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Stationary Excursions*

by Jim Pitman

1. Introduction
This is a study of stationary excursions, built upon and including as special

cases many results in the theory of stationary and Markov processes. The main
result is a kind of last exit decomposition in a stationary rather than Markovian
setting, formulated as part (iii) of the theorem below. This extends a result of
Neveu (1977) for a discrete stationary point process. Essentially the same decom-
position was obtained for Markovian excursions under duality assumptions by
Getoor and Sharpe (1982), and in the Brownian case of excursions from a point
by Bismut (1985), who showed how the decomposition gives a nice description of
Ito's excursion law. As shown by Biane (1986), this leads to a quick derivation of
the relation between Brownian excursion and Brownian bridge of Vervaat (1979).
Also included as special cases of the last exit decomposition are results of Geman
and Horowitz (1973), Taksar (1980) and Maisonneuve (1983) on random closed
regenerative subsets of the line, all of which extend to the stationary case.

Recent work of Mitro (1984), Getoor and Steffens (1985), Fitzsimmons and
Maisonneuve (1986), Dynkin (1985), shows how much of the theory of Markov
processes finds its most natural expression in the setting of a stationary two sided
process with random birth and death, as constructed by Kuznetsov (1974) and
Mitro (1979). See also Taksar (1981). The results set out here for a L;-;-.nogene-
ous random closed set M all apply in this context. Details of this case are not
given here, but readers may recognize a number of formulae in the above papers
as special cases, often with M a very simple set, such as a single point at the
birth time of the process, or the time it last hits a set. Another interesting M in
this context is the complement of the interval on which the process is alive.

* research supported in part by NSF grant DMS-8502930
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2. The Palm measure

Let (et, t E R) be a flow in a measurable space (Q,F). That is to say

(t,w) -+ Ot
is a product measurable map from R X Q to Q, and the maps

e w -tW

from Q to Q are such that eo is the identity and e o et = e+t, s, t E R. Here
R is given its Borel a-field. A measure P is invariant under the flow if the P dis-
tribution of et is P for every t:

P(et E -) P( ), t E R.

Call a process (Xt,, tER, w E Q) = (Xt, tE R) homogeneous if

xt xOoet, teR.
For example, X might be the coordinate process on any of the usual function
spaces equipped with shift operators (EO). Call a subset of RXQ homogeneous if
its indicator function is a homogeneous process. Let M be a homogeneous subset
which is closed, meaning that

M,= {t: (t,w) E M}

is a closed subset of R for every w E Q. For example, M. might be the closure of
{t : Xt,, E A}, for a subset A of the range of a homogeneous process X.

Define

Gt sup{s < t: sE M} (sup 0--oo)
Dt inf{s > t: s E M} (inf05_oo)

A--Go, R=Do.
At A o et t- Gt (age at t)
Rt R o et Dt - t (return time after t)

L - {t: Rt 0, Rt > 0} (set of left ends of intervals comprising MC).

It is assumed R is F-measurable. Then so is everything else. Note that (At),
(Rj), L are homogeneous, but (Gj) and (Dj) are not. The combination of
measurability assumptions on R and (et) is too strong for some contexts. See the
remark at the end of the section regarding weaker assumptions.

The measure Q introduced in the following theorem is the Palm measure on £2
associated with the homogeneous random measure on R which puts mass 1 at
each point of L. This is a slight extension of the notion of Palm measure, in the
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vein of Totoki (1966), Mecke (1967), Geman and Horowitz (1973), de Sam Lazaro
and Meyer (1975), Neveu (1977). See also Atkinson and Mitro (1983), Getoor and
Sharpe (1984) for treatment of related measures and further references in the
Markovian context.

Theorem.
Suppose P is a u-finite measure on Q which is (et) invariant. For B E F let

Q(B) = P#{t : 0 < t < 1, t E L,Et E B},

the P integral of the number of points in L of type B per unit time. Then
(i) Q is a u-finite measure on (Q7,F)

(ii) For every product measurable f: RXFQ -k 10,oo)
P E f(t,eJ) |f fdtQ(dw)f(t,w)

tEL R n

(iii) The joint distribution of eGu and Au-u -Gu on the set
(-oo < Gu < u) (O < Au < oo) is the same for every u E R, and given
by

P(Au E da, E0G E dw) = daQ(dw)l(a < R(w)), 0 < a < oo.

