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Abstract

For a continuous-time finite state Markov process with stationary distribution xr,
it is well-known that Pj(Xt = j) - ri is O(eAt) as t - oo, for a certain X. For a
stochastically monotone process for which the reversed process is also stochasti-
cally monotone, one can obtain bounds valid for all t. Precisely,
S7r,maxIPj(Xt S j) - r[O,jll < 2(Xt + 2)exp(-Xt). The proof exploits duality for
i J

stochastically monotone processes.



1. Introduction. The technical result stated in the abstract is a small con-
tribution to a much broader project, which we now describe. Under many cir-
cumstances, a Markov process Xt which converges to a stationary distribution -r
does so asymptotically at an exponential rate:

(1.1) P(Xt E A) - r(A) ' cAexp(-Xt) as t -_ oo;

where the rate constant X has an eigenvalue interpretation. In applications to
the natural sciences, T=1/X is called the relaxation time of the process. The
relaxation time is used to indicate the order of magnitude of quantities such as
the time for the effects of an external shock to a system to wear off, or the time
for sample averages of a functional of the process to approach the limiting
ergodic average. See e.g. Blanc and van Doorn (1985), Gardiner (1983), Haken
(1978).

It is realized that these informal interpretations may be misleading because,
for instance, the time for the asymptotic relation (1.1) to come into play may be
larger that the time interval under study. Thus a natural theoretical question is:

(1.2) what can be said rigorously about the finite-time behavior of a Markov
process, given its stationary distribution ir and its relaxation time T?

One aspect of this question, perhaps not the most interesting in applications but
easy to formalize, is the following. Consider the stationary process (Xt;t > 0),
and let d(t) be some measure of dependence between Xt and X0. Typically
d(t) - cexp(-Xt) as t -_ oo; when can we get a bound on d(t) valid for all t > 0
which involves the process only through the relaxation time?

We shall study continuous-time finite state space Markov processes. Infor-
mally, for understanding essentially finite-time properties there is no loss of gen-
erality in restricting attention to finite state spaces, since a general state space
process on a finite time interval can be arbitrarily well approximated by a finite
state process. Write (Xt; t > 0) for the process, I = {i,j,k,...} for the state space,
Q = (qjj) for the matrix of transition rates, with q ,= - qi j, and assume the

process is irreducible so there exists a unique stationary distribution ir = (ri).
Then, in vector-matrix notation,

rQ = O.

The eigenvalue equation

xQ=)-Xx
has solutions 0 X1,X2, * * , X1II which can be ordered so that
0 < Re(X2) S Re(X3) < ..... Write

(1.3) X = Re(X2)
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and define the relaxation time to be r = 1/X.
For our measure of dependence d(t) there are a bewildering variety of "mixing

coefficients" or "coefficients of ergodicity" to choose from: see e.g. Seneta (1979),
Bradley (1983). One variant is

(1.4) d2(t) = supcorrelation(f(X0), g(Xj))
f,g

where X is taken to be the stationary process. For a reversible process X, that is
to say when

riqi,j -rjqj,i for all i,j

standard spectral theory (i.e. matrix diagonalization) shows that the eigenvalues
are all real and that

(1.5) d2(t) = exp(-Xt); t > 0

for X as at (1.3). This seems to be the only known result giving bounds for some
d(t) in terms of X; and it is natural to ask whether analogous results hold under
conditions other than reversibility.

We consider the case where the state space I = (0,1, * * , N - 1}. For distri-
butions x = (xi), y = (y;) on I, x is stochastically smaller than y (x < y) iff

at

F,(i) > Fy(i) for all i, where P denotes the distribution function. The process 'is
stochastically monotone if

Pj(Xt E) < Pj(Xt E -); all i < j, t > 0.
St

In terms of Q, this condition becomes: for all i,

E.qi, EqSjQ+ 1,k; all i > i + 1

E qi,k EkSqi ,k; all j < i,k. k<j

Informally, the class of stochastically monotone processes is the class of processes
which respect the order structure of the line. A natural distance between distri-
butions x, y on I which involves the order structure is

A(x,y) = max IF.(i) - FY(i)I
Then a measure of dependence between XO and Xt in the stationary process can

be defined by

d1(t) = EA(P(Xt E- IXo), P(Xt E ))

(1.6) - i(Pj(Xt E - ),7)

rimaxlPi(Xt < j) - 7r[0,j 1
I J
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(1.7) Theorem. If the process (XJ) and the time-reversed process (Xlt) are both
stochastically monotone, then

dl(t) < 2(Xt + 2)exp(-Xt); all t > 0.

