiency e (sW, pi,) of the parametric estimate

with the power parameter a unknown with the parametric estimate with a known. As

V-+ 00, this efficiency tends to 1. Further, for a = 1 it is exactly equal to 1 for all z.

For z -* 0, the asymptotic efficiency tends to [1 + {1"(2) - lb(l + 1/a)}2/c 1-1. For

a -+ 0, the asymptotic efficiency tends to 0. For a -_ oo,the asymptotic efficiency

tends to (1 + z2){1 + + c- }1. For z = 0.0, 0.5, 1.0, 2.0, 4.0 and 10, this limit

is equal to 0.6219, 0.6728, 0.7669, 0.8916, 0.9655, 0.9940, respectively.

Thus the loss in efficiency due to estimating the power parameter is small to

moderate unless a is small, in which case the loss is severe. Similar findings have been

obtained by Carrol & Ruppert (1981) and Taylor (1986) in the case of power transforma-

tions to a linear regression model.

APPENDIX

Proof of Proposition 2.1

From Tsiatis (1981) and Andersen & Gill (1982), L (t) - n Ao(t- A(t )} con-

verges weakly in D [0, T I to a mean zero Gaussian process L (t ) with covariance

cov {L (s ), L (t)} = X(0)(0 ) du + [f e (0, u )xo(u ) du] TXS[- fe (3o,u )Xo(u )du
08(),3,)0 o
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for s < t . Without loss of generality let us assume that the sample paths of L (t ) are

continuous and L (t ) converges to L (t ) almost surely in the supremum norm on [0, T J.

Set a'- AO(Q(a x0)) and b- AO(Q(b I xo)). We shall show that

n /2(j^d- Ao1)= U converges weakly to -[Xo{A0'(u)}] L {A (u )} in

D [a ', b T. The Proposition follows then by Taylor expansion and Theorems 3.2 and 3.4

in Andersen & Gill (1982). We can write

U(u ~~+V(U)[i()+ 13]
U(u 0=-){A-(u)} + ( V(u) XO{A6'(u)}

where V(u) - n /2[A{AO4'(u )} - u 1. By the uniform continuity of Xo{A&-1(u )}-1, it

is enough to show that V(u ) converges in probability to V(u =-L {A14'(u )} and the

second term in (3) is asymptotically negligible.

Adding and subtracting terms

supi V(u) - V(u )I < suplL {A14'(u )} - L {A^-1(u )}I (4)

+ supn IAo{AO-(u )} - u I + supjL {A"(u )} - L {Ao-( )}I

The first term is bounded above by suplL (t) - L (t )I -. 0 almost surely, with the sup

taken over [0, T 1. Further

supIAo{A _(u )} - u < sup,A {A l(u )} - Ao{Ao-(u )}I (5)

+ supIAo{A4I(u )}u < suplAo(t )-Ao(t )I + R

where Rn - infS()(/37,t )-'sup(/AN/n ), which converges in probability to zero. The

consistency of AO entails that (5) converges in probability to 0. Furthermore
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supn 1/2 jPo{Po (u )} - u sup n/2 Ao(t A(t -)j < n 1/2Rn which converges

in probability to zero. Further, for u E [a ,b 'J, we have L {A'1(u )} = L {A '(u ')}

where u' -= A0o{A0-1(u )}. The uniform continuity of the sample paths of L {(A '(u )}

and consistency of A0{Aj1(u )} implies therefore that the third term in (4) converges in

probability to 0.

Finally the second term in (3) converges in probability to 0 by (4) and boundedness

of the sample paths of V(u).
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Table 1. Asymjtotic efficiency e (iJ, i'V) of the semiparametric estimate of the

conditional median survival time in the Weibull model with known shape and

unknown scale parameter. The probability of an individual being censored is

P 1 - '.

z

p 0.0 0.5 1.0 2.0 4.0 10.0

0.0 0.481 0.536 0.649 0.822 0.940 0.989

1/3 0.591 0.644 0.743 0.879 0.961 0.993

2/3 0.618 0.669 0.764 0.890 0.965 0.994

0.9 0.047 0.058 0.090 0.198 0.456 0.833



Table 2. Asymptotic efficiency e (ii, jsi,) of the semiparametric estimate of the

conditional mean survival time in the Weibull model for uncensored data.

shape parameter

I 1.0 1 1.5 1

1.0

1.0

1.0

1.0

1.0

1.0

0.964

0.971

0.982

0.993

0.998

0.999

10

0.691

0.736

0.817

0.918

0.974

0.996

0.1

0.002

0.002

0.002

0.004

0.010

0.053

Unknown shape

0.5 1.0

0.922

0.935

0.957

0.981

0.994

0.999

1.0

1.0

1.0

1.0

1.0

1.0

parameter

1.5 1

0.997

0.998

0.999

0.999

0.999

0.999

10

0.992

0.993

0.995

0.998

0.999

0.999

a

z

0.0

0.5

1.0

2.0

4.0

10.0

Known

1 0.5

0.800

0.833

0.889

0.952

0.986

0.998

0.1

0.001

0.001

0.001

0.003

0.009

0.052


