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INTRODUCTION

The authors of this paper learned separately, early an in their work, that a rigid "assumptions,
then mathematics, then conclusions” approach to techniques for the analysis of data was neither
safe nor effective. Nor was it the way that the discoveries of science seem to have been made.
What seems the effective approach is being flexible at the beginning and then stepping into, if and
when appropriate, some hypothetic-deductive structure (perhaps involving a few-parameter
description).

This seems especially true of many - probably most - applications of spectrum analysis. The
initial investigation needs to be flexible, considering fairly general patterns for the spectrum, after
which we may - ar may not - be able to go over to some popular few-parameter description of cur
spectrum. One of the early successes of modern spectrum analysis some 35 years ago, was the re-
analysis of autocorrelations of a tracking radar, published, with an elementary-theory-based fit, in
James et al. (1947). When re-analyzed flexibly in spectrum terms, this data showed (a) the low-
frequency hump corresponding to the simple theary, which was well-enough fitted by the few
constants, and (b) a smaller but quite definite peak near 2 Hertz, which the few-constant analysis
had entirely overlooked. There have been many parallel instances in the intervening decades. As a
result of this experience we have not written this review paper, particularly in its opening sections, in
an assumptions-mathematics (passibly anly sketched)-canclusions style.

As analysts of data we are often concerned with phenomena, with qualitative aspects of what the
data shows, as well as with its quantitative aspects. This has helped us to be concerned with the
phenomena of our techniques, with their qualitative and semiqualitative characteristics, which
usually generalize much further than the narrowly quantitative anes. These phenomena are often
both vague and important, so we will often be deliberately vague.

Many man-made signals, and a few environmental cnes, are relatively non-statistical. When a
single subject says the same vowel, again and again, the waveforms can be remarkably similar. The
same can be true of successive pulses fram a single radar, or for the traces seen at the same distant
paint due to earthquakes occurring an the same fault, years apart. These are the nice cases for the
analyst. IF he KNOWS this is going on, he or she can apply special methods of spectrum analysis,
which often do boil what is fitted down to a few parameters. This does not mean, however, that
these techniques are cither generally safe ar suitable for use in a new field.

All such techniques have to include strang hidden assumpticons, because they focus an the one
particular realization befare us. If that realization has been sampled, as today it will so often have
been, so that it consists of T values, x(1),...,x(T') and if we choose m > T/2 distinct frequendies,
W, ...,u,, D0 two of which are aliases (section 6a) of each cther, then we can always represent
the given data as

XxX()= ? ¢y co8(wyt +y;)

as a linear combination of just these frequency companents. This can be done, in particular, for all
m w's near zero, o all near wV3, o all near 98. If we look at individual realizations, ane by one,
and do not add (often tacitly) restrictive assumptions, the whale notion of a spectrum is in trauble.
So we should not be surprised that special methads invalve tacit assumptions - assumptions that
often do not hdd.

The cther extreme, where mast of your authors’ clients have found their data, is ane in which we
have ane - or perhaps a few -- realizations, but where our interest is in the ensemble ar process
fram which the realization(s) come. In studying the WT4 wave guide (section Sc), our interest is
not in the particular 12 kilometers laid for a test, but in understanding what irregularities are likely
to occur, if and when such guide is manufactured and laid for regular service. In studying the
background naise in a specific environment (perhaps with a view to the design of a special telephone
set), cur interest is not in the few minutes of record that we sampled, digitized, and analyzed, but in
the hours to years of background ncise yet to come. In locking at the naise characteristics of
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alternative frequency bands, when designing a radio commumication system, cur concem is not with
the past we have analyzed, but with the future we must face.

The best paradigm we have for looking ahead in such "naise-like” situation is a realization --
ensemble ane, a generalization to time-functions of the sample-population paradigm. As always, this
paradigm may underestimate our uncertainty, because, indeed, "the future may be different”. But,
in "noise-like" cases, it rarely overestimates cur uncertainty.

It is impartant to separate such "noise-like” situations - optimistically modelled with Gaussian
(ar for paint-processes, Markov) ensembles -~ fram the "signal-like” ones (e.g. FDR's vowels, the
pulse fram radar #115, the seismic return fram station 7 when a ane-pound charge is detonated at
station 0). Any approach to spectrum estimation warks far "signal-like” ensembles, but only care
and trepidation can give us useful answers for "noise-like” anes.

This paper is a mixture of philosophy, techniques, formmulas, experience, and enlightning
examples (with a bias to those of discovery of phenomena). The approach and notation seek to
unify areas: i) ardinary time series, paint processes and spatial series and ii) second and higher arder
spectra, far example. The reader need not feel he must go straight through the paper, but should
examine the Table of Contents for topics of special interest to himself. It may not be completely
apparent from the specifics of the paper; however it is our deepest experience that the practitioner of
spectrum analysis cannot know too much of the physical background of the situation of concern.
Blind use of farmulas and computer packages leads many astray. HU "« The spectrum "
Canceptually, the spectrum of a time function -- whether discrete time or continuous time -- would
be defined by taking a very long stretch of the time function (much longer than we actually have),
filtering it with a sharp, narrow-band filter, looking at a piece of the result (as long, perhaps, as cur
actual recard), and asking how much energy (power, variance) is present in this segment. At least
two extreme cases must be clearly understood:

Case 1. The very long stretch of the time function (a) is the only time function we want to
consider and (b) consists of a superposition (a summation) of not too many sinuscidal terms of
substantially different frequencies. Here the narrow-band filter will select anly ane frequency at a
trial, and the segment we are to assess will be a perfect sinusoid. This we have a good chance of
doing with high precision.

Case 2. The time function is to be regarded as a realization of a Gaussian process (which for
convenience we could, but need not, assume to be ergadic). It is ane of many possible time
functions; our analyses are directed toward the properties of the ensemble of these functions, not
toward those of a specific realization. The narrow-band filter will produce a narrow-band Gaussian
noise, most likely - especially if we are fortunate - with a more detailed spectrum matching
reasonably closely the result of passing white Gaussian noise through the given filter. In particular,
the amplitude of the result will change little over time intervals shart compared to the reciprocal of
the filter width, and will be almost uncarrelated over time intervals long compared to the reciprocal
of the filter width.

If we look at a stretch of such a filtered record that provides only a few, say S to S0, partions
whose length is the reciprocal of the filter width, we will have anly a poor idea of how variable - cn
the average -~ a much longer narrow-band record would be -~ how much power such a narrow-band
record would contain. That is to say, how large the spectrum of the Gaussian process was at (and
near) the frequency of cur filter. And what we can do when allowed to narrow-band filter a very
long record (and snip cut a piece as long as cur data) is at least somewhat better than we can
passibly do when we have anly the actual data.

s SPECTRAL PRECISION FOR GAUSSIAN DATA =

This lower bound on variability is easily evaluated. We know fram the Sampling Thearem
(Nyquist 1928), also known as the Cardinal Thearem of Interpolatory Theary (Whittaker 1935),
that if we knew the whole of a narrow-band signal at equispaced points, separated by intervals of
1/24f , where Af is the bandwidth, we could recover the whole narrow-band signal by interpolation.
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Except foar "leakage of information” across the ends of our longer narrow band recard (in one
drecnmctbaher),wlnchlsadinarily negligible, then, the information in cur narrow band
signal is contained in these discrete paints, of which there are, (within + 1), k =T/(1/24f)
= 2T Af in arecord of length T'.

These k points will, if we started with a realization of a Gaussian process, have a joint Gaussian
distribution. They will tell us as much as possible about the power ar variance associated with the
narrow-band Gaussian process when they are independent. If we look at the sum of their squares,
essentially the best we can do in this case to estimate the power in this narrow band, its average will
be ko* and its variance will be 2k® (as a multiple of chi-square on k degrees of freedom). The
muodmdarddevmnmtomnwﬂlbe(ﬂk)' which falls to 1/12 for & about 300.

Thus, the power in cur narrow band is to be known to one significant figure (conveniently taken
as standard deviation/ average = 1/12) we require & = 300 and hence

T = 300/24f = 150/Af

For narrowish bands, we rarely analyze anything like this much data. So we rarely know even
the average power, over narrowish bands, of any Gaussian process to as much as one significant

figure. When we study phenomena that are at all like Gaussian processes, we need to

1) wark with estimates of average spectra over bandwidths that are as great as will be
useful, and to

2) plan for substantial variability in these averages, usually affecting the first significant
figure seriously.
Those who must be concerned with spectra of Gaussian processes - or with spectra of even crude
imitations of Gaussian processes - have a very much mare difficult task than those who deal with
superpasitions of well-, ar even moderately-well separated sinusoids, particularly when anly a quite
shart portion of the sinusaid of interest is available.

The methods described below are intended to be effective when we seek infarmation about
spectra of noise-plus-signal ar pure-naise processes. They will wark —~ giving estimates of averages
across bands - for almost any sort of data. When we are so fortunate - usually either because we
deal with consequences of the mation of heavenly bodies (e.g. the tides) or of buman activity (e.g.
radar applied to man-made targets) ~ as to have mast of the energy at discrete, well-separated
frequencies, other methods may well be mare effective for routine use. However, as we now discuss,
the methods described below are still likely to be needed.

* WHAT CAN BE ESTIMATED? +»

If we have the sum of a few perfect sinusoids (of constant amplitude) embedded in a very low-
level noise, we do nct need a lot of data to recover the frequencies, phases, and amplitudes of the
sinusoids. But if the noise might be roughly Gaussian, then the limitations just discussed apply at
least as strongly to learning about the noise, even if it is at a high level. Without very long recards
we will only learn a little about the noise.

If, by contrast, the process is Gaussian, we can cnly learn less, since the limitations just
discussed apply now to all frequency components. Unless we are in fact carrect, when we set about
“modelling” the real situation with some description in terms of a small finite number of constants,
we will be unable to do anything appreciably better than estimate averages of the spectrum over
bands of well-chosen width - neither narrow enough to make us really happy about cur frequency
resdlution ar broad enough to make us really happy about cur sampling fluctuations.

These general statements are not confined to the approach to spectrum analysis we discuss in this
paper. No procedure can do significantly better,
1) in holding down sampling fluctuations, o
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2) in awaiding averaging over appropriate frequency ranges
provided that the data is a realization of a stationary Gaussian process, since, as is well known, the
realization values of its mean and the quadratic functions of its observations are a set of sufficient
statistics.

* THE ROLE AND PLACE OF MODELLING *

As statisticians, we are concerned with the real warld fram which our dlient’s data came, with all
its uncamfartable aspects. We can - and do - make use of models but in the spirit of guidance
rather than trust. The thearetical study of oversimplified models, in some areas called “toys”, can
be of great help in suggesting what sarts of data analysis to try. It can be a source of equally great
danger, if we forget how tenuous cur initial assumptions were, and start to treat them as fact. In
almost every case, any conveniently simple model has both (i) to be empirically tested to see in what
ways it fails to be correct and by how much and (ji) to have the theoretical consequences of these
failures at least crudely assessed. After all, no conveniently simple model is exactly correct. And
we take our life in cur hands if we trust it without good reason.

