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1. Introduction

One of the most widely used techniques in survival analysis is the Cox proportional

hazards model [71. In this model the hazard rate or intensity of failure for the survival

time for an individual with covariate vector X which may depend on time t is expressed

as

X(t;X(t)) = X0(t)exp(Do(X(t))} , t >0. (1.1)

80 is the regression function and X0 is the underlying baseline hazard. Both 00 and )o are

unknown. Usually D0 is specified as a parametric linear function, i.e. S0(X) = 9 X. In

practical data analysis (exploratory or confirmatory) the nonparametric estimation of 00

could be of interest. A method of estimation based on a penalized partial likelihood is

proposed here.

If t ,t2, * * - t,, are a set of ( possibly right censored ) survival times on n individu-

1 Research supported by the National Science Foundation under Grant No. MCS-840-3239.
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als with corresponding covariate vectors X1,X2, * * * ,X , where X, is observed on [Ot

then the estimate of 00 is defined as the minimizer of the functional

n(O) = -logL. (9) + pJ(O) , p > 0, (1.2)

where

L"(°) = §-l| Ce(X')) 1 (1.3)

j E RI

with R = { j: t, > tI, } and 1-6, is a censoring indicator. The penalty functional

J(R) is designed to incorporate prior notions about the smoothness of 9 into the estima-

tion. The term Penalized Likelihood is due to Good and Gaskins[L91. The technique,

which is closely related to Tikhonov's Method of Regularization can be used to generate

a broad range of nonparametric estimators. For example, in the usual nonparametric

regression context the method can be used to define the smoothing spline estimators of

Wahba[21]. For further examples, see Anderson and Senthilselvan[4], Cox and

O'Sullivan[6], Leonard[13], and Silverman[171. The use of penalized partial likelihood for

nonparametric estimation in the Cox model seems quite natural. Alternative approaches

based on additive approximations to the regression function have been proposed by Has-

tie and Tibshirani[10] and also Stone[18J.

The numerical computation of the penalized partial likelihood estimate in (1.2)

along with an efficient strategy for selecting the smoothing parameter (p) is an impor-

tant practical issue. This will be discussed in a future paper. By and large the methods

described in O'Sullivan[14] can be applied. The purpose of the present paper is to study

the asymptotic behavior of the penalized likelihood estimator. The modern treatment of

the large sample properties of the regression parameter in the Cox model uses a counting
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process formu!ation of the model, combined with certain martingale convergence

theorems, see Andersen and Gill[3]. The analysis in this paper also uses martingale

representations, however, only rudimentary properties of martingales are needed in the

analysis. The main theoretical result shows that the penalized likelihood estimate con-

verges in probability, for a variety of norms, at a rate characteristic of other non-

parametric regression estimates (see, for example, Cox and O'Sullivan[6j).

Some basic definitions, assumptions and a statement of the main result are given in

§2. Convergence is studied in a variety of norms that are related to the structure of the

problem. These norms which are equivalent to certain Sobolev norms are described in

§3. The behavior of the penalized likelihood estimator is studied via certain asymptotic

linearizations; these are described and justified in §4 and §5. The results depend on

showing that the third derivative of the penalized partial likelihood is bounded and that

the sample Hessian (the second derivative of the penalized partial likelihood) converges

at an appropriate rate to a limiting form.
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2. Basic Definitions and the Main Asymptotic Result

2.1. Counting Process Formulation of the Cox Model

The multivariate counting process formulation of the Cox model as described by

Andersen and Gill[3] and Gill[8J, will be used. A brief overview of this formulation is

given next. For a detailed account, including proper definitions, see Andersen and Gill[3]

and the references cited therein. Throughout the paper the time index t is assumed to

take values on an interval [0,11.

For each n, N(1) =(N (s),N(), N* )), is a multivariate counting process

with a random intensity process -(X ( s),>4R) ,** ")) for which

X l')(t Y,(")(t) exp(Oo(X,( kt )) (t (2.1)

The underlying baseline hazard X0 and the regression function D0: R d -_ IR are fixed.

A family of right continuous non-decreasing sub a-algebras {Fgj(): t E [0,11) are defined

on the n 'th sample space, with F !") representing the history of the n 'th process up to

time t. All processes are defined relative to this sequence of a-algebras. Y.(R)(.) is a

predictable process taking values in (0,1), with Y*(a) 1= whenever the i'th component

of the process is under study. The d-dimensional covariate process X,(")(-) is predict-

able and locally bounded. Specification of i(") as an intensity process means that the

process

Mi00(t= N1( )(t) - fXP")(r)dr i;=1,2, * - * n and t E [0,11 , (2.2)
0

is a local martingale. The predictable covariation of M( is described as

t

<Mj("),Mj()>(=tf) " r)d r ; <Mi(")M(")> = 0 i S j
0

For ease of notation the superscript (n ) will be dropped from N, X, M, Y, and X.
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2.2. Definition of the Penalized Partial Likelihood

Inferences for the regression function 00 are to be based on a penalized partial likeli-

hood functional. Assuming the process is stopped at time t, this functional is defined

by:

flog j Y5(r)cOXM(t))] dN(r) fJA(Xd(r))dNud(r) + pJ(9) p > 0, (2.3)

where N(t) =- N,(t ). In the standard Cox model framework, the first two terms
n,=1

represent the negative logarithm of the partial likelihood given in (1.3). J is a penalty

functional. Before going further, assumptions on the measurement model and the nature

of the parameter space will be made explicit. The assumptions in this paper combine

the standard kinds of conditions set out in the analysis of the Cox model and in the

analysis of nonparametric regression estimators, see §4 of Andersen and Gill[3] and

assumptions A-C of Cox and O'Sullivan[6].

Assumption A. (Measurement Model)

(i) (Nj("),Yj("),X1(")) i = 1,2, ,n are iid replicate. of a fized triple of random

processes (N, Y,X) defined on [0,11.

(ii) {X(t) , t E [0,1]) C CS Rd where X ia a bounded open aimply connected aCt

with C . boundary (See Definition 3.2.1.2. of Tricbelf201).

(iii) For each t E [0,1], the random variable X(t) ha. denaity h(. t) and for all z E

0 < k, < h(z I t) < k2 < °° (2.4)

where the conatanta k 1 and k2 are independent of t and z. The marginal diatribution of

the proceaa X(*) ia denoted h(j). From (2.4), h ia bounded away from zero and infinity.
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(iv) For allz E X,

py(t tz)=P[Y(t)M 1 I X(t) = ] . (2.5)

py(t I z ) is continuous in t and z, and is bounded away from zero uniformly in t and

2.

(v)Ao(1) = f\(t )dt, and AO(1) < 00.
0

For the assumptions on the parameter space, let WI (X,I?) denote the Sobolev

space of real valued L2 functions defined on X whose p'th derivative is square integr-

able, see Adams[1I (fractional derivatives are allowed). fplU?(X,R ) is the subspace of

Wp (UX,R ) which consists of functions with mean zero. Thus fG(z )dz = 0, for all

O E El(X,R).

Assumption B. (Parameter Space)

(i) e is a Hilbert apace of functions 0: X -.R with inner product <, > and norm

The elements ofe are constrained to have mean zero.