(iv) P(O < Au < 00, eG. E dwi) = Q(dw)R(w).
R

(v) P(F) = P(F, A0O 0 or ox) + Qf1F(eS)ds , F e F.
0

(vi) P(AU E da) Q(R > a).
(vii) If Q(R > a) < oo, a > 0, the P conditional distribution of eG. given

Au = a is Q( IR > a):

P(eGC E dwIAu = a) = Q(dwIR > a).
Proof.

That the Palm measure Q is u-finite and formula (ii) holds can be shown by a
variation of the argument of Mecke (1967). But here is a quicker argument for (i)

R
which I learned from Maisonneuve. Take f = e-sg(es)ds where g is chosen so

0
0 < g E F and Pg < oo, using the a-finiteness of P. Then

Qf P X f oe.t< eP 2 e-tfo et
O<t<1 O<t<oo

tEL tEL
00

< e P f e-u g(Eu)du = e Pg < oo.
0
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Since obviously Q(R < 0) = 0, and f > 0 on (R > 0), it follows that Q is o-
finite. Now formula (ii) follows easily, iust as in Mecke (1967). See also Getoor
(1985) for a related argument.

Parts (iii) to (v) are generalizations of results of Neveu (1977). The proof fol-
lows the same lines as Neveu, who considered the case when M - L is discrete,
unbounded, and P is a probability. Here is the argument for (iii). By shift
invariance, it suffices to consider the case u = 0. In formula (ii) take

f(t,w) = h(w,-t)1(R(w) > -t > O), and let G Go= -Ao.
Then f(t,et) 0 for t > 0, while for t < 0

f(t,Otw)1(t E Lw) h(et,,-t)1(R o Et, > -t)l(t E Lw)
fh(eG,-G) if t = G(w) E (-oo,O)
O if G(w)=-oo or 0

because for t E LW, R o Et, is the length of the interval where left end is t, and
this length exceeds -t iff this interval is the one covering zero. So the formula
becomes

R(w)
Ph(EG,-G)1(oo < G < 0) = fQ(dw) f h(w,s)ds,

0 0

which is what is meant by (iii) in this case. Appropriate substitutions in (iii) now
yield (iv), (v), (vi) and (vii).
Remark. As pointed out to me by Maisonneuve, for application to Markov
processes it is more convenient to assume that (t, w) -_ Et,, is (Borel Q F, G)
measurable and R is G-measurable for a sub a-field G of F. Then the same argu-
ments show that the Theorem holds with the modifications to the various parts
as follows:

(i) Q is defined on G only
(ii) f must be Borel ® G measurable

(iii)-(vii) EG has range (Q2, G).
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3. Examples and applications
I. The discrete case. If P is a probability and it is assumed that M is a
discrete subset of R, unbounded above and below, then M =L
P(O <Au < oo) = 1, P(Au = 0 or oo) = 0. The first term then vanishes on the
right side of (v), and the conclusions (ii), (iii) and (iv) reduce to the conclusions
(20), (18) and (19) respectively of Neveu (1977) Prop II.13. In this case,

M {Tn, n E 7

where

T-1 < To < 0 < T, < T2 *

with To = Gov T1 = R, and Tn defined inductively by

Tm+n = Tm + Tn 0 ETm
Here the subset

(0 EM) = (To °0) - (Go = 0)
can be any set in F, call it B, such that the process of shifts watched on B a
discrete point process. To emphasize this, write T B instead of T, e B instead ofn ~~~~~n7
eT . So enB is the nth shift that hits B, and T B is the time this happens. Then
the family of shifts (e B, n E 7) when restricted to B defines a group of transfor-
mations on B which leave the Palm measure QB invariant. See Neveu Prop II.17.
The shifts (E6) are ergodic under P if and only if the shifts (EnB) are ergodic
under QB. Assuming this ergodicity, and that QB is bounded, there is the ergodic
theorem for 0 < Y E F:

- X Y(eB) -_ pB(Y) both P and pB a.s.
n m=1

where pB( - ) = QB( . )/QB(B) is QB normalized to be a probability. See for
example Franken, Konig, Arndt and Schmidt (1981) or Kerstan, Matthes and
Mecke (1974).