How are we to test empirically those aspects of our models that give a few-constant description
of same spectrum? Only by analyzing real data by techniques that will wark, in useful and
understood ways, when the model is inadequate. However fortunate we may be in having few-
constant maodels that give warking-quality appraximations to real situations, we can anly know that
they do this when we can test them. And the simplest adequate test is often the analysis of some
spectra by methads of general application.

Whether ar not they are able to design and operate as if some few-constant model were the
truth, anyone deeply concerned with spectra who uses few constant models in spectrum analysis, we
believe, needs to be able to check the adequacy of appraximation these models give him or her. Part
of this checking is likely to call for more generally applicable procedures of spectrum analysis.
Often - we would suspect almost always - these will be the sarts of procedures we are about to
discuss.

You may, if you like, regard our approach as exploratory. In doing so, however, you will need
to think of exploration as not only what is done in the beginning but also what is done every so
often, particularly to check whatever aspects of quality of approximation by the current model have
been newly recognized as a critical importance.
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A. OPENING
1. VITAL ISSUES

A number of issues need to be understoad in nearly every application of spectrum estimation and
system identification. We begin by treating a few of the mast impartant.

la. NON-ENTANGLEMENT (FREQUENCY NONDISTORTION)

Frequencies gain their widespread impartance because of what can be done to signals or noises
without destroying the identities of the contents of frequency bands or mixing these contents
together. Such things can be done (1) after the signal ar naise is generated and befare it is emitted,
(2) between emission and reception, (3) in the reception process, and (4) in what we do after the
signal ar noise is safely received.

Qur attempts, surprisingly often successful, to assess the frequency content of signals ar noises
depend, in practice, an the passibility of filtering out, directly ar indirectly, partions of the signal or
noise asscciated with frequency bands and then assessing how much power (energy per umit time,
variance) is asscciated with each band. (In practice, however, the details of our computations may
not make this process clear.) If filters could not extract certain frequency bands without too much
disturbance from other bands, we could do much less to assess the frequency content of signals or
noises. And in many other problems, where frequency techniques are used incidentally, we could
not succeed as easily ar as well.

Most signals or noises reach us through one or more media by propagation, be it
dlectramagnetic, optical, acoustic, seismic, ocean-surface, etc. If the contents of frequency bands
were not reasonably separated during the process of propagation, we would find it much harder to
use received signals or noises to tell us about (1) transmitted signals or noises and (2) the
characteristics of the propagation medium.

We formulate below, in Section 3, the conditions required for a “system™ -- with one input and
e output - to be linear and time-invariant and hence to leave contents of frequency bands both
unentangled and undisplaced. For examples, and further discussion of such systems and their
generalizations, see Section 13a and b.

1b. KINDS OF TIME

We hawe, tacitly, assumed that time was ecither continuous or equispaced discrete. Situations
where localized phenomena (earthquakes or lightning strokes), occur at unpredictable times can be
treated by timing them in “continucus” time, ar - much mare realistically - in fine-grained equal-
interval discrete time.

When, as is so often the case, the phenomenon is in continucus time, but cur data is in
equispaced discrete time, we face the problem of aliasing (see subsection 6a). The relationship
between these two kinds of time is vital for all processes of analysis using digital ~ or digitized --
data, which is rapidly becoming the most widespread and important case. We must always

recognize, and distinguish, the kinds of time for the phenomenon, for data reception and recording,
and for data analysis. Their differences can be vital.

lc. NOISE IS IMPORTANT

It is so much easier to avoid being realistic about naise. It is easiest to write equations as if
there were no naise. Next after this comes attempts to cover noise’s ills by adding an an «¢t) which
is, more or less explicitly, assumed to: (1) have a flat spectrum, (2) fdlow a (jant) Gaeussian
distribution, (3) not be large encugh to cause serious difficulties. Neither of these evasive
approaches warks for most meaningful problems.

In many important areas - radio or radar background naise, ocean waves (tsunamis aside),
seismic naise and the like -~ cur efforts at spectrum estimation are directed at the spectra of noise-
like time functions. And the tools we have to identify systems are often noise-like inputs.
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When noise does not dominate, it is still usually present to a meaningful degree. That means
that statistical thinking is essential. Just because something is measured does not mean it is truth.
Whether the naise is inserted at the source, in the analysis, in the receiver, or in the medium does
not matter, when, as is so often the case, what we want to study is the naise-free source. We can
rarely do this directly. As a consequence, we are almost always trying to look beneath our
measurements or recardings, to make inferences down through some number of layers of noise.
Evmmaahngwnhtbsmplethmmcmedsgmlslumngﬂrmghmnaem
necessity. Thase who study signals carefully must also be statisticians.

Detailed assumptions - flat spectrum, Gaussian distribution, known total power - about ocur
corrupting noise apply no mare frequently in studying signals than in cther areas where statistical
thinking can be used. The ideas of statistical mechanics usually apply when there are 10*! ar mare
sources of comparable impartance, naturally combined by addition using comparable weights. The
unhappy state of affairs, in signal-chasing as well as in most cther applications of statistical thinking
or analysis, is the most common ane, where there are 10 to 10 sources of comparable importance,
- encugh so we cannot treat them source by source, too few to let the Central Limit Thearem
convey us acrcss the Styx to the Land of Gaussian Distributions.

Naise makes all of us unhappy; having to be statistical makes many unhappy; assumed
knowledge of distributions is usually a broken crutch, guaranteed to leave us in trouble far too often.

2. THE VITAL DISTINCTION ,
No distinction in the whole area touched upan by this study is mare vital than that among:
a)  pure naise, |
b) puresignal,
)  signal-plus-naise,

While (b) is ordinarily unrealistic, there are enough cases of (c) with nearly negligible naise that
thinking about (b) is a helpful idealization - if it is not allowed to be used where it should not.

The vital distinction is that between (a) and (b), and it is to this that the present section is
devoted.

2a. NOISE-LIKE PROCESSES

The constancy of a noise-like process does not lie in the shapes of its individual time functions
(its realizations). This constancy may well lie in the appraximate frequency-content of each of its
time functions, as would be the case for many instances of either white ar colared Gaussian noise.
It might lie in some other, mare subtle characteristics, ar it might be even grosser.

Caonsider, for instance, three different Gaussian naises, different in colar (in frequency-content
profile, in spectrum shape) as well as in size (in variance, in total power). A process which draws
each entire realization fram one of the three, drawing, say, fram the first with probability 10%; fram
the second with probability 30%, and from the third with the remaining 60% probability, would be
very noise-like. Different realizations are likely to appear quite different. We will have to draw and
examine many realizations befare we come to understand what is going an.

Many phenomena, as noted at the beginning of Section 1c, are noise-like. Yet, as phenomena,
we need to treat them as “signals” to be captured. Their realizations may resemble one another
mare closely than in the example just given, but any two will be far from being identical.

We usually have a small sample - all too often a sample of ane — for the sample size is the
number of distinct realizations. Our need is to make as good inferences as we can to the population.
Since we have a sample, our inferences are necessarily imprecise. We have to think statistically,
and treat cur conclusions - like any statistical conclusions -- with both built-in grains of salt about
the numbers and supplementary grains of salt about the wisdom of making the structural and
stochastic (probabilistic) assumptions that reaching these conclusions really require. (See Section
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17 for the distinction between conventional ar optimum-generating assumptions and those we really
need.)

It is for data near the naise-process end of the contimmm that most of the sorts of Fourier
methads of spectrum assessment discussed in this account were ariginally intended, and where they
are most effective.

2b. SIGNAL-LIKE PROCESSES

At the cther extreme come the signals recorded by geophones or other seismographs in the
process of geophysical prospecting. It matters little whether the explasive charge was set off an
Tuesday ar Thursday, in ane week or another, in the am. ar the pm., so long as the place of
detonation is kept constant. The background noise is weak, the tracing will appear essentially the
same, whenever the charge was fired.

This process is very “signal-like”. Indeed, nct anly is there a single source, but the energy at the
source is concentrated - in this instance in time. Concentration in frequency also often happens for
other kinds of single sources, as does concentration at oar near a few times -- a‘afewfrequms—
ar a few time-frequency combinations.

Studying pure signal-like processes may well be best dne by quite different methods than those
ocutlined in this paper. We direct the reader’s attention to the cther papers in this special issue.

But few processes are purely signal-like. Some carruption with naise of various kinds, including
(but not limited to) measurement noise (and, usually, digitization ar quantization noise) is the narm,
not the exception. As statisticians, your authors: (1) are ever suspicious, as to whether naise was
important in each specific instance when techniques are either derived from or demonstrated with
signal-anly cases, and (2) look forward to the development of techniques apt for mixtures of signal
and noise, at least. As engineers, we think you should be, too.

The mast basic paint is simple: what is a good technique for pure signal-like processes is almost
sure NOT to be a goad technique far pure naise-like processes, and vice versa.
2c. NUMBER OF SOURCES

As we have noted, and will note again, fram time to time, ane of the main reasons why some
processes are naise-like and others are signal-like is the number of elementary sources. Ocean waves
are an easy-to-understand example. Both swell and local surf involve the combination of effects
fram many individual atmosphere-ocean interactions, spread over wide ranges of space and time. So
many indeed, as to have the Central Limit Thearem ensure that the wave process is very, nearly
Gaussian (30 long as we stay in deep water, and avoid shallow water nonlinearities).

Tsunamis (often miscalled “tidal waves”) also move an the ocean surface. They typically come
from earthquakes, which can coften be treated as single sources. As a process tsunamis are clcse to

being purely signal-like. (If there were no swell ar local surf in the background, tsunamis would
have been very nearly signal-like indeed.)

Roughly, then, we have the following scale of source multiplicity and process characterization:
a single dlementary source: very signal-like
a few dementary sources: reasonably signal-like
maderately many elementary sources: noise-like, but with uncertain distribution,

very many elementary sources: noise-like and probably near Gaussian in distribution.

In using this classification we need to think of these “clementary sources” as independent
elementary sources. The return of a radar pulse from a large comer reflectar involves a diversity of
ray paths, mirrared on different parts of the corner reflectar. These are not to be taken as separate
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dementary sources as long as the corner reflectar is rigid. (A flimsy comer reflector, heavily
vibrating in each of many modes, would return a noise-like signal, involving many local sources of
reflection (each slowly changing)). Scattering by a number of scatterers, ar multipath transmission,
can convert a single real source into several ar many virtual sources.