(ii) For some m > 3d /2, e = WT (K ; R ), as sets and they have equivalent norms.

(iii) The penalty functional J(d) = <0, We> where W is a bounded linear operator on

e, which is self-adjoint and nonnegative definite.

(iv) For some positive constants k,, k2,

k,118112 < <O,WO> + Ile I L(X 'I? )I2 < k2 10112 (2.6)
for all O e.

(v) The true function parameter Oo is in W2 for some s > 3d /2.
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Where necessary, norms etc.. are indexed to indicate exactly how the norm is

defined. Thus for 0: X - I?,

IIIIL2 f [e(z )]2dz 1111 2 = Up I O(z ) 1 etc.

Whenever subscripting gets too cumbersome, a notation like 1I I L2(X;R )1I (as in (2.6)

above) will be used. If A is a real Banach space then S(R,A ) denotes the centered ball

of radius R in A . S2 (R ,A ) is the ball of radius R about z. The centered sup-norm

ball is denoted S(R,C):

S(R,C)= (0: Rd _ R such that 11011.,p R }

S4ORR,C) is similarly defined. (Here C stands for the Banach space C(X ;R) of real

valued continuous functions on X).

Asymptotic Notation

The following asymptotic notation will be used. If f and g are real valued func-

tions on a metric space U and uo E U, then

f(u)< g(u) as u --0

means for some K and some neighborhood N of uo,

f (v < K , for all u E N,

where the numerator is required to be zero whenever the denominator is zero. If there is

an additional variable v and V(u ) is a set of values of v for each u, then

f (u,v) < g(u,v) as u -u0

uniformly in v E V(u) means
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8Ug pJ(U,V) < K
vE u(U) g (u,v-) i -

as u - u0

The notation

f (u) t g(u)

means f (u) < g(u) and g(u) ff (u).

as u -u0

2.3. Derivatives of 4.,p and a Representation for the Estimate

The penalized partial likelihood estimator, $n, is defined to be a minimizer over e

of

I n*=in4en,~(e;1) = flog [kF,Yi (t)e et)]Jv

n

- 1-EfU(X,(t))dN,(t)+p <OeW>,n,sO
(2.7)

where p> 0. Inmp is a mapping from e into R. In order to describe the asymptotic

behavior of °n p, various derivatives of 1,,, must be defined. By assumption B(ii), evalua-

tion at any point z E X is a continuous linear functional in e. Hence for z E X, the

Riesz representer of evaluation at z is well defined, this is denoted f(z ). Thus for all 0

me

9(z) <Ot(z )>

As in Andersen and Gill[31, the quantities:

Sg(°)(O,t ) =1
n

Y 6tc(X'(Iy Y (t)e~X)

s(l)(St)- E Yi (t W$-( )t')
ni=l
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s(2)(0,t -E y, (t )CMX (t )X (XM (t ))xCm(t))-8
n i=1