Recall that the time-reversed process (Xi) has transition rates

(1.8) qi,j= jqj,i/ri
An example will be given in Section 4 to show that no such result holds if only
(XJ) is assumed stochastically monotone. Such examples seem rather surprising,
and suggest that the class of chains for which we can justify finite-time inferences
from asymptotic relaxation times is rather limited.

The proof relies on qualitative properties of leading eigenvectors. These pro-
perties are derived via duality in Section 2, and applied to the proof of Theorem
1.7 in Section 3.

Warning: ambiguous terminology. Our notion of "stochastically monotone" is
the standard one of monotonicity "in space", and must not be confused with the
notion of "stochastically monotone in time" used in van Doorn (1981). Our
notion (2.1) of "dual process" is a kind of duality "in space" and must not be
confused with the time-reversed process (in general process theory, "dual process"
is used as a synonym for "time-reversed process"). Finally, we use "increasing"
in the weak sense, to mean "non-decreasing".
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2. Duality and eigenvectors. Seigmund (1976) proved the following result;
see also Clifford and Sudbury (1985) for an elegant proof, and Liggett (1985) Sec-
tion 2.3 for related developments. These references concentrate on the infinite-
state case, but the finite-state case is similar.

(2.1) Proposition. Let (Xj) be a stochastically monotone Markov process on states
{0,1, I,N- 1). Then there exists a Markov process (Yj) on states
{0,1, , N} which is dual in the sense

P1(Xt > j) =P(Yt < i) for all0 < i < N - 1i 0 < j S N, t > 0.

Note that this duality relation implies

(2.2) 0 and N are absorbing states for Y.

We shall show later (2.12) that there is no loss of generality in supposing

(2.3) (1,2, ** , N - 1} forms a communicating class for Y.

We can now appeal to the continuous-time analogue of Perron-Frobenius matrix
theory (Seneta (1981)) to obtain the following result.

(2.4) Proposition. For a Markov process (Yj) on states {0, * * * , N} satisfying
(2.2) and (2.3), let A be the matrix of transition rates, restricted to
{1,2, I.., N - 1}. The eigenvalue equations

aAA-Xa; AO =-X/3

have a solution X which is real, strictly positive, and strictly less than the real part
of any other eigenvalue. The corresponding eigenvectors a, /3 can be normalized
so that a and /3 are strictly positive, cai = 1, and Ea/j# = 1. Then

(2.5) Pj(Yt = j) ,B3ajexp(-Xt) as t _oo; 1 < i,j < N - 1.

These two Propositions are the main ingredients of our proof. For the rest of
this section we record some immediate consequences. Consider (Xt), (Yj) as in
Proposition 2.1. The matrix A of transition rates of Y is related to the matrix Q
for X by:

(2.6) aij = Fqj-l,k-k qjk (i < j)
k<i k<i

-, qijk -2iqj-l,k (i > j),
k>i k>i

with the convention that qj' = 0 outside 0,1, * , N - 1: see Seigmund (1976).
Given eigenvectors u, v of A associated with an eigenvalue X

uA = -Xu; Av = -Xv,
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write uo = vO UN = vN = 0- It can be checked that xQ -Xx, Qy -Xy
for

yi =EUi; Xi-= U; - Uj+
,<j

Thus we have

(2.7) Corollary. The non-zero eigenvalues of Q coincide with the eigenvalues of
A. In particular, the dominant eigenvalue X = X2 of Q defined at (1.3) is real.

This fact that \2 is real for a stochastically monotone Markov process does
not seem obvious (to the author) without the duality argument (for a general
finite Markov process, \2 need not be real). Henceforth write X for X2. Let a,,3
be the eigenvectors of Proposition 2.4, and let

(2.8) =j= -_ gj+I
j = Ea; - c, for c = EEa-r.

1.J i<jIJ
It can be checked, using (2.6), that

(2.9) ^I= -X'Y; Q6 = -X6.

Then (2.5) and the duality relation give

(2.10) Corollary. Pi(X=t j) - rj 6i-yjexp(-Xt) as t -oo; 0 < i,j < N - 1.