Wherever we understand the source and propagation phenomena, we can usually count
clementary sources well enough to tell whether to expect noise-like or signal-like properties in what
we receive ar measure, and recard.

2d. STABILITY IN THE NOISE-LIKE CASE

We have already, in the introduction, illustrated the stability behavior in the Gaussian case, and
given the relevant farmmlas. These correspond, to

. (bandwidth)
o freedom = (# dat = 2.1
degrees (# data points) s ta spacing) @)
in which the bandwidth is in radians; where ane degree of freedam for each data paint is spread
unifarmly over the frequencies (see Section 6a) from w =0 to w = 7/ (data spacing). (Another way
to put it is that the number of degrees of freedam is the product of bandwidth/#r and cbservation
time.)

If we have a non-Gaussian distribution of data paints, as happens so frequently, the variability of
our spectrum estimates is almost always (in practice) increased. There is also some increase when
our pass-bands are not the ideal square-carnered boxcars that “ideal” filters would give us. As a
result, (2.1) and its companion (exact for anmy muitiple of chi-square with specified degrees of
freedam)

variance = 2(average)?/(degrees of freedam) (22)

are either satisfactorily close, ar give too small a value for the true variance (which is then larger
that (22) indicates).

There is no way to analyze any ardinary noise-like input (for which a few-parameter form is not
guaranteed), and cbtain a reasonable estimate of the underlying process’s spectrum which is more
stable than is suggested by (2.1) and (22).

Sometimes it will not be possible to do even approximately this well without redefining the
process (as when we divide the 10%30%60% process of Section 2a into three subprocesses, and
estimate cnly the spectrum of that subprocess from which we have a realization).

We also have, particularly in dealing with noise-like processes, to fear the appearance either of a
few or many gigantic deviations. These may come fram a stretched-tail distribution of values in the
ariginal phenomenon, or fram carruption by lightning flashes or cther low-duty-cycle high-amplitude
perturbations. In the latter case, we are likely to want to estimate the spectrum of the input with
the corruption removed. In the former, we may have to settle for estimation of the
asscciated with forgetting (and smoothing over) the gigantic values. Robust/resistant methods of
spectrum analysis have been developed to do these things. They will be discussed in Section 19.

With adequate use of process-subdivision and robust/ resistant analysis we can reasonably plan to
bring the variance of our spectrum estimates down close to that indicated by (2.1) ar (22), clcse
enough for most design comsiderations, for the planning of data accumulation. (True variabilities
150% ar 200% of those given by (2.1) or (22) need not surprise us.)

Higher stability of spectrum estimates can QNLY be attained for signal-like processes - o far
cases where trustworthy physical laws (nct unwarranted optimism) guarantee a few-parameter
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2e. EXAMPLES OF NON-GAUSSIANITY

We dffer now, briefly, some examples of naise-like processes that are not Gaussian, trying to
illustrate individual modes of failure, emphasizing as hard as we can that REAL DATA OFTEN
FAIL to be Gaussian IN MANY WAYS.

Example 1. Each realization can be thought of as a realization of Gaussian white noise with
variance o?, but ¢ varies fram realization to realization.

Example 2. Each realization is of the farm X(¢) = a cos(ur +¢), with aw and ¢ all random,
where ¢ is unifam an [0,27], independent of a and w, which follow some messy joint distribution.

Example 3. X (t) is always cither +1 or —1.

Example 4. X(t) is the sum of a realization of some fixed Gaussian colared noise and a
peppering of random (say Paisson) values which affect anly a small fraction of the cbservations (the
contributions of this companent are elsewhere zero).

Example 5.
X*(¢) =X(t) +c[x (@)

where X (¢) is a realization of some fixed Gaussian colared naise.
Example 6. :
X*(¢) =[10 + cos(ue +)]X (¢)
where X (¢) is a realization of some fixed Gaussian colored noise v is fixed and ¢ is a unifarmly
distributed random variate.
It is easy to be -~ ar became - non-Gaussian; it is hard to be ~ or remain - Gaussian.
(Narrow-band filtration is an exception.)
3. SUPERPOSITION AND LINEAR TIME INVARIANCE; NON-ENTANGLEMENT
We return now to the question of how systems keep frequency bands separate, ar mix them up.
The essential requirements of a linear time-invariant system are:
o time-crigin-shift invariance, which means that delaying the input by a given constant delays
the cutput by that same constant, and
e superpasability, which means that, if the input is a moment-by-moment sum of two inputs, the
output is the moment-by-moment sum of the two corresponding cutputs (often called

“linearity” ar “additivity™).
In symbdlic formulas these read:

o if x(t) - y(t), then, for any admissible A, x (¢ +h) - y(t+4), and

® ifxy(¢) = yi(t) and x5(t) = ya(t), thenx(¢)+x2(r) = yi(¢)+ya(e).

The concept is much discussed in signal processing texts, e.g. Oppenheim and Schafer (1975).
Simple differencing (for discrete equispaced time) or differentiation (for continuous time) shows
that if filter input is X (¢) = cos(w +¢) then its cutput must be of the form C - cos(wr +¢r+y) where
C and { depend on w alone and the complex-valued function of frequency

B(w) =Ce'*

is called the transfer function of the system. This says that single-frequency signals are only
changed in amplitude and phase.

Superpasition now tells us both the parallel result for each of several frequencies applied at the
same time, and that what happens to each frequency is unaffected by the presence of the others.
Thus linear time-invariant systems do leave frequency bands unshifted and unblurred. If we see the
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warld through such a linear time-invariant system we can know something of what went cn -- in
frequency terms - at its input. Thinking and warking in frequency terms can help us do both this
and its generalizations.

For mare discussion and generalization of linear time-invariant systems see Section 13.
4. TWOATTEMPTS TO ESCAPE REALITY

Both statisticians and physicists have shown a marked tendency to over-simplification, specifically
by assuming that the probabilistic (stochastic) parts of their data could be described in terms of a
few parameters, and that these parameters could be reasonably chasen in such a way as to be
estimable from the data. The last SO years have seen the statisticians struggling to free themselves
from such straight- jackets, to develop procedures that were known to wark respectably across a wide
variety of stochastic (probabilistic) situatians.

This great increase in realism came first, quite incampletely, through the development of so-
called nonparametric or distribution-free methods and later, in the last decade ar so, much mare
completely though the development of so-called robust/ resistant methods. (There remain a variety
of ways in which realism needs to be still further increased, so that there will be impartant work for
the decades ahead, but it seems likely that the most important steps have been taken.)

Some would say that when they, ar others, "assume” they are really anly talking about
approximations. This is safe for those who understand, but dangerous for innocent readers. To say
that b iny =g + Ix is "the slope of the curve y = f(x)" is similarly dangerous when f (x) is not a

straight line. Perhaps the basic difficulty is unfamiliarity with the idea of a leading case (see
Section 17), and a consequent belief that the only place ane can start from is an assumption.

The maost unfartunate consequence is the sequence: (a) this might be a good appraximation, (b)
Il "assume” it and see if it works, (c) "ah ha", it works well enough for my problem, (d) since it
warks (well enough) it must be the truth, (¢) so I must be estimating the spectrum, (f) so other
mahdsdspecumaﬁmaﬁmaremgod. In this sequence, (a), (b), and (c), except for the
chaice of the ward "assume” are frequently practical and often adequate. The trouble comes fram
the illogicality of attaching (d), (¢) and (f). (Even(c)faﬂs,xfthemaluwmademmﬁ:emly
real and sufficiently diverse examples.)

There are two ways in which this “unrealism through narrow specification” is praminent in the
literature of spectrum analysis. We all need to recognize both, and understand where it is impartant
to be concerned about each.

One is within the spectrum framewark, where it has seemed natural to some to represent spectra
by functional forms invalving just a few parameters.

The cther is cutside that framework, where it has been thought that it was encugh to know the
spectrum, that there was never any need to go further. This simplistic view is often put forward
under the shallow concealment of the assumption that the process is Gaussian and Aence that we
need go no further than the spectrum.

4a. THE FEW-PARAMETER FUNKHOLE

The idea that we can do well by assuming a specific, few-parameter farm for the spectrum is
seductive. But does the evidence suggest that we should allow curselves to be seduced?

There are a variety of physical phenomena which are fairly well represented by line (ar band)
spectra — speech (for a short time interval), the tides, atomic and malecular spectra, Milankovich’s
analysis of the changes of the earth’s arbit over time. These have localized-parameter descriptions
(two or three parameters per line) but not few-parameter descriptions.

For every case that we know well, a few-parameter description is only an approximate one. This
mmthtxfmﬁtafew-parmmdd we ocught, almost always, to think of it as an

approximation -- to think of what the parameters tell us as averaged information, as being given by
suitable averages over the spectrum, ar some other function of frequency. We cught to believe that
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the interpretation of these few parameters has to be consistent with much more diverse and flexible
sorts of spectra than can be represented explicitly in few-parameter farms. After all, when we take
the mean of successive cbservations, we need not believe in some underlying exact constancy; when
we fit a straight line to (y x) data, the true dependence of y on x is rarely exactly a straight line.
(For related discussion, see Section 17.)

Fram this paint of view, moving fran few-parameter models to estimates of averages over each
of moderate number of bands is a step toward reality, a step from few “parameters” to moderate
number of “parameters”. (The idea that ane can, starting from samples of conventional lengths, go
very much further for noise-like processes is, of course, like the Lareld, a route to danger and
destruction, though these do not occur every time.)

4b. THE GAUSSIAN FUNKHOLE

The view that, since we are anly going to estimate the spectrum, we must assume that cur
processes, actual and potential, are such that (together with a mean) the spectrum will tell us all
about the process — either all there is to know, if we really knew the spectrum, ar all there is to
estimate, if we are working from data - is a parallel funkhole. Again it tries to define ar assume
away all the detail ar diversity we have decided, often for good reason, not to try to capture. Again
it is dangerous at best.

A goad way to make clear why this is anly a funkhde is to spend a little time on a variety of
processes with the same spectrum. It may as well be the simplest spectrum - 30 let us turn to
“white naise’.
4c. GAUSSIAN WHITE NOISE

Here again, in thinking of any white noise, same care concerning the relation of discrete and
continuous time is needed. In discrete time, if X (¢) is a realization and ave X (¢t) = u(t) is the
mean across the process, we require

ave{(X (£)—W(1))(X (¢ +3)—W(t +3))} =0, fors + 0

where "ave” denctes an average either/ or both “acrcss the process” (over different realizations) and
over ¢t. (Stationarity is a third funkhole.) This is a relatively precise concept, and correspands to a
discrete-time spectrum which is nearly flat over 0 < w < WA, where A is the time spacing.