II. Excursions. The formulae of section 2 can be reformulated in terms of
excursions by a change of variable. Suppose X is a (EO) homogeneous process,
such as the co-ordinate process in a function space with shift operators (Ei). For
each t e L the excursion of X away from M starting at time t can be defined
informally as the fragment of the path of X

(Xt+S, 0 < s < R)
where Rt > 0 is the lifetime of the excursion. It may also be convenient to
regard some other things as part of the excursion, for example Xt+RZX Xt, or Xt if
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X happens to have left limits. To cover all such possibilities, let (Qex,Fex) be a
measurable space, and say a measurable mnp e (O E L) ` Qlex contains the excur-
sion of X on (0,R) if

(i) there is an Fex measurable map Rex from 12ex to (O,oo] with

Rex oe R on(OEL);

(ii) there are Fex measurable maps Xex defined on (Rex > s) such that

Xyex Oe X. on (O E L,R > s).
Roughly speaking, these assumptions imply that

(X57O< s < R)
is a function of E if (O E L). Clearly, the identity map E = e0 contains the excur-
sion of X on (0,R). If Q is any of the usual spaces of paths indexed by R, so does
the projection of £ onto paths indexed by R+, and so does the operation of stop-
ping or killing at time R after making this projection. In these cases Qex C £2
Rex-R, y5ex - XI. In general we may regard Rex and )sex as extensions of R
and Xs from Q to Qex. In any case the 'ex' will now be dropped from the nota-
tion for these extensions of R and X, to £2ex.

Suppose that X is a homogeneous process over a flow (e)J, that M is a ()t)
homogeneous closed set, and that E : (O E L) ` Qex contains the excursion of X on
(O,R), where

L = set of left ends of M

as in section 2. For t E L, let Et = E t, SOEt is the excursion that starts at time
t.

Let

Qex(B) P#{t: 0 < t < 1, t E L, Et E B}.
Then Qex is a measure on (£2ex7Fex), call it the equilibrium excursion law. This is
simply the Q distribution of E, so the formulae of the theorem transfer immedi-
ately by change of variables to give corresponding formulae for excursions instead
of shifts. For example, on the set (-oo < GU < u), which is the event that
u E Mc and there is some point of M to the left of u, the excursion straddling time
. is CGU Formula (iii) gives the joint distribution of cGu and Au u - GU as

P(Au E da, EGu e de) - daQex(de)l(a < R(e)), e E2fex, 0 < a < oo

Similar substitutions give excursion versions of (ii) and (iv) through (vii). These
results for stationary excursions are generalizations of results that are known in
various Markovian contexts. In particular, the above formula is a kind of last
exit decomposition in a stationary setting, which extends results of Bismut(1985)
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for Brownian motion and Getoor and Sharpe (1982) for dual Markov processes.
As another illustration, (v) yields

R

P(XU E B) P(XO E B, Ao O or0o) + QeXf1B(Xs)ds, u > 0.
0

These formulae are not of much interest unless Qex is a-finite. But this is the
case whenever the P distribution of XO is u-finite. This can be seen using the fact
that a measure p is a-finite if and only if there is a strictly positive measurable
function f such that pf < oo. Let f be such a function defined on the state space
of X for p the P distribution of XO. Then formula (v) of the theorem gives

R R

Pf(XO) > Qff(Xs)ds = Qexff(Xs)ds by change of variables.
0 0

R

But ff(X,)ds > 0 on (R > 0), and Qex(R > 0)C = 0, so Qex is u-finite.
0

Assume now that M is recurrent, meaning M is P a.s. unbounded. Then
P(AU oo) = 0, and the excursion straddling time u is well defined except if
u E M. Parts (iii) and (iv) of the theorem then show:

The P distribution of the excursion straddling time u on the event (u 0 M) has
density R(e) with respect to the equilibrium excursion law Qex(de), and given that
the excursion straddling u is e E f2exy the conditional distribution of Au is the uni-
form distribution on [0,R(e)J.
Put another way:

If Pex denotes the P distribution of the excursion straddling an arbitrary fixed
time, the equilibrium excursion law Qex is the measure on (R > 0) with density R

with respect to Pex'
In the special case when P governs a reflecting Brownian motion X on [O,oo),
with the P distribution of Xt equal to Lebesgue measure on 1I,oo) for all t, and M
the zero set of X, this amounts to a result obtained by Bismut (1985), because
Qex in this case is just Ito's excursion law, as explained below.

In general, assuming (E@) is ergodic, Qex describes the asymptotic rates of
different types of excursions, in accordance with a ratio ergodic theorem of the
type stated above in the discrete case. See Burdzy, Pitman and Yor (1986) for
further details in the Markovian case.

III. Relation to It6's excursion theory.
Suppose P governs a strong Markov process X with u-finite invariant measure

p. So p is the P distribution of Xt for each t E R.
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Suppose that M is the closure of {t: Xt 0} where 0 is a recurrent point, mean-
ing that the following (equivalent) conditions obtain:

P(R oo) 0.

P(supM < co) = 0.

Then Qex is a multiple of the Ito excursion law defined by Ito (1970) as the rate
measure under Po of the Poisson point process

('Edu u > 0),

where (4u), u > 0) is right continuous inverse of a local time process at zero
(Ut, t > 0) and cu-) is the excursion of X away from 0 on the interval
(tau(u-), r(u)). Let BCQ,X be such that the process of excursions of type B is
discrete, and let eB be the nth excursion of type B which starts after time 0.
The strong Markov property of X at the right ends of the excursion intervals
implies that given XO = x for p almost all x, (eB) is a sequence of independent
and identically distributed random variables. Comparison of the law of large
numbers with the ergodic interpretation of the rate measure Qex shows that

P(e B E ) Qex( I B).

Now let

NB - #{s : s < t, s eL, E. E B},

the number of excursions of type B that have started by time t. As B passes
through any increasing family of sets with finite Qex measure and union Iex, the
normalized counting process

(NtB/Qex(B), t > 0)
converges uniformly on compact t intervals a.s. to a continuous additive func-
tional

(Ut, t > 0)
which serves as a local time for X as 0. The Poisson character of the time
changed excursion process is then easily verified. See Greenwood and Pitman
(1980a) for details.

Assuming that the local time U has been normalized as above, the Poisson
character of the time changed excursion process may be expressed as follows (see
e.g. Jacod (1979) (3.,34))

00

PEH(u,w,Ecu_)(w)) P fdu f Qex(de)H(u,w,e)
u 0 nex

for every positive Pioc X Fex-measurable function H where Plo is the
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(FU) u > 0)- predictable a-field, and it is assumed that X is (Ft) Markov with
respect to Px. Applying this formula after a time change gives the Maisonneuve
formula

0o

PX S F(t,w,Et(w)) - PxfdUt f Qex(de)F(t,w,e),
tEL o nex

valid for every positive [(Ft) - predictable] XFex measurable function F. For a
function F(t,w,e) = F(t,e) depending only on t and e, this becomes

00

PX Y F(t,Et) = P fdmtx f Qex(de)F(t,e)tvL o
where

mtX Px(Ut).
For X p an invariant measure,

Mt= P(Uj) = c()t

for a constant c(p). On the other hand, by the original definition Of Qex as the
rate measure of (et, t E L), the above formula holds for X = p with simply dt
instead of dmtP. Thus c(p) - 1 and the local time process defined above is nor-
malized so that

P8(Uj) t.

In the terminology of Markov processes, U is the continuous additive functional
whose characteristic measure, relative to u, is a unit mass at 0. In particular, if
X is Brownian motion on the line, and p is Lebesgue measure, Ut is normalized as
the occupation density at 0 relative to p. For applications see Getoor (1979),
Greenwood and Pitman (1980b), Pitman (1981).