Next, stochastic monotonicity yields some qualitative properties of these eigen-
vectors.
(2.11) Lemma. (a) bi is increasing in i.

(b) E SOf or all k.
j < k

(c) If the time-reversed process Xt is also stochastically monotone then 7i/ri is
increasing in i.
Proof. (a) is clear from (2.8), since a is a probability distribution. Note also
that 6 is non-constant. Fix k. Stochastic monc^tonicity implies Pj(Xt < k) is
decreasing in i. So Corollary 2.10 implies bi. oyj is decreasing in i. In view of (a)

this means E yj < 0, giving (b). Next, the time-reversed process Xt satisfies
j<k

Pi(Xt- j) = irjPj(Xt i)/ri. So by Corollary 2.10

Pi(Xt- j) - 6ibi,exp(-Xt) as t _oo; where

i= 6iri, 6i = ilrj

If X is stochastically monotone, then (a) implies bi is increasing, and this gives (c).
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Remark. y is normalized so that 7j 0, so (c) is a stronger property than (b).

(2.12) Remark. The irreducibility condition (2.3) ensures that X in (2.4) has multi-
plicity 1. Given (Xj) satisfying the hypotheses of Theorem 1.7 with matrix Q and
for e > 0, we can construct a transition rate matrix QC such that

(a) Jqij - qi,jl < E for all i,j;
(b) QC has the same stationary distribution zr as Q does;
(c) the associated chain (Xj) satisfies the hypotheses of Theorem 1.7;
(d) the dual process (YJ) satisfies the irreducibility condition (2.3).
Since X _ X as E -e 0, the truth of Theorem 1.7 under condition (2.3) will imply
its truth without that condition.
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3. Proof of Theorem 1.7. Let (YJ) be the dual process to (Xj), let 83 be the
eigenvector associated with X in (2.4), extended to fl=iN 0. Write

i-1
F(i) = E irs. The key facts are

j=0O
(3.1) F(Yj) is a martingale;
(3.2) exV3y, is a martingale;

(3.3) ()3i+l - fi)/i is decreasing in i.
Indeed, (3.3) follows from (2.11) (c) and (2.8); and (3.2) is a standard consequence
of the eigenvalue equation AJ = -Xfl. And the duality relation implies
Pj(Yj > i - 1) = Pj(Xt < j - 1) --F(j) as t _+ oo, and so F(j) = Pj(Y.o = N),
giving (3.1).

Here is a simple lemma, which we shall prove later.
(3.4) Lemma. For 0 < z < 1 let z* = min(z,j - z). Then for a random variable
O < z < 1,

jP(Z > z) - EZI < (1 + 1/z*)EZ*.

(3.5) Proposition.

IPj(Yt > j) - F(i)I < (1 + 1/G(j))exp(-Xt); 0 < i,j < N - 1, t > 0O

where G(j) = min(F(j + 1), 1 - F(j), -).
2

Proof. Fix io such that i3 maxfi. Consider the graph through vertices
(F(i),/3i), 0 < i < N, where the endpoints are (0,0) and (1,0), and piecewise linear
between vertices. Property (3.3) says the graph is concave. Hence

3i/:i2j F(i)/F(io), i < io

2 (l- F(i))/(1- F(io)),l 2io,
and so in particular

gi/ io 2 F*(i)
in the notation of Lemma 3.4. This implies

EiF*(Yt) S5 Ei,3y,/,io
= eXt#i/1i3O by (3-2)

< ext.
Now by (3.1), EIF(Yj) F(i). So we can apply Lemma 3.4 and conclude that

IPj(F(Yj) 2 z) - F(i)j S (1 + 1/z*)ext
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for all 0 < z < 1. So in particular for F(j) < z < F(j + 1),

IPj(Yt > j) - F(i)I < (1 + 1/z*)ext.
The Proposition follows upon noting that

sup z* = min(F(j + 1), 1 - F(j), 2 )
F(j)<z<F(j+ 1)2

To prove Theorem 1.7, note that the duality relation says
Pi(Yt > j) = Pj(Xt < i). So Proposition 3.5 says, in the notation of (1.6), that

A(P(Xt E * ),r) S (1 + 1/G(j))e-xl.
And recalling that A < 1 always,

N-1
dl(t) < E 7r.max(l, (1 + 1/G(j))e-xt).