What does it mean to be a white naise in continuous time? To have an effectively flat spectrum,
presumahly, which means to have a spectrum nearly enough flat over a sufficiently broader baseband
so that, when aliased an to a reasonable baseband by recarding in discrete time - or when low-
passed with an extremely sharp-cutoff filter - the result will have a very nearly flat spectrum.

For the discrete-time case, it suffices to say, as the ideal, that

ave(X(t)) = forall ¢ (4.1)
var(X (t)) = &, for all ¢ - (42)

but that
ave((X(¢)=W(X (u)=w) =0,far all ¢ # u (4.3)

which describe discrete-time white naise, and that the distribution of X (¢), for each ¢, follows the
Gaussian shape. (Very familiar to the statistician and, in his other contexts, usually overidealized.)
4d. ON-OFF WHITE NOISE |

We can combine (4.1) to (4.3) with the condition that all realizations have X (¢) =0 or
X(t) =1 for all 7. The result is properly called an-off white naise, and comes in very different
flavors, depending upon
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t)=1

probiX (¢)=1} _
prob{X (1)=0} 1—y

If1=10" roughly one digitization in 10,000 will be unity, the others will be zero (very dilute
single-data-point spikes). If y = 1/2, we have a process that might have arisen as (Y (¢)) where
Y (¢) is Gaussian (on other symmetrically distributed) white noise and ¢ anly considers the sign of
Y(t) —
These noises ~ they are a ane-parameter family - are very different from Gaussian white naise,
yet they, too, are white, sharing a flat spectrum an (0, W A).
de. MULTICHIRP WHITE NOISE

Let a(t) be any (generalized) chirp, vanishing for ¢ < 0 and decaying toward zero as ¢t - =,
(It will be convenient if the integrals of |a(t)| and (a(¢))? are finite) Let 7y, 72,..., T (r) be the
times of occurrence of random events, and let

X(@)= ; a(t-1))

Then, as discussed in Section 11, the spectrum of X will be |A (w) [2S (w) where A (w) corresponds
toa(t) and S (w) is the spectrum of the paint process that generated the 7's.

In discrete time, we can suppase that our chaice of a(¢) and S (w) compensate one another, after
aliasing, so that the resulting spectrum is white. The rate at which our random events occur is now
important. If they occur anly rarely, then cur time histary (continuous ar discrete) shows infrequent
chirps, rarely overlapping one another. Such realizations, too, can be realizations of white noise.

White noises come in very many types - we have only shown a few.
4f. COLORED NOISES ARE EQUALLY DIVERSE

However many kinds of white noises we may wish to think of, we can convert them into equally
many kinds of naise of same other prescribed colar by passing them through an appropriate filter.

B. OTHER BASICS
5. ENLIGHTENING EXAMPLES

Time series analyses have various kinds of aims. These include: discovery of phenomena,

modeling, preparation for further inquiry, reaching conclusions, assessment of predictability and
description of variability. Tukey (1980a) expands on these aims in same detail.

Some studies exemplifying these aims will now be described.
Sa. AN EXAMPLE: SPECTROS COPY

hmﬂmmwuhmdyd&edm&mme&waatwh@maﬁng
particles of matter absorb and emit energy. It is a powerful tod, far probing the micrascopic details
of the structure of matter. The Fourier-transfarm pulsed-muclear-magnetic-resanance technique
proceeds by irradiating a sample with an intense pulse of radio-frequency energy for a short time (1
to 100 micrcsecands) and Fourier analyzing the resulting electrical signal. The introduction of this
Fourier technique resulted in a dramatic improvement in detection capahility. (See Becker and
Farran (1972) and Levy and Craik (1981).) (Previously the spectra were recorded in continucus
time with the magnetic field or the frequency swept slowly.) The goal of the analysis is to achieve
goad resalution of the peaks in the spectrum. Levy and Craik (1981) provide a number of examples
of advances in interpretation that have resulted fram the use of Fourier-transform nuclear magnetic
resonance in chemistry and biology.

In a situation involving matter far from a laboratary, by means of Fourier spectrascopy Connes
et al (1967) were able to detect the presence of HF in the atmosphere of Venus (at an abundance
ratio of a few parts per billion) and to estimate its amount. They were further able (Connes et al,,
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1968) using the fine details of the carbon monaxide (CO) spectrum (only uncertainly detected, if at
all, by previous measurements), to calculate the pressures and temperatures at which CO exists.

It is staggering to comsider the resolution thus achieved. Connes and Michel (1974) remark
(about spectra of stars): "However, it will no longer be practical to publish the complete data in
atlas form: ane spectrum cn the scale of figure 1 (which is inadequate to show line profiles) is 170m
long.”

5b. AN EXAMPLE:THE NEGATIVE IMPORTANCE OF STATIONARITY

A striking example of the detection capability of spectrum analysis is given in Munk and
Snadgrass (1957). Ocean-wave spectra were estimated fram data collected by a pressure recorder

sitting an the ocean floor off Guadalupe Island. Spectra were estimated for contiguous four hour
periods. A small peak, at a frequency :hat increased as time passed, was noted. The frequency of
the peak increased with time as longer waves travel mare quickly. Fram the rate of increase of the
frequency of the peak the distance (14,000 km) of the storm was able to be estimated. From the
amplitude of the spectrum, the wave height (1 mm!) could be estimated. The wave length was
approximately 1 km. The source of this peak was then determined, on the basis of the rate at which
its frequency changed, to be a storm in the Indian Ocean.

Clearly this discovery could not have been made if the recorded wave process had been
stationary. At times nonstationarity is a great advantage.

Sc. AN EXAMPLE: THE WT4-WAVEGUIDE

Waveguides for the transmission of wide-band high frequency radio signals have to be of very
constant cross-section and to be laid exceedingly straight in arder that energy loss not be great and
that muitiple modes not occur. Thomson (1977ab) presents a spectral analysis of data collected by
sending a mechanical mouse through 12 kilometers of WT4 waveguide measuring its curvature at
frequent intervals (nearly every centimeter) The dynamic range of the (spatial) spectrum in this
case is substantial, up to 16 decades (160 db).

Thomson dealt with these difficulties by employing a high quality taper (prdate spheraidal
?lx;g';n) and by employing a resistant prewhitening filter. Further details are given in Kleiner et al

In particular this study found that, in these rather extreme circumstances: ane dust speck could
flatten the low portion of a naive spectrum estimate, concealing that portion of the true spectrum,
while two such could introduce an obliterating ripple, and that not tapering could result in
overwhelming bias.
5d. AN EXAMPLE: CELL MEMBRANE NOISE

Muscle cells are electro-chemical devices. In the presence of the chemical acetylchdline, a
background electrical noise is produced by a cell. Bevan et al (1979) recorded this naise and
estimated its spectrum under a variety of conditians.

Physical reasoning suggested the farm o/ (1 w?/p?)) with the parameters a, B having physical
interpretations, 1/B being the fraction of the time certain channels were open, and of§ being the
channel conductance. 60 Hz naise was found to be present and had to be filtered cut. Initially, a
ripple appeared on the spectrum. This seemed unlikely to be a physiological phenomenon.
Eventually its cause was tracked down as feedback from the noise of a pen recarder graphing the
series. When the pen noise was climinated, the ripple went away. The above functional farm was
found to be reasonable except for same extra power at the low frequencies. The dependence of the
parameters cn factors that the experimenters altered was also studied.

6. TYPES OF FOURIER TRANSFORM

Suppase, for the moment, that the series of interest is contimuous and defined for —© < ¢t < .
If the piece X (¢), 0 = ¢ < T is available for analysis, then one might compute the finite Fourier
transfarm
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_z X(t)e7'=drt . (6.1)

When, for example, that X (¢) = & cos(f¢ +y), the absdute value of this Fourier transfarm will have
maxima at » == B. (This is the reason that computing the Fourier transfarm was proposed for
estimating hidden pericdicities by Stokes many years ago.) The Fourier transform itself is seen to be
propartional to the sample covariance between the segment of the series X and the series exp{—iar}.

When anly X (), ¢ =0,...,T -1 is available, one may compute the discrete Fourier transfarm
@ =S X(u)e™™ . 62)
=0

For the case of X (¢) = a cos(f¢ +y), the absdute value of this transform has maxima at o =% B
as before, and also, equally large, at w = = (B = 2m), = (B £ 4m),.. . (These latter frequencies
are referred to as aliases (ar images) of the frequency B.) The Fourier transfarm (62) may also be
of use in estimating the frequency B; however additional infarmation will be needed to rule cut the
aliases. (See the next Section).

(6.1) and (62) are two types of Fourier transfarm that prove of use in dealing with random
process data. In the case of a (2-dimensional) spatial process, X (¢,4;) the transforms

Ty T2 . T-1T21
f fX(t;,tz)e"("M’dt;dt,, > > X(ty 1) 17
[ ] 10 120

prove useful. Far paint processes, whose realizations are sequences of times 7, at which some event
of interest tock place, the transfarm

‘-‘.’

Osv<T

is relevant. For marked paint processes, paint processes where a value M, is associated with each
time 7, a key transfarm is provided by

z MIC.‘.‘J .
Ose<7

In classical Fourier analysis it has been found convenient, in many circumstances, to insert
convergence factars into the transfarms, yielding expressians such as

} 1- J%L]X(t)e""'dt
-r

for example. (This is a simple example, nct a preferred window.) Such madifications of the Fourier
transfarm prove essential in the time series situation as well, and go under the names of ing"
or "windowing”. (cp. Blackman & Tukey 1959, Kaiser 1966.)

We next discuss key aspects of empirical Fourier transforms such as those defined above. It is
warthwhile to add the comment that using a Fourier transform does not require that a periodic
phenomenon be present — its usefulness is much broader.

6a. CONTINUOUS TIME VERSUS DISCRETE TIME:ALIASING

Numerous processes whose realizations can be seen to develop ar endure are best thought of in
continuous time, a few are meaningful for discrete time alone. Various computational aspects
however, are best dealt with in terms of discrete time. In consequence it is impartant that the
effects of switching between continuous and discrete time (for example by sampling the continucus
series at discrete times) be well understood.
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Suppaemeamementsdthcconnnmsmaaremadeatequallyspacedpammume,A
time units apart. Ifthesamplmgmmsmt.=nA,tlmbeausedthcpmodutypwpaty

cos(w+2m) = cos(w) ane sees that sampling the series a ccs([B-l——]t +y) would lead to exactly the

same set of cbserved values as found by sampling a cos(f¢ +y). Thefrequmessanda+2dA
cannot be distinguished fram the data. Similarly the frequencies  + 2mk /A, k = £1,+2,... cannot
be distinguished from B. Further the frequency —f cannot be distinguished fram the frequency B as

it too correspands to a cosine wave of frequency B. In consequence the frequencies — + 2mk /A are
all indistinguishable, if values of the series are available anly every A time units. The frequencies

+ B+2nk/A, k =0,£1,22,.. are called aliases of each other. There is but ane in the interval
[O,dA],itiscnnedtlzpindpal alias.