In general, the constant factor between Qex defined here and Ito's excursion
law depends both on the choice of invariant measure and the normalization of
the local time. By formula (v) of the theorem,

R

P(f) P(0)f(0) + Qexff(Xs).
0

Thus the invariant measure p is determined on {0}C as a multiple of the excur-
sion occupation measure. According to Theorem 8.1 of Getoor (1979), this for-
mula can also be used to construct an invariant measure starting from a Markov
process with a recurrent point. See also Geman and Horowitz (1973), Kaspi
(1983) (1984) for related results.

IV. Relation to Maisonneuve's exit system. To focus on an important
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special case, suppose X (Q,F,Ft,Xt,Et,Px) is a Hunt process which is Harris
recurrent, with a single recurrent class E, and invariant reference measure p on
E. See Blumenthal and Getoor (1968), Azema, Duflo and Revuz (1967) (1969) for
background. It is well known that X can be set up as a two sided process
indexed by t e R. Let us assume this has already been done, so that Xt and et
are defined on Q for all t E R.

Let M be a closed homogeneous optional subset, and let (dAt,P) be the exit
system of M as defined by Maisonneuve (1975), Definition (4.10). Thus dAt is a
homogeneous optional random measure on (O,oo), and P the kernel from E to Q,
in the Maisonneuve formula:

00

PI E Ztf o et = PfZtPs(f)dAt
tEL O

for all optional processes Z > 0 and F-measurable f > 0. In Maisonneuve (1975)
these objects are all defined for a process indexed by 1[,oo), but everything can
be lifted to the two sided process, as in Mitro (1984). Also, much of this goes
through even without assumptions of recurrence or quasi left continuity. See
Kuznetsov (1974), Fitzsimmons and Maisonneuve (1985), Getoor and Steffens
(1985). Let Qx be the px distribution of the process X killed at time R. And let
a(dx) be the measure on E associated with dAt via the formula

1

ac(h) = PIfh(XX)dAd,
0

as in Azema-Duflo-Revuz (1969). Let Qex be the excursion law on paths killed at
time R, induced by the stationary random set M under PP, as in II above. Then
a change of variables in the Maisonneuve formula shows that

Qex fa(dx)QX.
E

Thus the Maisonneuve exit system provides a disintegration of the equilibrium
excursion law of Qex with respect to the starting point of excursions. The
definition of the exit system implies that the measure Qx is not the zero measure,
except perhaps on a a null set. Because Qex is a-finite, the same is true of a.

The above disintegration of Qex is not unique because there is a trade off
between the choice of a and the normalization of the laws Qx. In particular
problems there may be a choice more natural than the one made by Maisonneuve
for the general theory. For example, if X is Brownian motion in a domain D in
Rd with simple reflection at a smooth boundary, the invariant measure m is
Lebesgue measure on the domain. The nicest formulae for the excursion laws are
then obtained with a the (d - 1) dimensional volume measure on AD. See Hsu
(1986) for details. Burdzy (1986) gives further results for this case.
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V. Dual excursions. The equilibrium excursion law was encountered by
Kaspi (1984) and Mitro (1984) who found that for a pair of recurrent Markov
processes X and X in duality, the equilibriumn law Qex for excursions from the
dual M of a recurrent M is the Qex distribution of excursions reversed from their
lifetimes. This relation may be understood in terms of Palm measures as a conse-
quence of the fact that for each e > 0, the point process of left ends of intervals
of MC larger than e alternates with the point process of right ends. See Neveu
(1976) p. 202. The duality relation can thus be extended to more general station-
ary processes. In the case of dual Markovian excursions with nice transition den-
sities, the formulae of section 2 amount to results of Getoor and Sharpe (1982).