Let V have distribution 7r. It is easy to check that G(V) is stochastically larger
1than a random variable U uniform on (0 -71 So

dl(t) < Emax(1,(1 + 1/U)e-x')
2

S 2fmax(l, (1 + 1/u)ext)du,
0

and routine calculus yields the bound stated in Theorem 1.7.

Proof of Lemma 3.4. Z* = jZ - Wj, where W = Consider z > 2
(Z> ~~~~2

Then

0 < P(W 1) -P(Z > z)
< P(W-Z > 1-z)

(3.6) S (1 - z)-'EIW - ZJ = EZ*/z*.
And IP(W=1) - EZI IEW - EZI
(3.7) < EIW-ZI EZ*.

Putting together (3.6) and (3.7) gives

(3.8) IP(Z > z) - EZI S (1 + 1/z*)EZ*; z >

To get the desired result for z < 2- observe that (3.8) is equivalent to

IP(Z < z) -(1 - EZ)I S (1 + 1/z*)EZ*; z > 1
-2'
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Applying this to 1 - Z and 1 - z gives (3.8) for Z < 2



- 10 -

4. A counter-example. Here we sketch an example which illustrates some lim-
itations on the generality in which relaxation times give information about the
finite-time behavior of a process.

Given N, consider the process Xt with states (0,1, , N - 1} and transition
rate matrix

qi i+l (N - i - 1)/(N - i); O < i < N - 2

qij-1/[(N-j)(N-j -r 1); 1 < j < i < N- 1.

qi; 0 1/N; 1 < i < N - 1.

This example does not look pathological. It is stochastically monotone and
upward skip-free, both of which are familiar regularity properties. The station-
ary distribution Fr is uniform. However, it turns out that the relaxation time
r = 1 (for every N). Using the skip-free property, for the stationary processes we

find P(XO < -N, X I > 3 N) - 0 as N -. oo. It is now clear that for any class
4 -N-4

4
C of processes for which a theorem of the type

"there exists a measure of dependence d(t) and a function
f(t) - 0 as t -_ oo such that for every (XJ) in C,
d(t) < f(t/T) for all t > 0
where r is the relaxation time of X"

is true, the class C cannot contain these examples. In particular, the hypothesis
of Theorem 1.7 cannot be weakened to assume only that (XJ) is stochastically
monotone.

The behavior of the process Xt becomes clearer when one considers the dual
process Yt, which has states {0,1, * * * , N} and transition rate matrLx A given by

ai,N ll(N-i+ 1)
= 1 - 1/(N - i + 1).

So Y holds at i for an exponential, mean 1, time and then jumps to i - 1 or N
with probabilities chosen to make Y a martingale. It is intuitively clear that for
large t

(a) given that Yt has not been absorbed into {0,N}, it is likely to be at state 1;

(b) the chance that Yt has not been absorbed by time t is largest for initial state
N - 1.

Analytically, one finds that the eigenvectors a,,3 and eigenvalue X of Proposition
2.4 are

of=E1 diE.N-1 X=1



- 11 -

where (k is the unit vector Ek(i) = l(ik) Thus via (2.7) the eigenvectors r,6 and
eigenvalue X controlling the asymptotic rate of convergence (2.9) of Xt to ir are
given by

'a EN1 -EN-2; 6o= 1/N-i, 1 =1/N for i > 1; X 1..
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5. Miscellaneous Remarks.
(a). For infinite state space processes, the rate of convergence to the stationary
distribution may or may not be asymptotically exponential, depending on
whether or not 0 is an isolated eigenvalue. For discussions in various settings see
Nummelin and Tuominen (1982), Sullivan (1984), Van Doorn (1985).

It is intuitively clear that Theorem 1.7 extends unchanged to the real-valued set-
ting, provided r is finite.
(b). It would be interesting to find a d-dimensional version of Theorem 1.7. Our
technique cannot work, since in d > 2 dimensions stochastic monotonicity does
not imply existence of a dual process.
(c). If Xt is both reversible and stochastically monotone, it can be shown that
d1(t) < 1.3d2(t). Thus where both are applicable, the standard result (1.5) is
stronger than Theorem 1.7.

(d). It would be interesting to know the weakest type of monotonicity condition
on Xt which ensures that X2 is real.
(e). The example in Section 4 shows that stochastic monotonicity is not
preserved under time-reversal of stationary processes, in general. Are there
stronger monotonity properties which are preserved under time-reversal?
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