Aliasing cannct be avoided totally in practice; however its effects can be much reduced by
prefiltering the series in such a way that virtually all the power above the highest frequency of
interest is removed, and then choosing A so small that one has = 2 paints (often = 3 and passibly
as many as 7) per cycle at this cutoff.

The aliasing of frequencies due to operating with equi-spaced data is bad, but without it ane
would have to spread the information in the data over 0 S w < =, without the advantages of
knowing what is aliased with what. This would be far worse.

In the interpretation of spectra estimated fram equi-spaced data one must never farget the
effects of aliasing. (And it is best nct to farget to give thanks for aliasing’s simplicity.)

Recently Tukey (1980a) emphasized that procedures which wark with sums of squares of
Fourier coefficients, a}? + b} (= df(w) d’(w),mtbmnmd(62) above, rather than with the
a) +ib)’s (the d'(m) 's) (cr their real and imaginary parts) also alias time separations. In
pnmmlar,twospkanearlyatﬂnmdsdﬁzdataugmntbungl’mtramfmmdmyleld
the same sequence of values a? + b} (where a; + ib; is the complex Fourier coefficient) as two
spikes close together. This can be avaided by adding encugh zerc's to the data sequence (which still
needs to be first tapered, see Section 6d below) befare carrying out the Fourier transform.

6b. CONTINUOUS VERSUS DISCRETE FREQUENCY

The previous section indicated some of the effects that discrete time has on analysis and
interpretation. Frequency may also be discrete.

The Fourier transform (6.2) may be inverted via the relationship
1 73} 27 2mut
X@=x '% d [7']@(‘ <! (6.3)

t =0,.,I—=1. This makes it appear that anly the discrete frequencies 2mu/T, u =0,...,T =1 are
needed for a description of the time series. The issue here is however that, while these discrete
frequencies do suffice to represent the data, they are almost never able to represent the phenomenan
under study. The right hand side of expression (63) defines a function for all values of 7. This

function is seen to have period T, (because the frequencies are equispaced). It might correspand to
the phenomenon under study if that phenomenon had period T. This is most unlikely, however, as
T was, usually, merely the number of data values collected.

The user must beware that Fourier manipulations can insert periadic artifacts in such a way.
6c. MIXTURES (BETWEEN DATA AND NOISE)

Suppase that the series is a mixture of a signal of interest and noise, X (¢) = s(¢) +(:) As the
Fourier transfarm is a linear operatar, one has

df (@) =df(w) +d7 (v) .
T being the length of the time pericd of cbservation. The data transform is the sum of the signal
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transfarm and the naise transfarm. This has practical implications.

In many natural situations, the signal is concentrated in spedific frequency bands. In these
circumstances ane need only deal with df(w) for w in those bands.

If the series X is passed through a linear time invariant system with transfer function A (w) to
cbtain a series Y, then in terms of Fourier transfarms ane has

df(w) A(w)df(w)
A (W)d] (w) +A (w)d{ (o) .

One can set about determining a filter such that A (w)d? (w) is generally small, while A (m)d’(m) is
not, and may succeed.
6d. TAPERING

Suppcse that X () = cos f, for ¢ =01,..T -1 then df(w) =3 & () +3 8 (@)
where

AT (w) = z e = aplio(r-1)/2) L2

Theﬁxmﬁmsinuﬂ'/Z/sindz,theliﬁdﬂetksml,lmmbstmﬂalﬂpplamdappreciablesize
away from w=0. This can cause substantial interference among compments of different
frequencies present in the series X. In practical examples leakage from ane frequency to another
can reach over substantial frequency intervals and can cause great difficulty of interpretation. The
phenomenon reflects the fact that, with a finite amount of data, one can anly look at particular
frequencies with limited resdution.

An dementary procedure, variously called tapering, windowing, inserting convergence factors, or
weighting, is available for reducing the effects of leakage.

Cansider a function, A7 (¢), defined as 0 for# < 0 and ¢z > T — 1 and whose Fourier transform,
HT (w) =3 A7 (t)e™'*, is concentrated near w =0 and dies off rapidly as w increases. (This will,

in particular, be the case for functions A7 that are near O at the ends, rise to say 1 in the center,
then fall to 0, and are very smocth.) The Fourier transform of the series Y () = A” (¢)X (¢) may be
written

dF(w) --'2:,: WX (e= =1 '5:;: dI ZT"‘]H’ [u -2 (6.4)

For a series X(¢) = cos B, df(w) =%H'(0—ﬁ) + -;-H"(«:-I-B) and leakage is reduced to the
extent that H7 has better resclution than AT above.

In practice, as the dramatic examples of Thomson (1977) and Van Schooneveld and Frijling
(1981) show, tapering is essential in the preliminary estimation of spectra of unknown form.

Harris (1978) presents quite a number of tapers with graphs of AT and the carresponding
Fourier transfarm HT. See also Nuttall (1981).

While expression (6.4) shows that ane could "taper” after forming the Fourier transfarm (at least
if all calculations were to high enough precision), this is not computationally sensible in many
crcumstances. It is better to mmitiply by A7 pricr to Fourier transforming, except in special
circumstances.

In the direct methad of spectrum estimation ane smooths the periodogram
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par g3z o= 2o fo- e a B g P2e].

‘Ihem:ltnmvanably NOT a smocthed version of the (untapered) periodogram (21ﬂ')"|d{(m)[’
One should not miss the opportunity to taper priar to forming a periodogram in any circumstances
where the spectrum is not KNOWN to be very, very nearly flat. Priestly (1981) Chapter 7 is a
further reference.

Ge. PREFILTERING

In the case that the series X is stationary with mean 0 and spectrum f (-), the expected value of
the periodogram (6.5) is

J HT (v—0)Ff (a)da. (6.6)

This expression makes it apparent that the more nearly constant the function £ (¢) is, the less biased
the estimate. Now, if the series X is passed through a linear time-invariant filter with transfer
function A the spectrum of the resulting series is |A () [f(w), and the expected value of its
periodogram is

J HT (e PlA () Pf (@)de.

urmmtamnapmsbletodetmaﬁlter,p'obablycigxtal such that the function

In many
A()Bf() is mare nearly constant (has been partially prewhitened) than f(°) itself. These
remarks suggest the estimate |A (w)|?fT(w), where f7(w) is the spectral estimate of the
prewhitened series. In essence one filters the series of interest priar to estimating the spectrum and
then compensates far what the filter did.

In practice it can be essential that some fam of prefiltering be carried cut in spectrum
estimation. Prewhitening can also help in terms of the determination of the variability of a
spectrum estimate.
6f. QUADRATIC WINDOWING

One class of spectrum estimates takes the form

D) S w () (u)e™ '™ = [ WT (w—a)l” (a)da (6.7

where, in the case that the series has 0 mean
W) =TT XX (),
t=0

is an estimate of the covariance function, w” (4); ¥ =0,£1,%2,... is a sequence of convergence
factars with Fourier transfam W7 (a) = w” (u)exp{iau}, and where 17 (a) = (27T ) |d" (a) [

is the pericdogram of the data. The use of w’ (4), o equivalently, o W7 (w) is called using a
quadratic window.
The expected value of the estimate (6.7) is
@) [ [f W' (o—a—P)|A" (B)PdBYSf (a)da

with AT the Fourier transform of the boxcar of length T introduced above. This expression has the
same farm as (6.6), indeed as Carter and Nuttall (1980) and Van Schooneveld and Frijling (1981)
remark ane can derive a quadratic window such that the corresponding estimate has the same
expected value as any tapered estimate. The variances of the two estimates, however, are doften but
not always quite different, as are the susceptibilities to roundoff (during the usual calculations).
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Ancther difference is that the indirect estimate, via the quadratic window, can take on negative
values.

63. VARIANCE CONSIDERATIONS

Comparative discussion of spectral estimates canmot be carried ocut in terms of expected values
alone. The techniques of tapering and prewhitening have been advanced as means of manipulating
the bias of spectrum estimates. Of course, if their use makes the estimates less stable ane can end
up with a poarer estimate. It is crucial to also discuss the variance of a spectrum estimate and to
provide an estimate cf that variance.

All spectrum estimates we have considered are quadratic functions of the data and so can be
represented as

‘Eq’(t.u)x(t)x(u)-

whose expected value is
J 07 (20)f (a)da

where
Qr(a’B) 32 q’(t;a)e‘(""” .

In the case that the series X is Gaussian its variance is
2§ [ 12" (aB) [/ (a)f (B)da dB. (6.8)

See for example Anderson (1971), p. 445. (In many non-Gaussian cases this will provide a clcse
approximation as well.) Expression (6.8) may be employed to derive explicit expressions for the
variances of the various spectrum estimates. One general characteristic that expression (6.8) makes
clear is that the variance of an estimate depends an the whole course of the population spectrum
f(w). In cases where a spectrum falls off rapidly, substantial leakage into the low-power region
may be expected to come fran cther frequendes. Tapering and prefiltering will be required to
reduce the effects of this leakage.

7. COMPLEX-DEMODULATION AND SINGLE SIDE BAND TRANSMISSION

The basic ideas here are: narrow-band filtering to allow certain frequency dependent features to
stand cut mare clearly, and frequency translation to slow down (ar, possibly speed up) cscillating
phenomena.
7a. MULTIPLICATION AND SMOOTHING

Cansider a signal X (¢) = cos(f¢ +y). One has the trigonametric identities

2X (¢ )cos(a) = cos([B—w]t +y) + cos([B+uw]¢ +)
2X (¢)sin(ar) = = sin([B-w]t +y) + sin([B+w]t +y)

In each case, far w near B the first term an the right-hand side is slowly varying, while the second
cscillates mare rapidly. When these functions are smocthed in time, the initial appraximation is
that the first terms will be unaltered and the second eliminated, in each case for  near B.

The results of forming X (¢)cos ¢, and X (t)sin o¢ and then smoothing separately are the real
and imaginary parts of the complex demodulate of the series X at frequency w. The procedure may
be seen as ane of shifting the component of frequency B, in the series X where 8 is near w, down to
frequency B — w. Low-pass filtering now allows ane to look effectively at a restricted range of
frequency around w. Further, if the phenomenon under study is evalving in time, study of complex
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demaodulates may allow the detection of that evolution. The spectrum looks merely at the average
behaviar across the time period of study.

On many occasions it is convenient to display the running amplitude and phase, rather than the
rectangular coordinates, of the demodulate. Displaying the instantancous frequency also often
proves useful.