come up frequently. s(1 e es92) E exe, and s(3) E exexe. For any q E e,

- ~~~~~~~<fxf,0> <flo>
<f fxft=>_ <f,o>

The limiting versions of S s(1) and so on, are also of interest. These are defined by:

e(0)(8,t) = E[S(0)(D,t)= fpy(t Ix)e)e(s)h(z It)dz
s

J(')(0,t )= Es [S(1)(D,t ) f= fpy(t I z )g(z )e()s)h It )dz
S

82(t= E. [S(2)(G,t) = fpy(t ).f(z )Xe(Z )e9()h (Z I t)dz (2.9)
I

J(3)(0,t) = E. [s(3)(O,t)] = fpy(t I z )f(z )Xf(z)Xf((z)Ce,)h(z I t)dz
s

For X , L E e, the notation

S(2)(0,n El- Yi (t )OMX (t OMkX(t N)t' )if,=

s(3)(0,t)# Yi (t)OM (t )<Xi(t RMX(t)c ('n,

will be used. The definitions of e(2)(0,t )O& and s(3)(U,t)jtb are similar. An elementary

but extremely useful lemma is the following:

Lemma2.1. Let e,e. ES(R,C)

(a) 5( #1 and ''' # 1, uniformly in t.

(b) *(°)(°,') i8 bounded away from zero and infinity.

(c) if 0,1& E e then {<8(1)(ODt),0>}2 < II1Il12 and {8(2)(D,t)#)2 SII<IIL22IIIIL2
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The reaulta are uniform in U and ,.

Proof: (a) follows from the definition of S(°) and J(O) and the uniform boundedness of O

and 0.. (b) follows from Assumptions A(iii) and A(iv) and the boundedness of 0. The

Cauchy Schwartz inequality, A(iii) and A(iv), and the uniform boundedness of O implies

(c). Q.E.D.

With these definitions the first and second derivatives of the penalized partial likeli-

hood are:

- J ,)dN(t) - JEf(X,(t ))dN,(t) + 2pWD , (2.10)0 s(ke(,t)n a=1O

In IJO) D2l'n (O) (2.11)

- j { s(2si,t) )( s ) } dN(t) + 2pW
0 sH(0O,9t ) S(0)(U,e) S (0)(U,t)

1Y,(t)e 0(X'( )

But with p,(t) = n for i=1,2, ,and = 0(Xj(t))pj(t),
n-

s(2)(#,t )0 s(1)(D,t )0 s( =)(0 ) -

It follows from this and the fact that W is nonnegative definite, that for any 0 E e,

<In.a(0)0j0> > 0. Thus the penalized partial likelihood is convex. A straightforward

argument, along the lines given in the appendix of O'Sullivan, Yandell and Raynor[15J,

shows that the penalized partial likelihood estimator must lie in the subspace

e, =N(W)@Sp{((X,(t,), i,j=1,2, . ,n ), where N(W) is the null space of the

linear operator W, Sp stands for the span for the given set, and ti, for j=1,2, * * * In,
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are the survival times of the n individuals under study. If W corresponds to the usual

Laplacian penalty functional used to generate thin plate smoothing splines (see

O'Sullivan, Yandell and Raynor[15] and Wahba[21]) then the penalized partial likelihood

estimator can be represented as a generalized Laplacian smoothing spline. From

Theorem 3.2 in Cox and O'Sullivan[B a sufficient condition for the existence of a unique

minimizer of the penalized partial likelihood in (2.7) is that there exist a unique minim-

izer of the negative logarithm of the partial likelihood over N(W). These results are

summarized in the following theorem.

Theorem 2.2. The minimizer of the penalized partial likelihood in (2.7) lie. in the aub-

epace en = N(W) Sp{((X,(t) , i,j=-1,2,1 ,n }. Moreover a eufficient condi-

tion for the ezietence of a unique minimizer of the penalized partial likelihood i; that

there eZiJt a unique minimizer of the negative logarithm of the partial likelihood over

N(W).

Letting n -x , the limiting version of the penalized partial likelihood becomes:

1 1

l,(e) = flog[8(0)(U,t )Ia(o)(O0,t )\o(t)dt - ffO(z)py(t I z)h(z It)e )dz X0(t )dt + p< We,e>
0 ox

and the first and second derivatives are:

Z 0(O) = a('ke #,)(e0°t)Xo(t)dt - ff(z)py(t I z)h(z I t)e dzX0(t)dt + 2;sWO

= f . (1) J (0)(0, t )Xo(t )dt - fe(1)(009t )X0(t )dt + 2pWO (2.12)
o 8 (0k9,t)to

Gs(=) f ( x -_ }. (OkGo,t )Xo(t)dt + 2pW
-U (O)+ 2 W . (;(0)(e,t) 8(0)(,t)

=U(O)+2pW .(2.13)
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It is easily verified that 00 satisfies ZO(OO)= 0. From Lemma 3.1 in the next section, if

X E e and <Go(O)O,O> = 0 then -= 0. Therefore 10 is strictly convex so 00 is the

uniquely defined as the solution to ZO Q 0.

2.4. Main Asymptotic Result

The large sample behavior of the penalized partial likelihood estimator O,,, is of

interest. Since I.,. is convex, 9n, can be thought of as a solution to the variational equa-

tion, Z.,. = 0. (The existence of a unique O.., for n sufficiently large and p sufficiently

small, is shown in §5). The asymptotic behavior of 0,np is studied via two linearizations.

Heuristically, as n - oo, Z.,. -p Z, SO O, should be close to 0° where Z,(O,) = 0. The

bias in 0np is approximated by [0, - 0o0, the random error is studied by considering

[0°n - 0,1. A one-step linearization of Z, about O, gives

Z1,(80) - G,(0O)[ 7 - $oJ

Letting 7, 00 - GC1 (00)ZIs(OO), it is shown that

diet (O,10o) = diet (0,,Oo)[1 + o (1)J as p -o0. (2.14)

(Here " diet" stands for any appropriate norm, see §3 for examples). A one-step lineari-

zation of Z.,, about O,,. gives

°n , =0-° G;1 (Op)Z p(°p)

(Note that G,(0,) rather than Ip(Op) appears in this formula). Again it can be shown

that

diet (1,n ,OP) = dist(0, ,,0)[1 + o,(I)] as n -m0. (2.15)

The above results say that in order to analyze the the penalized partial likelihood
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estimator it is enough to understand the behavior of the linearized eatimatora 0, and

However the asymptotic behavior of these linearized estimators is relatively easy to

determine. Rates of convergence in probability are given in a variety of norms. For

0 < b < 1, let I11b be the Sobolev W2" - norm. The following asymptotic conver-

gence result is obtained.

Theorem 2.3. (Asymptotic Convergence Result)

Supposc Assumptions A and B hold. Let p = /m, where m ;J as in B (ii) and a is in

B (v). Let b 8atisfy

0 < b < min(2-d/2m,(p-d/2m)/2)

If p =P is a deterministic sequence ouch that for aome arbitrarily emall f > 0

p,,-0 and n1Ip(3d/m+e) _0

then

(') 1°, -0011*2 < p-IP-

and

(ii) -1°n#~ °;&||* Op(n`-lb+d/2ml)

Moreover, the optimal rate of convergence for 11° - 2oip i; op (n -2m (P -b)/(2mP +d))

which iJ obtained by letting n#, n -2m /(2mp +d).

Proof: Part (i) follows from Theorem 5.4 and Theorem 4.1. Part (ii) follows from

Theorem 5.5 and Theorem 4.2. The optimal rate is obtained by equating the bounds on