It may also be useful to ramify excursions to keep track of the left limit of the
process as it leaves M, and the right limit as it returns, for example by defining e
on (O EL) by

Xs-, s < O

XSo VXSR S > O'

The ramified excursion law Qex then admits the decomposition

Qex(XY_ E dy, X0 E dx, X1o OO) E dw) = /(dy,dx)QX(dw),

where X1 =O (X,,,s > 0), where Qx is the Maisonneuve law for excursions start-
ing at x and stopped at time R, and /3 is the measure associated with the homo-
geneous random measure dA in the Maisonneuve exit system via the formula

1

fff(y,x)/3(dy,dx) = PPff(Xt-, XJ)dAt.
0

Thus B is now a a-finite measure on EXE whose projection onto the second co-
ordinate is the a considered earlier. See Atkinson and Mitro (1983) Sharpe
(1972), Getoor and Sharpe (1984) for details of these and related matters. Getoor
and Sharpe (1982) and Kaspi (1983) give still finer decompositions of the excur-
sion law according to both the endpoint and length of the excursion.

VI. The joint distribution of the age and residual life time.

Return now to the general set up of section 2 with P a-finite and (El) invari-
ant.

Corollary. Suppose that M is closed and homogeneous, unbounded above and
below a.s.. Let A = -G, V = A + R = R o eG the overall length of the interval
of MC straddling 0. Let ls be the measure on [0,oo) which is the Q distribution of
R, where Q is the Palm measure on (O E L):

p(dv) = Q(R E dv).
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(i) P(V E dv) P(O e M)60(dv) + vu(dv), v > 0.

(ii) Conditional on 6G the distribution of A depends only on the value of V,
and given V = v, A is uniformly distributed on [O,vl, and the same holds
for R = V - A instead ofA provided v < oo

(iii) P(A E da) = P(R E da) = P(O E M)60(da) + p(a,oo)da, a > 0.

Proof. These results follow from the theorem of section 2 by a change of vari-
ables, just as in Corollaries 11.14 and II.15 of Neveu (1977).
If P is a probability and M forms stationary discrete point process, these are well
known formulae from renewal theory for the stationary distributions of the age A
and residual lifetime R, which work also in the stationary case. See for example
McFadden (1962), Neveu (1977) Prop II.19. For P a probability and M a station-
ary regenerative set these results were established Geman and Horowitz (1973)
and again by Taksar (1980) and Maisonneuve (1983). According to the corollary,
these results for stationary regenerative closed sets apply just as well without the
regeneration assumption, and for a a-finite P. In the regenerative case, p can be
identified as the Levy measure, and m as the drift parameter, of a subordinator
from which M can be constructed. See Maisonneuve (1983) for details in the case
P is a probability, which extend easily to the a-finite regenerative case,
corresponding to a subordinator with a null recurrent age process. In the regen-
erative case Taksar and Maisonneuve show that -M has the same distribution as
M. This extends to the a-finite regenerative case, see Taksar (1986) but not to
the general stationary case, despite the symmetry in the joint distribution of
(A,R) which is plain from the Corollary.

Example. Let Ot be rotation by distance t around the circumference of a
circle with circumference 6,

P - uniform on circle.

M {t : et(w) E A} where A consists of 3 points at spacings 1,2 and 3
around the circle.

If say the spacings between points of M are

...... 123123123 .

then going backwards they are
... ...321321321. ...

So the distributions of M and -M are different.

Warning. Even if M is discrete and recurrent, P a-finite does not imply p is a-
finite.

Example. Let Xt = (Bt,Ueit) where Bt is a Brownian motion on R, and U is
uniformly distributed on [0,27rJ, running with the stationary area measure on the
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surface of the infinite cylinder R XS'. This is a Harris recurrent Hunt process
with continuous paths. Let M = {t: UJeit - O}. Then M = L is for every w a
shift of the set 27r2, and the Q dLltc{.'ion of R is a single mass of Xo at the
point 27r. But the Q distribution of (X0,1-J) is a-finite, the product of Lebesgue
measure on R with a point mass of 1/27r at 2ir. In general, it seems a reasonable
conjecture that the Q distribution of (XO,R) will be a-finite, provided the P distri-
bution of XO is u-finite and X has right continuous paths.

Acknowledgement. I would like to thank J. Azema, P. Bremaud, J.-F. Le
Gall, J. Neveu, B. Maisonneuve and M. Yor for helpful discussions.
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