Camplex demodulation leads directly to spectrum estimates. The time average of the square of
the running amplitude is proportional to the power spectrum at frequency w.
7b. REMODULATION

Let U(t), V(¢) dencte the series resulting from smocthing the X (¢)cos wr, X(f)sin wr
respectively, where w is the angular frequency used in the complex demodulation. The series

U(t)cos ot — V(t)sin o
U(t)sin ot + V(t)cos ar

tend to fluctuate with frequency w. The (composed) transfarmations from X to these series provided
the smoocthing is by exactly equivalent linear filters, are themselves linear filters. The first farmmula
correspands to narrow band-pass filtering the series near frequency w, the second to a comhination
o narrow band-pass filtering and Hilbert transfarming.

7c. SSB

Ifmestartedwithaéexia)t(t)=ca(ﬂr+y),canpladmaiﬂatcdatﬁequuyw,mﬂ,md
then remodulated at frequency w, as the above discussion shows, ane would be led back to the
criginal series. Suppose however cne redemodulated at frequency wy, then one is led to
cos([B—A)¢ +y) where A = w —w. If «, is small campared to w, then what has happened is that
the frequency B has been pushed down by A.

This is the down-modulation version of SSB transmission which is now so popular in CB-radio,
(with SSB up-conversion in the transmitter and SSB down-conversion in the receiver).

One early reference is Weaver (1956).
7d. COMPLEX-DEMODULATION AS AN FT PRECURSOR

The appearance of fast Fourier transform programs (e.g. Digital Signal Processing Committee
(1979)) anowedadmaammdnothemumdetmd&equmcydunmmmm
when lengthy data stretches were available. For example the power spectrum could be estimated by
i) forming the FT, d7 (w), ii) forming the periodogram |d7 (w) [?, iii) smoothing the periocdogram.
('Ibaas-spectmm(seeSecthc) of two series X and ¥ could be estimated by i) farming the
FT's df(w), df(w), ii) forming the cross-periodogram df(w)df(—w), iii) smocthing the crcss-
pericdogram.)

The first direct approaches (earlier than the FFT) to become computationally effective used
complex demodulation. The power spectrum at frequency w was estimated by smoothing
U(t)? +V(t)? where U(t), V(¢) were the demodulates at frequency w. (The cross-spectrum was
estimated by mhmg (Ux (t)'“Vx (‘))(Uy (f)-‘Vy (‘)) )

Camplex demodulation remains a powerful technique for spectral estimation in real time and for
the estimation of higher-order spectra of lengthy series. The demodulates may be computed by an
FFT when appropriate. (See Bingham et al (1967).) They may be sampled at a crude (time)
spacing if there are starage ar camputing limitations.

7e. AN EXAMPLE; FREE OSCILLATIONS

The response of many dynamical systems to an impulse is a linear combination of decaying
cosines,
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.il o xp{ B Flecs(yat+5) - (7.2)

The associated movements of the system are called its free cscillations. For many physical systems,
a;h&r&smwmjamﬂqmnudmalmtommh
cigenfrequencies v, and the associated quality factars Oy = v: /(28 ).

In the aftermath of the great Chilean earthquake of May 1960, many spectrum estimates were
computed from seisrograms, and eigenfrequencies estimated by the locations of peaks in those
spectra (see Tukey (1966).)

Because of the time varying character of the signal (7.1), however, complex demodulation is a
substantially mare useful technique for this situation. Bdlt and Brillinger (1979) present the results
of demodulating a Chilean recard for a number of frequencies. The logarittm of the running
amplitude is seen to fall-off in a linear fashion confirming the appropriateness of expression (7.1). It
is further seen that the decay rate B, depends on the frequency v, in a direct fashion.

7f. AN EXAMPLE; EDGE WAVES

Edgewamare(watc)wavumovmgsdmystotbesluemﬂmthanrol]mganotbsbm
They are usually caused by the superpasition of incident and reflected wave trains. Their farmation
uamnlmpmm,mdeedtfthe&equmcydthemhtwavemy,mdcminmsm
favarable to the formation of edge waves, then the edge waves will have frequency /2, (a
subharmonic).

Lin (1981) makes extensive use of complex demodulation to study the growth and decay of edge
waves generated in a wave tank. He fits thearetical models to the growth and decay rates under
various experimental conditions. The edge waves are allowed to reach a stationary state. Their
frequency in this state is estimated by camplex demodulation, then that frequency is used for
demodulation of the records in the growth and decay periads (corresponding to the turning on and
turning off of the wave generator, respectively). The running amplitude of the resulting complex
demodulate provides the growth and decay rates of interest.

Lin finds that the reflection coefficient of the beach is a crucial parameter in the situation. He
discovers that it is the (amplitude of the) reflected wave that excites the edge wave and drives its
growth. By putting demodulates of the edge wave and reflected wave side by side he is able to see
the nonlinear transfer of energy from the latter to the former.

Camplex demodulation provided an appropriate tool here, because the phenomenon under study
was limited to narrow bands (albeit essentially nonlinear) and changing with time (for the studies
carried out). Through complex demodulation, experimental verification of a thearetical mechanism
was provided, and the effects of departures from assumptions were determined.

C. VECTOR SPECTRA
8. VECTOR CASES

Once we have two ar more simultaneous series, ar, if you prefer, a vectoar valued series, we can
do more than comsider the spectra of the individual series, which described how self-energy is
distributed over frequency. We can also consider how the energy shared between two series is
distributed over frequency. Since sharing can be in phase, ar in quadrature, or as a combination of
these, the resulting crass-spectrum has to be complex-valued. Sometimes we want to consider its
values in polar coordinates (magnitude and phase); sametimes in rectangular coardinates
(cospectrum and quadspectrum).

Just as, in non-time-series statistics, least-squares regression (based on covariances as well as
variances) is a more powerful and searching tod than variance components, so too crass-spectra help
us unlock many doars that spectra alone do not - and cannot.
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8a. COSPECTRA

Tables of quarter-squares were once widely available to allow muitiplication via the quarter-
square identity

uv = —- (u+v)? ——(u-v)z

This expression can serve to define and interpret the covariance of two random variables. We can
deﬁm,sinﬁlaﬂy,thewspecmm,dthrfaamcfumsﬁmatefranarealizaﬁm,by

cospec(x, x;) = SP“(:: +x;) - - spec(x,—=,)
Nctice that this implies
cospec(x,,~x;) = = cospec(x, x,)
so that negative values, alongside positive anes, are common.

One analog of least-square fitting of y in terms of x would be to pass X through a linear time-
invariant filter with transfer function B(w) and then try to minimize the spectrum of

Y -B[X]

If we restrict the filter to be time-symmetric around zero, thus zero-phase, and with B(w) real-
valued the spectrum of this difference is, with an cbvicus notation for the spectra and cross-spectrum
Srr(0) = 2B(w)fzr (@) +B*(w)fzx (w)
where under our restrictions, fry is real, thus reducing to the cospectrum. This is minimized when
= 2fxy (w) +2B(w)fxx(w) =0

that is, when
Srr(w)

xz (w)
in complete analogy to the covariance/ variance expression for an ardinary least-squares regression
coefficient.

In meteardogy for example, the cospectrum of vertical and horizontal wind velccities gives the
frequency analysis of the Reyndds stresses, which mediate the vertical transfer of harizontal
momentum, etc. (One early reference is Panofsky (1967)).
8b. QUADSPECTRA

When a Hilbert transform, H , is sufficiently clcsely realizable, then

cospec(H ([X],Y) = = cospec(X H[Y]) = quadspec(X Y)
(The Hilbert transfarm is the filter with transfer function —f sgn w, see Brillinger (1981), p. 32.) We
discuss the calculation of quadspectra below as part of the calculation of cress-spectrum, where
cross-spectrum = cospectrum + i quadspectrum.
8c. CROSS-SPECTRA
We have already discussed estimating a spectrum by averaging values

ldF () P = df () df ()
of the pericdogram of the tapered series Y(t) =h(s)X(¢). If now Y,(t) =h(t)X,(t) and

B(w) =700y
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Y,(t) h(t)x,(t) are the tapered forms of two simultaneous series, with Fourier transforms
df,(w) and df, (w) respectively, we can form the correspanding cross-periodogram

; (m) dn, (m)

which is complex-valued, and then average (locally in w) to estimate a cross-spectrum.
8d. REGRESSION COEFFICIENTS
If wereturnto Y — B[X] and give up constraining B, we find that the spectrum of this residual
series is minimized when
cross spectrumy y () I (w)
spectrumy ¢ () Sxx(w)

Thus the minimizing transfer function, or Wiener filter, which we might have expected to play the

role of an array of complex-valued regression coefficients, not anly does just that, but is defined in

strict analogy to the usual (non-time-series) definition of regression coefficients.
Three things are impartant to remember:

e each statistical concept definable by first and second maments in a non-time-series situation has
an analog definable by means, spectra, and cross-spectra.

o if the scalar concept is non-negative, (variance, multiple correlation), the time-series concept is a
(non-negative) real-valued function of frequency (individual spectra, coherences, etc.)

o if the scalar concept can have either sign, (almost everything else) the time-series concept is a

complex-valued function of frequency.
The entire armamentarium of low-moment statistics has its analogs, all functions of frequency,

nearly all complex valued.
8e. COHERENCE: DEFINITIONS AND ADJUSTMENT
If we ask what fraction of spectrum (Y) remains when spectrum (Y —B[X]) is minimized, or

what fraction of spectrum (X) mnmmwhznspecu'um(x-C[Y]) is minimized, the answer is a
further function of frequency, 1 - the coherence, where the coherence is given by

() = SO opoctrumy ¢ (w)ross-spectrumyy (w) _ |z (@)
spectrumy y (w)spectrumyy (w) Sxx (W0)fry(w)

(This is the analog of 1 — R2, where R is the multiple carrelation coeffidient squared as used in
multiple regression studies.)

If we try to fit y with an x irrelevant to it, we expect minimized var(y —bx) to be smaller than
var y. Similarly, if we estimate the cross-spectra and the two spectra by averaging the crcss-
periocdogram and the periodograms, all in the same way, ane carrespanding to simple averages of m
terms each, we will find some estimated coherence, even when X is whdly independent of to Y.
One simple adjustment

B(w) =

adjmedcdmmadmmce-%
where the bandwidth of the spectrum and cross-spectrum estimates deserves m degrees of freedom,
does fairly well in avaiding trouble fram this source. No plat of raw ccherence should ever be made
withaut including the horizantal line at "coherence = 2/m "

The relation .
coherency - coherency = coherence
applies when we define a complex-valued quantity
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cross-spectrumyy (w)
(spectrumgy (w) spectrumyy (w))*

that is essentially a normalized cross-spectrum. Early on, confusion between coherence and
coherency was great; some still remains. Beware of remaining confusions. We folow Wiener
(1930) in cur use of the terms,

8f. SPIRALLING
If Y differs from X by delay ar advance by a time-interval 7, the
a. the Fourier transforms differ by e*/™,
b. the spectra are the same, and

c. the cross-spectrum is /™ times ane spectrum and e~™ times the other.
As a consequence, (thearetical) coherency is e*/™ but if r is large enough, the ¢*!™ factar rotates
so fast that averaging over w, necessary far decently-variable estimates of spectra and cross-spectra,
may return 0 ar near 0 for the crass-spectrum.