the order of magnitude of terms (i) and (ii). Q.E.D.
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Remarks.

(i) The condition that n-(43d/m+C) 0 for some f > 0 means that in order for the

optimal rate to apply mp >5d/2. This is a rather stringent lower bound. One would

imagine that the result still holds even if this lower bound is replaced by 3d /2, see §5 for

more discussion.

(ii) An interesting generalization of the above result would be to include an asymptotic

distribution for the estimator. For this one would need a more sophisticated version of

the central limit theorems for local martingales, see Robelledo[IBJ. Such a result would

also open up the possibility of studying the weak convergence of a Breslow type estima-

tor for the baseline cumulative hazard,

A;,(t) fJ dN(r) (2.16)
A~~-(t)=fc iX

-0 Y O(r) ())n.Ei=1
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3. The Penalty Information Scale

It is convenient to study rates of convergence in norms derived from the limiting

penalized partial likelihood:

.(O)= flog [Ja(o(S t )] e(0)(00,t )Xo(t )dt (3.1)
0

- ffO(z )eea$)py(t 2z)h (z I t)dzXo(t)dt + p<,WO>
0 s

In this section a family of such norms is defined and some of their basic properties are

established. A brief overview is given first. Whereas the information matrix plays a role

in the asymptotic analysis of finite dimensional parameters, the spectral properties of the

information operator Gp, turn out to be important here. From §2.2, G, is represented

as:

Ga(O) = U(S) + 2pW, (3.2)

where U(O) is the Hessian of the limiting partial log-likelihood ( i.e. U(O) is the second

derivative of la(O) - p<O, WO>). Convergence properties are studied in norms related

to the spectral decomposition of W relative to U(O). These norms and associated Hil-

bert spaces are obtained as follows: For each 0. sufficiently close to 00 (in sup-norm)

there exist sequences of eigenvalues y v= 1,2, } and eigenfunctions

v == 1,2, - * * ) satisfying:

<,0p W O,P> = y. 86,, (3.3)

where 6bmp is Kronecker's delta. For I > 0, let

00

11 16 = { S [1 + _y. ]<O,U(0, )o.>2}1/2
v= O

and let e.b be the Hilbert space obtained by completing (S E e: 111I.& < ox4 in the
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Wit .6-norm, with inner product

00

Appealing to the K-method of interpolation (see Triebel[201), the IHI.b norms can be

shown to be equivalent to Wi " norm for 0 < b <1, uniformly in 0. in sufficiently

small sup-norm balls about 90. In Cox and O'Sullivan[61 the collection of Hilbert spaces

{e,b , 0 < b < 1) is referred to as the Penalty Information (P.I.) scale of Hilbert

spaces. If 0, O= then the A will be used in place of " *" in the definition of the P.I.

scale associated with 00,. For notational convenience the" *" or p index will be dropped

altogether at times; thus 11 116 is used in place of

The existence of the eigensystem in (3.3) has to be established. The main technical

result needed for this is a continuity theorem of Kato[121 on the perturbation of the

spectrum of a self-adjoint operator. A separation theorem in Weinberger[231 is used to

obtain estimates on the asymptotic behavior of the eigenvalues. Some additional proper-

ties of the eigensystem, which are used repeatedly in later sections, are recorded in §3.2.

3.1. Spectral Decomposition

The next lemma gives conditions under which the quadratic form obtained from

U(O) is equivalent to the L2 norm on e.

Lemma 3.1. If R ;Je ufficiently emall then there eziet finite poaitive conatanta k1 and

k 2 euch that for all 0. in Soo(R,C )

k1l11I112 < <,U(O, )O> < k2lI0II 2 for all O E . (3.4)

Proof: Let
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py(t Iz)h(z)k(z It,04) (0)(t

12
<OYU($*)$> = Jf t K*8[t1] k (2T I t,0 )dz *o(°)(t8,0)X0( t )dt

where K. O[t] = fk(z t,O,)(z )dz. By Lemma 2.1 (a), 1 uniformly for
2

y ~~~~~~~~~~(0)(eIi.) unfrmy o

9. E Se(R,C) and t E [0,1], so

1

< ,U (11 )O> fJJf z,_ ,[ PY( t z )e hs) (z )dz XO(t )dt

By assumptions A(iii), A(iv), A(v), and B(v), it follows that h, py and eO.W are uni-

formly bounded away from zero and infinity, so

ffJ $(x)_ K*8[t1] dz dt . (3.5)
Letting m3 is the Lebesgue measure of A (since has mean zero), this becomes

=f02(z)dz -m f [K*eO[l]t Xo() dt

11011L2 - (K. U,K* 0)

where ( -f[J(t)]2 ' dt. k (z It, .) is uniformly continuous in z and t on
o A0(1)

X[O,i] (, is the closure of X). Thus, from example 4.1 on page 159 of Kato[121, the

integral operator K. is a compact mapping from L1(X;R ) to C([0,11, R), and indeed

K. is a compact operator from L2(X;I? ) into the space {0:[O,11- R such that

f [O(t )I 2 ( dt < oo . Consequently, if K.7 is the adjoint of K., then K.TK. is a
compac (e)

compact self-adjoint operator on L12(X;R)
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(K. O,K. O) = f(z)K.TK O(z )dz -<= K,TK. >L
s

(The constant ms1/2 is adsorbed into K. from here on). The largest eigenvalue of K,7K,
can be characterized as the maximum of the Raleigh quotient:

< O,K,TK,O>L2 <Dl,K.TK 1> L2
=0 E L(Z;R) <O,D>L, < ,lsl >L2

where 01 E L2(X;R ) is the non-zero eigenfunction corresponding to XI. From (3.5),

X1 < 1. If X1 1= then (3.4) would imply that 01= 0 almost surely, hence X1 < 1. XI
depends on O., so we write X1 = X1(D.). Let Ko be the value of the operator K.

corresponding to 0. = 0o* For any u ,v E L2(X,R ), it is easy to show that

<u ,(KIK. - KoTKo)v >L2 < k 1jlu IlL2 IIV IlL2 M(R )2

where M(R) = eup (max I k(z I t,,.)-k(z I t,°0) I ), and k1 is a positive constant9. E S*(R) :,t

independent of u and v. M(R ) tends to zero as R tends to zero, so K,TK. tends to

K"TKO in operator norm as R tends to zero. It follows from Theorem 4.10 on page 291

of Kato[12] that

\1(0-.X)1(90) as R - 0 uniformly in 0,.

Thus there exists R such that for all 9, E S9O(R ,C), X1(D.) satisfies

X1(G*) < [1+X1(00)1/2 < 1

From this for all O e L2(X;R) and 0. E S9O(R,C)

II IlL2 > II0IIL2 <O,K.TK. O> 2= IiIlLl (12

'K K >L2lialI O - --- .)~~~~iiilZ

> 11011 22 [I-XI(OO)1/2L
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Since, IISiZ2- <9,K7TK, e>Z2t <,u(Oe.)o> for UEL2(X;R), uniformly in