The essential difficulty is in the crass-spectrum, where anything resembling

id{(oa) idf(oa) + id{(wz) id:’r'(wz) + o0+ (df(we) )dF(we)

™4™y o 4™

* coherencyyy (@) =

has a factar

whose absolute value is less than or equal tom =+ m, with frequent zerces, when 7 is large.

It is casy far the clements of the crass-periodogram to spiral, and if they do, simple averaging
does not produce usable cross-spectra. This problem requires constant vigilance, especially since it
can be impaortant in some frequency ranges and absent in others.

Techniques, based on using phases from moving averages of the cross-periodogram to bring
individual values of the cross-periodogram close to zero phase, averaging results, and reinserting the
phase have been proposed by Cleveland and Parzen (1975, see their Appendix B and Section 4).
This scheme should wark for all but the most extreme spiralling problems, where fitting of rough
phase dependence may be a needed precursor of the use of this technique. For other approaches see
that paper and its references. Some autamatic scheme to contral spiralling should be routinely used.

8g. MULTIPLE REGRESSION
fy,Xx,,X,, ..., X, are simultaneous time series, we can try to minimize the spectrum of
Y =By[X,] =By[X3] = - -+ =Bi[X,]

Whmwhweﬁmdcmamﬂspx&afdadldwm]ﬁeq\mbmds,weget
essentially the same equatians, ane set for each frequency band, as we would have for multiple

(non-time series) regression of y an x;,x32,°° *,x;. The power spectra and crcss-spectra replace
the variances and covariances of that case.

The anly important changes are that:
a. the cross-spectra are complex-valued
b. the B,(w) we are to sdve for are also complex-valued.
8h. AN EXAMPLE: POLARIZED LIGHT

The classical analysis of polarized light - into vertically pdarized, horizontally pdarized, and
unpalarized components -~ correspands in XY -coordinates at 45° to the horizontal and vertical, to
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dividing
spectrumy (w) spectrumy (w)
into
cospectrumyy (w)
quadspectrum?y ()

for the linearly pdarized companents and
spectrumy (w) spectrumy (w) — cospectrumyy (w) = quadspectrumyy (w)
for the unpalarized compaonents. (A comman scale factor is often natural.)

With X, Y horizontal and vertical, the same expressions carrespond to right and left circularly
pdmzedhghtfatheﬁrsttwoandmmolmzedhghtfathethrd. Wiener (1930) discusses
coherency and polarized light in some detail.

8i. AN EXAMPLE:TOWER METEOROLOGY

Panofsky and McCarmick (1954) discovered wind eddies rdling along the ground by carrying
out cross-spectral analyses of harizontal and vertical components of wind velccity at a paint on an
observation tower. They found that at the proper height an the tower, the quadspectrum had ane
sign in the morning and the cther in the afternom.

Their explanation of what was happening was that eddies increase in size as the day progresses.
If the measurement paint were in the upper half of a rolling eddy in the morning and the lower half
in the afternoon, then the dbserved switch in sign would occur.

D. OTHER EXTENSIONS OF SCOPE

9. CEPSTRA:THE AIMS

Repetition in time occurs for a variety of reasoms, but mainly in cne of two ways: (i) single
repetitions, as in an echo, and (ii) quasi-equispaced repetitions, as in human speech which is driven
by the repeated opening and closing of the vocal chords. Echo detection and identification has a
variety of applications in geophysics. Pitch-detection, the identification of the time spacing between
repetitions of vocal-chard behavior, is of considerable commumication importance. (For the latter
application see Rabiner and Schafer (1978), and Schafer (1979).)

To detect echoes and repetition rates effectively, we need to focus the information about them
that we have in cur data. This is not focusing an a frequency band - a great variety of frequencies
may participate in an echo. (We may have, however, in mare difficult cases, to be prepared for
differences in the strength, the phase shift, and even the time delay with which an echo appears at
different frequencies.) It is not focusing in time, unless the criginal signal is itself narrowly focused
in time, when the problem may be simple - usually, however, the criginal signal extends over
considerable time and overlaps its echo very substantially. (Time dependence of echo behavior is
much less common -~ radar and sonar doppler effects aside - than frequency dependence.)

Echo identification is different fram the problems we have so far dealt with, and requires a new
approach. Because frequency dependence may matter, it is natural to begin by going to the
frequency side, as we shall shartly do.

Like the other extensions of simple spectrum analysis (vectar spectra, whether applied to
ardinary or paint processes), cepstra - when their use is appropriate - are much mare effective than
simple spectrum analysis.
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The criginal reference is Bogert, Healy and Tukey (1963); a recent review can be found in
Childers et al. (1977). See also Bogert and Ossana (1966).

9a. THE CALCULATIONS

If X (¢) has a reasonably simply behaved spectrum fzx (w) - a condition met by dilute impulses,
by moderately colared Gaussian noise, and by many intermediate processes — the result of echoing it
with a real echo is to convolve the signal with a function having two spikes, and hence to muitiply
its spectrum by the mod-square of the Fourier transform of the two-spike function. This last is of
the form

a +b coswr

where 7 is the time delay, and b/a the strength of the echo.
The data’s spectrum is of the fam

(reasonably smocth function of w) - (a +b coswr)

so the natural next steps in isolating t are

a. taking logs

b. looking for the ripple in log(a +b coswr)

If b/a is large, finding the ripple (possibly somewhat concealed by "rahmonics”, see below) should
be easy. If b/a is small, then

lcg(a-i-bm)sloga+%axm--;-(£—)’em’m-%-(%)’ax’m
1.b b 1.,b 1,5 1 /b
=log a -7(-;)24'{:—7(: ’}cosm +-I(:)’cm2m—ﬁ(:)’ca3m+
so that cos wr is the dominant term of the ripple. (cos 2wrcos 3wr, etc. are rahmonics).

We know how to find ripples in a series, we just have to look at its spectrum! In the present
case, the series is a frequency-series (not a time-series) and its values are logs of estimated spectra
(for moderately narrow intervals), but we should still look at its spectrum. It is convenient to
maintain the frequency-time distinction, however, by saying "cepstrum” instead of "Spectrum”
however.

So the natural pattemn is ane of

a). calculating a fine-grained spectrum (but usually not an unsmocthed periodogram),

b). taking logs

c). dften, getting rid of mammoth slow changes in the result by "liftering” (the analog of
"filtering")

d. ating the cepstrum fram the result, just as we would calculate a spectrum from a time

To get infarmation about the size and phase of echoes, we may do well, having found some
spedific 7, to fit

a + b coswr + ¢ sinwr
cither alone ar in combination with cther terms, to cur filtered log spectrum.

If echaing is frequency dependent, we may need to divide cur final calculation step, (d) above,
into separate calculations for different frequency regions.
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9b. OTHER QUESTIONS, OTHER STATISTICS, OTHER APPROACHES

The approach in the last subsection is that of the initial paper (Bogert et al. 1963) and is
focused an determining the time delay (of a single echo, ar between successive repetitions). That
paper also demonstrated the usefulness - better here, warse there - of the pseudo-autocorrelation,
(which differs from the cepstrum in undaing the logarithm befare the final Fourier transfarm.)

Whm;imsmimpamt,itisnatuml,ﬁanmd:mapprmd:,wﬁndmeﬁmecﬂayc
delays (quefrency ar quefrencies) fram either cepstrum or pseudo-autocorrelation and then to fit a
general cosinusaid of the indicated quefrency

a cos(wro+d)

to the (possibly liftered) log spectrum, when the fitted ¢ estimates the phase of the echo.

Just as cross-spectrum analysis has proved more effective than ane-series-at-a-time spectrum
analysis in making peaks clearly detectable (e.g. in unpuhlished work an monetary series by Milton
Friedman and ane of the authors), it is to be expected that cross-cepstrum analysis, in which we
combine FT's of logs of spectra of two series (mmltiplying cne by the complex conjugate of the
cther, rather than taking the squared absdlute values of cither) may well be effective in making time
delays (quefrencies) common to both series clearly detectable. The necessary empirical evidence
may not, however, be yet available.

Fortunately the whole area of desired answers, techniques, and approaches have been reviewed
by Childers et al. (1977), who emphasize diversity in all three. This paper has 86 references of use
to the interested researcher. It further stresses the relation between cepstrum analysis and the
whole area of deconvdlution.

9c. APPLICATIONS

Childers et al. (1977) stress three areas of application for this class of techniques: speech,
the first useful automatic pitch detection of human speech came from such techniques: seismic
measurements, and hydroacoustic measurements, where, in particular, Mitchell and Bedford (1975)
repart measuring depths of distant (250 to 700 nautical miles) explcsions in the ocean to standard
deviations of < 2%df the actual depth.

Other interesting examples can be found in the references given by Childers et al. (1977). We
content curselves here with very brief mentions of a few applications in other areas, some of which
raise questions ar propose generalizations.

Miles (1975) and Syed et al. (1980), among others, repart the use of cepstral techniques to
carrect for ground reflection in narrow-band sound spectra measurement cutdoors.

Pearson et al. (1978) discuss the use of cepstral analysis in connection with ESR (Electron Spin
Resonance) analysis of substituted triarylaminium cation radicals. They believe that, while "the
cepstrum does not provide mare infarmation than the ESR spectrum fram which it is derived”, it "is
a useful aid in the analysis of” their ESR spectra.

Roemer and Chen (1980), applying cepstrum technique to cable damage studies, offer evidence
(which is hard to evaluate in the absence of infarmation about the adequacy of tapering in their
FFT methad) that maximum-entropy spectrum analysis is helpful at the last stage of cepstrum
analysis. Clearly a combination of empirical fine-tuning and thearetical insight is needed to clarify
this question. Rather substantial effart is likely to be necessary, but may well be rewarding.