0, E S9o(R ,C), this implies that there are constants kI and k2 such that

k111011L2 < <0,U(O,)O> < lol2IIIL

for all 0 E e and 9. E S9o(R ,C). Q.E.D.

With this lemma the main theorem of this section can be proved.

Theorem 3.2. ( Spectral Decomposition)

(i) For some R > 0, for all 9. E S#0(R,C) there ezist sequences of cigenfunctions

{¢>,,; J=-1,2, - * * } C e and corresponding cigenvalues

{rev; = 1,2, ... C [,oo) satisfying:

(ii) The asymptotic behavior of the cigenvalues is given by:

,8
52m/d

uniformly for 0. E S6o(R,C ).

Proof: Consider the Raleigh quotient AB (,9)'

where

B,(0,9)= <O,U(9.)9>

and

A,(O,O)-= <,U(IJ)O> + <OIWO> (3.6)
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If B. is completely continuoua (see Weinberger[231 for the definition ) with respect to

A., then the existence of the eigensystem follows as in the construction in Proposition

2.2 of Cox[5]. From Lemma 3.1, for some R > 0, A.(O,O) is equivalent to iIih01', uni-

formly for P. E S90(R ,C). By Sobolev's Imbedding Theorem and assumptions B(ii) and

B(iv), IIOiii2 is completely continuous with respect to liOii2 + <D,WD>. Therefore

Lemma 2 on page 61 of Weinberger[22] implies that B. is completely continuous with

respect to A*, and the existence of the eigensystem is established.

For part (ii); since A. is uniformly equivalent to L2-norm on e and, by B(ii) and

B(iv), B. is uniformly equivalent to Wi -norm on e, the Mapping Principle in Wein-

berger[231 implies that

where y, are the eigenvalues of a 2m 'th order elliptic differential operator obtained from

equation (A1.3) in Cox and O'Sullivan[6] - see the discussion following equation (3.1) of

the same paper. The elements of e are constrained to have niean zero but, by Corollary

1 of Theorem 9.1 on page 63 of Weinberger[231, upper and lower bounds on yV can be

obtained. If {y} are the eigenvalues in equation (3.1) of Cox and O'Sullivan[61, then

the result in Weinberger[231 implies

'.111 < I< v+I

The results of Agmon[21 give that . 12m/d, (see Cox and O'Sullivan[B] for a discus-

sion), so the claimed estimate on the asymptotic behavior of 1, (and consequently v

holds. Q.E.D
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3.2. Useful Properties of the Penalty Information Scale

The following lemmas giive some important pLc-,t-*ties of the penalty information

scale which are used repeatedly later on. A similar set of properties are discussed in

Appendix 1 of Cox and O'Sullivan[6J. The proofs of the lemmas are omitted since they

amount to trivial restatements of the corresponding results in [6].

Lemma 3.3.

If b >0 and c >O are such that b + c < 2 - d/2m then

co

(l5vl5^(+l )-2 -&b +e +d1/2m)

as p-.0 uniformly in 0. E SOO(R,C).

Lemma 3.4.

(a)Let b E [0,11. For for all R > 0, EiKI(R), K2(R) such that for all 9. E S o(l,c

e,b =- wm(X;R ) as acts and for all O E e.6,

K1(R )11 I WIm || < 11i11. < K2(R )11 I W" 11 (3.8)

(b) Let b E [1,21. Astume J(9) = E f Fj [D,°O- (z )]2 dz. Then there ezist
i=l s 1=1.m

differential operators Bo,Bj, - Bm. defined on the boundary 9x such that: (i) B, ie

of order m+i; (ii) (B,: O<i<m) is a normal system (Definition 4.3.3.1 of

Triebell201); (iii) if d =1 then B, = (d ldz)1+; (iv) AJsuming bm -1/2 is not an

integer, e bi the closed subspace olf Wb given by (O E We"' B, S = 0 on DX for all

i < (b -1)m -1/2), and (3.8) holds.

Lemma 3.5 Let 9. E So9(R ,C) and b > 0.
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(i) l¢IIlb~I = 1 + -v fo|r v=1,2,

(ii) CG1 (O, )U(°. ) v (1 + 2pfy.v)-.for i=1,2,* and u > 0.

(jjj) IfPo >0 j. sufficiently small and b < 1, then for all z E X, e > 0, 1 < j q,

andp E (0,po],

11a 1(, (z 1P < K (R .uo)p-(b +(I+c)d/ ) .
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4. Rates of Convergence for the Linearized Estimators

Convergence properties are studied by means of two linearizations. These are given

by:

(i) Continuous Linearization:

9J = 0o - GI" (00) Z,(00)

(ii) Discrete Linearization:

° - GC; (O,) [Z,(°p)- Z,(U,)J * (4.1)

For norms IIllb, the asymptotic bias of the penalized partial likelihood estimator is on

the order of llp, - 0oil , while the asymptotic variability is on the order of E1l73.., -_i0.t2

The justification of this is rather technical; the argument amounts to showing that

I4,,(O,) - G,,(O,,) - 0 as n -+ oo and that the third order derivatives of the penalized

partial likelihood can be bounded in an appropriate manner, see Theorems 5.4 and 5.5 in

§5. For the moment consider the asymptotic behavior of the linearized eatimatora in

(4.1). A result on the behavior of the bias follows immediately from Theorem 2.3(c) of

Cox[5].

Theorem 4.1. (Bias)

If 0 < b < (p -d /2m )/2 where p =0 /m and . is given in B(v), then aa p _ 0

I11°, - 9oIl& < l(p- )/2

where p = /m.

Proof: From §3 the operators U(90) and W generate norms and associated Penalty

Information scale with the same structure as those discussed in Cox and O'Sullivan[6J.
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Therefore, as in Theorem 5.1 (i) of Cox and O'Sullivan[8] the result of Cox[51 applies.

Q.E.D.

More computation is required to analyze the discrete linearization.

Theorem 4.2. (Variability)

ForO < b < 2-d/2m

E I i
- Ol < nl-'.ab+d/2m) as n -oo,

uniformly for p E (O,po] and po sufficiently small.

Proof: The continuous linearization result to be proved in the next section (Theorem

5.4: let b = d/2m and use Sobolev's Imbedding Theorem), shows that 0 converges in

sup-norm to 00 as p - 0. From the results of the last section, let po be chosen so that

for all p < po the norms and Penalty Information scale associated with U(O,,) are uni-

formly equivalent to those associated with U(00).

1w,, -, =all (#)[Z,,4(D) - Z,(U,)J

Using the series expansion for the 11 11,4 -norm,

II,, - e,ill = 1[1 + -2+ 2p',4] (<Z,,,,(O,.) Z,4(D,) 00W,l>)2
nu =1

This expansion uses the fact, proved in Lemma 3.5(ii), that

G1 (#,)U(0O,)4 -= [1+2p'y,,]-10,. A similar expansion appears many times in Cox

and O'Sullivan[6]. It will be shown that for any S E e

E( <Zs is(fs) - Zj,(0,),>2 <
I 11011 2 (4.2)

uniformly in p < po. With this, Lemma 3.5(i) implies II0,PII2 = 2, SO
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< n-IE[l<n1.. 1
I,

+ fi + 2p'yV II+,IIj2

z n- E[1 + -y,vl[1 + 2p-2
V

n -1 p-&+d(/2m ) by Lemma 3.3

Turning to the verification of equation (4.2),

< Zo IS() - Z=(O)I > S()O()(8t dN(t) - nI .t(Xi(t))dNj(t)j

P,t )' (> I

pg1y 0

Rewriting in terms of the local martingale M(t) = - EPM (t),
n.8=1

fr <S"kDP,t ),)>s(0)(#0,t) -
< ()(,t),>

8 ( (O0p, t )
<s~1(D)0 t)p> I is

+ f - dM(t )- -1 E (X (t))dM (t )

- f<s(l)(0o0t) - (')(0o,t),>xo(t)dt .
0

I(0)(900t) Xo(t )dt

Therefore

( < Z,, j(on,) _ Z;S(O;Sp ,> }2

2

) < ()OF? )g> 8(0)(0 t)X( t )d

2

2 +(43

EIIOpto- opI ;1

<Zn p(°p6)- zo(ep),I>

(4.3)
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2

+ f <S()(ot) _(l)(uopt )P >xo(t )dtJ

It will be shown that the order of magnitude of the expected value of each term on the

right hand side is
n

IIIIh2- this will prove (4.2). The last two terms in equation (4.3)

are easy to handle. Since <S(1)(O,,t),<> = - tk(X(t))Y.(t)eO(X') and, by A(i),

Xi (-) Y(i) i-1,2, * ,n are iid replicates of fixed processes X( ) and Y(*),

E f <S(1)(,t) - J( t)(ot).>XO(t )dt<I Ef < S(1)(,,t) - J(1)(9s,t ),k> | dt -fXO(t )dt

< ffVar{lk(X(t))Y(t )e 'X())}\o(t )dt
-no0

But for all p < po, 9, is uniformly bounded in sup-norm (Theorem 5.4) h( t ) is uni-

formly bounded by A(iii), and Y(j) is bounded, so

Var b(O x ( t )) Y ( t )e 51( ) < I 1¢1 2 (4 4 )

uniformly in t and p < po. This gives the order n- IkIIL2 bound on the last term in

(4.3).

For the second to last term, computing the predictable variation of the martingale

gives:

EI fi (X (t))dM (t)I =E 1(X (t))2y (t)e )o(t)dt

f|E O(X(t ))2Y(t)cIbx(t)) X0(t )dt
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< nI I+0 IL,2

The last line follows from the boundedness of Y( ), h ( I ), and 00.

This leaves the first two terms of equation (4.3) to analyze. Again computing the

predictable variation of the martingale term, gives:

__<_S________d, < S[<(1)(9,Pit),o> 12
EJf o)( .)dM(t) =lEI[ S(°(() ()(00j )XO(t )dt

By the Cauchy-Schwartz inequality

a'<s(1(l~,t),4~> 2 {4. x Y.(t)eD ( ))} { ! S Yi(t) (Xi(t))2e9sd(Xi())}

s(0)(O,t ) } s(=,t )

y nY(t)O(X (t ))2ce(())
< tS)( , by Lemma 2.1(a)

Applying Lemma 2.1(a) again,

<s(1)(e0,t),o> 21
tt (°)Ot }S(0)(00,t) < n Y,(t)k(X.(t))2e P(X(t

Taking expectations and using the same bounds as in equation (4.4):

1
< 1( l>

2

Efl (([, ) S(°)(0o1t )XO(t )dt < lII+ll2

uniformly in , < po. For the remaining term in equation (4.3) it is necessary to study

the convergence of

<S(1)(1(,,t ),>S(0)(90t) - < (D,pt ),1> (O)(e
r s(0)(D,t) e(0)(OP,t)

8 Ot (4.5)
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The arguments in Andersen and Gill[3J cjuld be adapted to show that t!>is term con-

verges to zero, uniformly in t and p, for fixed 0 in C(X;R). A result of a different

character is needed here; basically, the result must yield an order n-1/2 rate of conver-

gence uniform in 0 and p (but not necessarily uniform in t ). To prove this, note

<_S_(_)(__t),_> <S(1)( pit ),O> <_8(1)( pit ),q> \

S(0)(Op,t) S(0)( p,t) S(0)(D,)pit

+ <s(1)(uP,t)>( 1

= (s)(0(PIt ),)t)-t)>
< ,)(Op,t)

_[<S(l)(#p,t)--7.0)(0(ot)

< S(°)t (Op,t )I >

+
<8(Iko t)+ 8,(0)(O,t )- s(°)(Op t)

+ { H*(,(0)(Op) -s(°)(Op,t)
+< 8 (1)(0 ,t )to>

a(0)(O et)

So

(________S(((<. ()(o- (1)(,,, t), (°(o>)<s(1)( ,-it ),O> s0°X(90,t) <_____i_____I
s(0)(e~~~~~~~~~~~~~,t)(pi

- [s())(et) (- I't <s)]( M(0)t#,)t) II s(0)(e,,t }

+ [S(b(o,t) - (o )(eOt)] {<e(1(pk,t) >

Using the fact that (;); t 1 uniformly in t and p < p, the Cauchy-Schwartz

inequality, and the finiteness of fX(t )dt,
0
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2

1r [I (((''S(0)(#,,t) ( - *(O)(; )) .(o)(eo,t)jxo(t)dtJ
< [<s()(e0,t) - <(a)(9,t),(>Jp2X(t )d> (4.6)

0

+ {fu[s(o)(#oot _(0)(0,0t )12 + (S(0)(ep,t ) - *(0)(Op,t )]2)\O(t )dt

<I XI t d
0 oIr [ '(0)0(°;,,,t) X0\(t )dt|

Computing expectations an order n-4 I1+1 22 bound (uniform in p) is obtained for the

first term. By Lemma 2.1 (b) and (c),

< 8(10;' )'O> 2 III2

Finally, fE(S(O)(O,,t)-.(0)(OP,t)} Xo(t)dt is order n1I uniformly for
j
< Po, so the

correct bound is also obtained for the second term in equation (4.6). This completes the

proof. Q.E.D.
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5. Validity of the Linearizations

The final step is to verify that the linearized estimators, analyzed in §4, mimic the

first order asymptotic bias and variability characteristics of the penalized partial likeli-

hood estimator. For this it suffices to show that the hypotheses of the continuous and

discrete linearization theorems in Cox and O'Sullivan[6] are satisfied. These linearization

theorems are based on general fixed point arguments. They also yield existence results.

The ideas were motivated by the work of Huber[1ll on the asymptotics of M-estimators,

however, whereas Huber's analysis takes place in a finite dimensional setting, the

analysis here takes place in infinite dimensional parameter space. Because of this the

analysis is more complicated.

In the linearization theorems a pair of norms, I[I-Il and 11 ll*', are employed. The

fixed point property is established in the 1111,-norm and from this information on the

efficacy of the linearizations is deduced for the other norm. The argument (see Lemma

5.2), makes critical use of a lower bound of d/m on b ' and this lower bound ultimately

effects the final convergence result stated in Theorem 2.3. If the restriction that

mp > 5d /2, which is needed to include the optimal rate of convergence, is to be

relaxed, then the analysis in Lemma 5.2 of this section would have to be refined. The

proofs of the theorems rely on the third order derivatives of the penalized partial likeli-

hood functional being suitably bounded, and that the operator I,,(Up) converges to

G,p(Op) at an appropriate rate.

5.1. Additional Notation and the Main Theorems

Some additional notation must be defined. The Banach space obtained by complet-

ing e under the norm 11 11, is denoted e,,. As usual the subscript p will typically be

dropped. Let d'(p) II'I, - 9oII* and let d'(n,p) be such that
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Op (d (n,u)) ;rz llns °sl The asymptotic behavior of d'(#) and d'(n,u) is

described in Theorems 4.1 and 4.2. Theorem 4.1 gives that d'(p) t p(P-b)/2, provided

O < b ' < (p - d/2m)/2; Theorem 4.2 combined with Markov's inequality gives the

order n -1/2p (b ' +d/2m )/2 for d * (n ,p), provided 0 < b < 2 - d /2m .

The magnitude of the third order derivative of the penalized partial likelihood is

measured by:

K3(P,R) GupOhG-(O)D31100+00020
#1, 02Es(R,e6.)

in the continuous case, and by

K3(n ,p,R sup I I GO(OO)D31n (0p+002031
,0 02E S(R.et*

in the discrete case ( D is the differentiation operator ). The difference between I,,, and

G,.(OU,) is measured by

K2(n ,p) = Pep hIGO,1(9#XInO-G-(Oj))OjjES(1,eb .)

The quantities K'(,R), K'(n,p,R) and K'(n ,p) are defined in a similar manner -

the II-lb -norm is replaced by the 1111,.-norm. The next two lemmas are crucial.

Lemma 5.1. (Bounds on the 3'rd order derivatives)

Let O < b < 2-d /2m and JuppoJC d /2m < b < (p-d /2m)/2 where p = /m and

J ;J given in B(v), then

(a) K3(P,R ) < R - p-(b +d/2m )/2

(b) K3(n p,R) < R * Bj(n,p), where EB2(n,p) <,p4b+d/2m) uniformly in
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p E (O,po].

Lemma 5.2. (Convergence of In, (G,))

Let O < b < 2-d /2m and euppose d /m < b ' < 2-3d /2m then

K2(n ,p) < B2(n,p)

where EB2(n,p) < np-P, + d/2m)

The remaining results follow from these lemmas. For z (p) d '(p) and

z(n ,p) d'(n ,p), let r '(p) = Ks(p,z (p)) and r (p) = K3(,z (P)); furthermore, let

r '(n ,p) and r(n ,p) be such that O,(r '(n ,p))=K (n ,) + K (p,z(n ,p)) and

O, (r (n ,p)) = K2(n ,p) + K3(p,z(n,p)). The next theorem, describes the asymptotic

behavior of these constants.

Theorem 5.3. If O < b < 2-d/2m and d/m < b' < min(2-3d/2m,(p-d/2m)/2)

then

(i) r(p) 0 aJp 0,

r (p) « (u -b)/2 ae -0,

If (p, ; n > 1) is a sequence such that for aome d /m < b ' < 2-3d /2m,

n-l ;2(b '+d/2i) 0. then for any sequence of p ' in [p3 'po.

(ii) r '(n ,p) 0, as n -oo.

r(n p) << p(*-b)/2, as n -X00

Proof: Apply Lemma 5.1 and 5.2. together with the rate estimates on d '(p) and

d '(n ,p), discussed in the first paragraph of this subsection.
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For part (i), from Lemma 5.1

r(p) < d'(p) b'o+ d/2m)/2

- p(P -/2)/2 P-(b + -/2 )/2

.l(p -d /2m )/2 - b ' (6'0 - 6)/2

<<P(b -b)/2 ,as p O, since b ' <(p -d /2m )/2

For part (ii), from Lemma 5.1 and Lemma 5.2

r 2(n ,p) < n -1p(b +d/2m ) + d ' (n,p)p4 +d/2m)

< nl -c(b +d/2m) + n -Ip(+b d/2m) -(+d/2m)

n -1-2(b'+d/2m) 8(b -6)

<<p(b b) since n 1g-I2(b +d/2L) aS n-oo .

Q.E.D.

The main results can now be proved.

Theorem 5.4. (Continuous Linearization)

Let d /2m < b ' < (p-d /2m )/2 where p = s /m and . is given in B(v). There are

constants k 0, k1 and po such that, for all p E [01,ol, i! p, E S KOd' (p),e,b) such.

that if 0, =p + 00 then Z,(0,) = 0, and

llT sl°ib, < k I r ' (p) d '(p)

0,° 1 Ib,11 < k I r(p) d '#

whcrc 7,s 00 - GO-ls)Z,0(00).
In particular for 0 < b < 2-d /2m then 11°, - 0olI m I117 - °ollb asJ 0.
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Proof: From Theorem 5.3(i) r '(p) -_ 0 as p -- 0 so the hypotheses oi Theorem 4.1 in

Cox and O'Sullivan[6] hold. Q.E.D.

Theorem 5.5. (Discrete Linearisation)

Let (p5 ; n > 1) be a -equence euch that for some d/m < b < 2-3d/2m,

1-l2;2(b +d/2m) -_ 0. For any aequence of p's in [p3.,pol andO < b < 2-d/2m. Con-

eider the event E(n ,p) given by

E(n,/u): s olution to Z... °m 0 loo = fit + Oupp O,# EssS( 2 Kod '(n,p),)eb*)
aatifying l isp < k 1 r ' (n,p) d ' (n,p),

and IIOR -1npItb S k r(n,p) d'(n,p),

then for all 6 > 0 there iJe ome nO and conatante k0 and k1 such that thie event occura

with probability > 1-6, for all n > no and p E [iP. 1Po].

In particular on E (n ,p), 9,,, eziJte and for 0 < b < 2-d /2m

11°3p - apIIb llga - jseII

5o O (n -1 b+d/2m)) = 2D.- 11i2

Proof. The condition on b implies that r '(n ,P) - 0, Theorem 5.3(ii), so Theorem

4.2 of Cox and O'Sullivan[8J gives the result. The last statement follows by Markov's

inequality and the rate obtained in Theorem 4.2 of §4. Q.E.D.

5.2. Proofs of Lemmas 5.1 and 5.2
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Proof of Lemma 5.1. (Bounds on the 3'rd order derivatives)

For part (a)

D31.(9.)vw = GIs (00)&(8 )w

where U(0, )vw is given by:

fIU(O~~ ),(Oat1Cw1)"g'
*(2)( ,t)vwI(t)(e Wt)

*(O)(g,,g) *(O)(g,,g)
s (0)(0,0 I(O)(gPt< (2)(0,t ),V > <a(1)(g,t),W >
I()@ t ) J°(.,

<J()0 ,t ),W > <(l)(,O I,t )I,V >

e (0)( ,t )t

+ < °)(; t) J(°)(;,t) ( ) ]J(ot) (t)dt

Expanding in terms of the eigensystem {ov 0 70v; v 1,2, *

-IG,'(#O)D31;(G.)uwII* = [1 + 'oy' [1 + 2p")'oMI2 (5.1)
=1

<<U(9.)VW1 O>}2

It will be shown that for b E e,

{< (Oo)VW go> 2 < R2 . 110K112 (5.2)

uniformly for 0. E Se9(R,C). The argument involves a straightforward application of

sup-norm bounds on 9., v, and w, combined with a couple of applications of Holder's

inequality. Since b ' > d/2m, sup-norms of v and tw are finite. There are several

terms to handle, but as an illustration consider the term

I <eJ (3,t)VW,t> I 2
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-J [(f+(z)v(z)w(z)e (s)py(t Iz)h (z It)dz}/a(o)(e1t)] a(0)(eo0t)XO(t)dt

Using Holder's inequality twice, A(iii), A(iv), and sup-norm bounds on P., v and w,

tJ(f0T)v (z )w(z )c (")py (t I 2T)h (z I t )dz }2
< Jup IV(z)I aup Iw(z)I -Up I (s)I

f O(Z )2dT f*eCO(')py(t I z )h(z I t )dz
x x

< R 2 2I||2 * (°)( Pt

But by Lemma 2.1(a) (0)(t')t 1, also AO(1) < oo, therefore (5.3) is bounded by a

constant times R 2 * IIII2. A similar type analysis works for the other terms and the

result in equation (5.2) follows.

To complete the proof, Lemma 3.6(i) implies II.OIIi2 2, so

oo

< [1 + yov] [1 + 2p'yo,12{R2]IIoVIIZ2} < R [1 + yob, [1 + 2p1o2L-2
v=1 v=<

=z" R 2P-( +d/2m)
P

since 0 < 6 < 2-d/2m. The result is uniform in I. in sup-norm balls about U0. This

proves part (a).

The proof of part (b) is very similar.

D 3I ;,(#. )VW = G,1 (90)U, (I )vw

where U& (9. )vw is given by:

U,,(O,)vui = j [S( itv,It

S(2)(U. ,t )vw S(1)(u. ,i)
s(o)(e.,t) s(o0)(e. j



- 37-

<S(1)(O,t ),w >
S(°)(O, ? t )

< s(2)(e.,t),V
S(°)(0. ,t )

S(0)(. I,t) s(°)(O, ,t )

<S(l)(#,,t),v> <s(1)(D. ,t),w> s(l)(., t) 1
S+(0)(O, ,t ) S(0)(O. ,t) S(0)( t) ] dN(

Again expanding in terms of the eigensystem {(ov'I ; V= 1,2, ...

oo

JIGp 1(9o)D3jSj(U. )VW I =2 [1 + [oI,1 + 2p_O"1-2 (5 4)
v=l

{U.(0.)VW OoV>}

Using sup-norm bounds on 9. E S90(R,C(X,R)), v and tw and Holder's inequality, it

can be shown that for 0 E e,

{ < &, (°,)Vw ,> }2 < R2 . B2(n jiO (5.5

where

f I
Y I(X (t)I ctx(t)) /S o)(#,t X(t) .B (n ,1i,o)=

A direct computation, using the martingale structure, the Cauchy-Schwartz inequality

and Lemma 2.1(a), yields:

EB ( n p) <n Ef[n Yi(+ t)E(XY(t ))c ,XI (t))] Xo(t ) dt

+Ef [1SY()2(X,(t))e2O4xI(0)) )o(t)dt

nIIIIL2 + II*IIL3 tII2IIL2 (5.6)

oo
So with B2(n,)= S 1 + 'yl|[ + 2py,v,]-2B2(n,p,E,) and 0 < b < 2-d/2m,

v=l

<S(l)($,tpt)pw> <S(,)(oopt)pv>
I -
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K3(n ,p,R) < R2 B2(n ,p) where EB2(n p) < p(b +d/2m ). Q.E.D.

Proof of Lemma 5.2. ( Convergence of 1,, ,(D,).)

In 1(O) - G p(Op)=If p(i)(t ) of X ( ) diV(t) (5.7)
0 .sM(0kuopt sM(0)(e,t) sM(0)(Ut)

- f I ( X e(08 (J)((001t )X0(t )dt

Writing this in terms of M(t ),

-"p~Gp(O) = jt{ (11 _-(2) ( XO ) d(t)o.s(0)(D,t) s()(t) ) s()U,t)I
I

t2)0 - s(1)(0.,,t) SM(1)9$:}spitt)0( d+ f or

5 °) t)-ivX 5() S (°)( Oo, t )XO( t ) dt

- :k(0)(t I)- e(1)(e,,t) (o)(g0t )0(t )dt

To analyze K2(n ,), let u = E u and v - v be unit elements in
v=l v'=1

e6 and eb. respectively, i.e.

Su^2[+^rP E Vv2 [1+7v
v=l v=

A direct computation using the Penalty Information scale gives

oo 00

<u,GG ( i) p(,) - G,(O,)]v>, =v > [1+j7 *2( ) + A 2 } +
v,=ilv' .W1

where (to simplify notation, let O= , and = .)

Avv)= ~~1+v [21l+2ju^v-y[+w]- ll/ (5.8)

B [s(2)(e , t )t' <S(l)(fp,t),*> <S(l)(Op,t),1&> 1 dMT
o ss(0)(o t) ()tt s(°)(#t )I )
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and

AvvN =i+7&:l112 1+2pi'-1 1+7A:L'/ (5.9)

f r[s(2)(e;j1)t _ <S (1)(D,t),> <S()(9O,t)P>1 S0(0)X0(t)dt

f S9 ;g);,, ,00t (°o)0t )Xo(t )dt|
I

a (2)(uoft ) <t s(1)(D/St ),> <,. 1)(0 pot ),it'>1.(9,)X()d
-f I I00( (~.,t()Opt)Otd

Applying the Cauchy-Schwartz inequality and the fact that u and v have unit norms

<U ,G1 (Gp,)[In,(D,) - G,(D,J)]v >j2 <& uv t1+7yA, S + v v. [i+ 4
v=l~~~- It'v =I v'-1

< {iAv2)il2 + .av2)12}* (5.10)
v11, =l

It will be shown that

(0)0 (1]2Av Snl +d/2m);
vsv'=1a*-

vE[=lav'=1

From this it will follow that, with B2(n,)=p ) [A) +
v=lv* =1

K2(np) S B2(n ,p) and EB (n p) < n l

The proofs of (i) and (ii) are accomplished as follows:

=1v [1+,5b 1l/2 [1+2p-y,;l] [I1+'y 1-J/2 {6(b }

A(2- [1+,yvI1/2 [1+2p'y,-11[, + , '2 {li (2) }

where the 6 . is are the terms in curly brackets in equations (5.8) and (5.9). Suppose
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EV{P)}
n L2 I (5. 1)

and

E{6V2" )I < -lIIll 22 2§l8" (5.12)

then since I 11PVIII22 = 2 and 1I01W11 2 = [1+_y,,J2'¶, (the latter follows from Sobolev's

Imbedding Theorem and Lemma 3.5(i)), Er 2 [aAL¶912 and E , , [a 2I12 are both
Vilm -1 I'=v* -1

bounded above by a constant multiple of

-2 . [l+_YI l-1[l+ _Y /.2n,]
v=l v' =I

But b' > d/m and 7p t p2N/ so >2 [1+7 J'1+iy,.2"J < oo. Hence, since
ve-1

0 < b < 2-d /2m, EB 2 (n ,) < n pi-(b+d/2), the result is proved.

It remains to establish (5.11) and (5.12). Computing the predictable variation in

(5.11) gives:

-
n
E[ft) S(0)(0,t) s(0°)(,t) S()(00,t )X0(t )dt

-Y (t )eUDX(t))
With p, (t) = for i=*1,2, - , the term in square brackets can be

1 S Yj (t)c°('(

written as a covariance i.e.

[ - s°)(o t ) s(°d; t) ] = { ~~~~p, (t )[O(Xj(t ))_+,]<X, (t )))2sM(0)(et) s(0)(upyt) S(01Oksllt)

where 4t = > (X, (t ))pi (t ). This in turn is b.. unded by
J =l
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n

JUp lo(2), {Epi(t)jO(X,(t))j)2
S i_

However,

{ ([-(()2 ()=Y(t )1(X (t ))#Ic(X(t))]
{Epi( t ) I )) 2 . ()@ t ,_ S(°)(0^ t )2 S°(o

by Lemma 2.1(a).

Using the Cauchy-Schwartz inequality and Lemma 2.1(a), this is bounded by

I Is

_

a Y, (t )42(X, (t ))
n i =i

Thus computing the expectation of this term and using the bounds on h,py and X4, one

has that

E{(1lI", )2 11<112 lI11i 2

which proves (5.11).

For (5.12)

2

II SS(2)(0 oft )OP,S (°)(O0o t )-I[ S(°)(O )
p

,(2)( ,,t )4ne(0)(00,t )

(0)(°,w't )

<S(1)(e,ot )>
s(0)(#0 t )

()(1k ,,t )A
< s (a)(0Pt )90>

,O (°)(Opit )

E (b N}2 < E

+Ej ([ (5.13)

is 2
1^11.1-11 -IE Yi (t ) I OM (t )) I c oo(Xl (9)) /s (0)(001 t )

n j-,

<S(I)(i t )to>
S (0)(op, t )

2

6 (0)(009 t ) Xo(t ) dt
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The first term in brackets is bounded by

1 (0)(9,,t)p (0)(e,pt,)0(t 12 1t)ff.(2)(0, t )('s0 0)(9,,t) )d +EfE (2)t ,P)0L0#0t X0(ti)dt
10 0

~l ~ 1

wwhere E(2)(t ,p) & = [S(2)(D, t ) b - .(2)(0 ,t )0iP. Applying the Cauchy-Schwartz ine-

quality and Lemma 2.1(a), this is bounded by

0 ,.q~~~~~vIa,.) 0~ )ay t )012,(t )dt Ef ( ) o) >0(t)dt + Ef[E(2)(t,p)0og2X0(t)dt

Further applications of the Cauchy Schwartz inequality, Lemma 2.1(c) and an analysis

similar to that used for equation (4.5) in the previous section, results in the upper bound

n {|If|jj 2 lIIIIL2 + 11,3t112L2)

But IIIIL2 < IkIIL2L so the first term in (5.13)

< n'(110112, 11,0112

The second term in (5.13) is

IJ [ St°)(0P?o0 <S(°)(#PP0?o

,(0)(e,,e) (°)(; t *(0)'j(^t\4t)dt'

Adding and subtracting o(;t)(of);) S(°)(Oolt ), this is bounded

by

E fl I(°)(; S°( S( )(0°t )8 O(^ (°)(Oort ) Xo(t )dt
14 r
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+EIf[f s()(t) S
0S(0)(00 I t ) i~s(0)(O, t )

By a familiar argument,

< IIL2Z ' s((e f s( O)(°o0t) - (1)(gOt t)) a()(90 t) X0(t)de

I

+ Ef[<S(l)(Oe ,t )0i'>]2Xo(t )dt
0

I <s(I)(O^,t ,,O,
s(0)(Dhvt)

<,(1)(0U,t ),o> I Xo(t )dt

*s(0k151t)J

But <S-c(, ,t),s1> < Iljk'lII uniformly in t E [0,11 and 0. E S,O(R,C), so following

an analysis similar to that used for (4.5) yields

<5 Iki L2 n Iktl1L2} + I bI#up. n1n2) S, 1n 11L2 Ik #UP -

This completes the proof of the result. Q.E.D.

< s (1)(°P' t )'O> | x (t )dt |
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