Ram (1975) discusses the 2-dimensional cepstrum briefly, and suggests its utility with respect to
image-blurring problems (reparting success by another in this connection). Image improvement is
difficult enough far this suggestion to be both encouraging and daunting.
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10. HIGHER-ORDER SPECTRA

Power spectra and crass-spectra, being based an second-order statistics (and thus naturally called
"second-arder spectra”) can only be expected to reveal so much about the situation. It is known that
Gaussian processes are characterized completely by their first and second-order moments, but that is
a very particular situation. The introduction of higher-arder spectra follows naturally from either a
desire to analyze higher-arder moments (often as cumulants) of a process ar a need to handle the
effects of nonlinear gperations an the process.
10a. THE GENERAL PROBLEM

The power spectrum, f (w), provides the representation

cov{X(t+u) X (1)} = [ e f(w)dw

u =0, = 1,.. of the covariance function of the stationary time series X. The bispectrum, a third-
arder spectrum, f (w,v), provides the representation

cum{X (t+u) X )X (O} = f [ ¢ (wp)dudv (10.1)

of the third-arder cumulant (ar central moment) of the process. The cumulant spectrum of arder k,
S (an, . ..,0x ), provides the representation

cum {X (¢ +11) . X (¢ +1g 1) X (2)} (102)

31' .o .! Gp{i(lﬂ(q + o +ll§-1(l§-1)lf("’lc oo '“-I)d"’l coodayq . (10.2)

The joint cumulant, cum{X,, ... ,X;}, of a group of random variables provides a measure of
that part of their joint statistical dependence which is not exhibited by the joint behavior of any
k =1 of them. It is a polynomial in the individual dementary maments (averages of momamials)
that is homogeneous of degree k£ an the underlying X,. It is the simplest function of the elementary
moments that vanishes if any subgraup of the random variables is statistically independent of the
remaining members of the group. The cummlant spectrum of arder k, provides a (k —1) frequency
breakdown of how collections {X (t,), . . . ,X(#)} of k values of the process co-vary in a way not
aﬁhtdbyﬁnbd:mcdanyk-ldﬂun. It has the further characteristic of measuring an
impaortant aspect of how near to, ar far from, nearly Gaussian the group behaves, since, for Gaussian
variates, all cumulants of arder greater than 2 vanish.

Applying a nonlinear operation to a series with anly second-order dependencies leads to
dependencies of arder higher than 2. Suppose one has the series

X (2) = ajcon(Byt +dy) + azcos(By? +dy)
with @y, @z, By, B constants. If & and ¢, are independent and distributed uniformly on (—m,m) then

X will be stationary, have zero mean and have spectral mass at - and only at - the frequencies 8,
and B;. Suppcse that the new series

Y(1) =X(t) +9X (1) (10.3)

is faomed. Y(¢t) will contain the cosinusoid terms of X. It will further include terms in

wG(ZBIt +24,), cos([Br =]t + di—dn), cos([By+B:)t + r+d), G'S(ZB;H'%) Natice that certain
third-arder moments (also cumulants) of such companents, such

ave {con(B,¢ -+ )cos(B;¢ -+ )cos([B, +&]t + d+d)}
will not vanish, because of the way in which ¢y and ¢ appear. Thus a (double) Fourier analysis of
cum{Y (t+u), Y (¢ +v), Y (2)}
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will provide an indication that a nonlinearity, such as (10.3), may have occurred.

Spectra of arder k, involving cumulants of arder k, are particularly pertinent to nonlinearities

that are pdynomial of arder k —1. But, just as spectra (of arder 2) are very helpful in dealing with
nm-Gmsmpmmthmenotgmeatedhmaﬂy,spemadcdsk can be helpful in
dealmgmththcmeqmed«hchndsdmnhmmﬂa polynomial anes.

Hhm&m&m&mmsm-mmmmmam&mm-
for joint cumulant functions. For example the cross-bispectrum, fxyz (w)), satisfies

cum{X (t+u)Y (t+v)Z (1)}

=f [ "z (0)dudv

10b. BISPECTRA (INCLUDING CALCULATION)

The simplest higher-arder (cumulant) spectrum is the bispectrum. It is concerned with the
dependence among triples of frequencies A,y summing to zero. Suppose the stationary series X has
the spectral representation

X(t) = f e**dZ ()

for Z a stochastic measure. (See for example Brillinger (1981).) Then the representation (10.1)
indicates that

cum {dZ (w)AZ (W 4Z (v)}

= Yurtviy)f (w, dudrdy

with &) the Dirac delta function. (For wyy all # 0, the cumulant here may be replaced by ave.)
This result suggests how ane might form an estimate of the bispectrum and a further interpretation
for it.

The series exp{it \][dZ (\) may be viewed as the result of narrow bandpass filtering the series X
at frequency w This fact suggests a means of estimating the bispectrum (perhaps the first
estimation technique to be employed histarically, see Hasselman er al. (1963)). One narrow-band
pasﬂtusthesaiuatvman&eqmau,dtmgacnﬂsﬁmdmax(:p) Then one
averages in time the triple products X(t,a)x(t,v)x(t;y) and X(tm)X (¢, )X (¢,;y) with
o +v+y =0, where X7 denctes the Hilbert transfarm of the series X. Here a negative value of
refers to filtering at |w|, since real filters treat +w and —w alike. The sign of the Hilbert transfarm
must be reversed far w < 0. (If the time average is not to estimate zero, the three narrow-band
series must be behaving in a coherent fashion) The results are estimates of the real and imaginary
parts of the bispectrum respectively. It is clear that the bispectrum may be estimated equivalently
by time averaging triple products of complex-demodulates.

A substantially different means of estimating the bispectrum is to meaibyavexagmgathrd
arder periodogram. The third arder periodogram of the stretch X (¢)# =0,...,T —1 is defined as

I (ww) = (2m)~T ~1d7 (w)d” (VdT (wtv)
(In the case that the series X does not have zero mean, it is better that the sample mean - ar some
mare detailed trend - be subtracted prior to computing d7.) The expected value of this third order
periodogram is given by
ave I™ (w)

= (29771 f [ AT (0)AT (B)AT (a+B) S (w—ay—P)da dB
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and will be near S(wy) for T large and § smocth near (wy). Further, periodogram values

evaluated at different frequencies are asymptotically independent of each other. This suggests
forming the estimate

r e wrle 2@ __2m|,r|2wp 2m
ST (wy) ’E‘Wu T 'V T]I[T’T

where the weights W7 sum to 1 and are such that the estimate ST has the periodicity and
symmetry properties of s.

Alternately ane might proceed by noting that periodogram values, say I7 (wp5€), € =1,..L
basedm&mmac!udmaueuymptouanymm 'Ihsrematkleadstothe
estimate

S7(aw) = £ I" (@)L
It will have the necessary symmetry and periodicity properties directly.
10c. AN EXAMPLE: EQUIPMENT VIBRATION NOISE
The bispectrum is useful in monitaring mechanical drives. When the teeth of two cogwheels are
intermeshing cleanly, a plausible model for part of the naise signal generated is
X () = acos (Bt +y) +8cos (2f¢ +e)

+ dcos (3fr+y) + ...

with B corresponding to the speed with which the driving wheel is turning and all parameters
constant. If a running estimate of the bispectrum f (B8,8) is computed, the estimate may be expected
to fluctuate about the level

o?le!@19T %/ (27)?
with T the length of the time stretch over which an individual estimate is computed.

As the cogs wear irregularly, the phase angles y4 may be expected to became random and the
bispectrum to become 0. That this indeed happens was shown in Sato et al. (1977).

A power spectrum (of arder 2) is unable to be used as a diagnostic tool here, because the
amount of power present at frequency f remains reasonably constant as time passes an. The power
spectrum does not provide infarmation an the phase angles of the frequency compaonents of a time
series.

10d. HIGHER ANALOGS

The cumulant spectrum of arder k is given by expression (102). It may be estimated in several
fashions. For example, its real part may be estimated by averaging the product
X(tM)-X(t )
in time, where X (¢ \) is X narrow-band filtered near frequency A, and My + ... + N =0, (but no

proper subset of the \’s sums to 0). The imaginary part may be estimated by including a Hilbert
transfarm.

Alternatively it may be estimated by averaging the k-th arder periodogram in either time or
frequency. This periodogram is defined as
I (e 1) = (20) 71T 71T (0) .47 (N)

where =\, =) + ... + \ ;. Details are given in Brillinger and Rosenblatt (1967).
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In the case of a vector-valued (multi-component) series, the Fourier values d7 may be based an
different components, depending an the question of interest, thus providing estimates of cross-
palyspectra.

11. POINT PROCESSES, ETC.

Auodnmcpampmuamndunmutywhmehypoth&calmhnnmsaredmbly infinite
sequences {,}/.-e of paints along the line with 7, < 7,,;. (Actual realizatims involve finite

sequences.) Examples include: i) the times of earthquakes within a given region, ii) the times at
which a neuron fires, iii) the times at which births occur in same population of interest, iv) the times

at which customers arrive at a service facility and v) the times of lightning flashes in a thunder
storm. It is convenient to set N (t) = the mumber of 7, in the interval [04), then N (¢) is a step
function increasing by 1 whenever an event occurs. One has the symbdlic representation

L) -3 aey)
J

with &) the Dirac delta function, showing that a paint process may be considered a generalized
time series.

Amarkedpdmprmisamdanmﬁtywhmehypahdalrealm' tions are doubly infinite
sequences {(1, M,)}/-— of pairs (1, M) thh{f,},... a point process and with M; a mark or
value attached to the j-th paint. It may take an discrete, contimucus or symbadlic values. Examples
include: i) times and magnitudes of earthquakes, ii) arrival times and waiting times experienced by
individuals in a queue, iii) birth times and number barn (twins, triplets, etc.) and iv) locations of
extrema of a random function X (¢) and asscciated extreme values. It is sametimes convenient to
employ the symbdlic representation

? M ¥t-)

furamarkadpdntm

?“ﬂ("ﬁ) +dt)

with «-) a naise series and a(-) a fixed (response) function. Physical examples include: shot noise,
river run-off (with 7, thenmedammtam,u, them’smanda()cbpmdngmthcms

gecgraphy and location of the measuring gauge), and impulse naise interference, as lengthened by
receiver characteristics.

As was the case with ordinary time series, situations involving paint and marked paint processes
may be stationary and may involve linear time invariant operations. One is led to problems of
spectrum estimation and system identification.
lla. THE SPECTRUM

For a stretch (N (¢), 0ss¢ <T) of paint process data ane may compute the Fourier transform

dw= 3 eap(-iwry}

Osv<T

for a frequency w. The power spectrum of the process may now be defined as
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S() = Jim oy @M @F , w0

and by continuity at o =0. Were the realization {r;} periodic wnthpmod-r, 0 74 =17, +7, then
S (w) would have infinite peaks at frequencies 27k /7,k = +£1,£2....
In the stationary case ane often has, (using differential notation),
cov{dN (¢ +u) AN (¢)} = [p¥u)+g (u)]du dt

with &-) the Dirac delta function, and ane can set

f@) =5 J €= covldV (e-+u) AN () du

= -,‘% + f e q(u)du . (11.1)

Here p is the rate, (Prob{dN (t)=1}/dt) of the process and q(x) + p* has the interpretation
Prob{dN (t+u)=1 and dN (¢)=1}/dt/du for u# 0.

If ane passes the process N through a linear filter with transfer function A to obtain a series X,

then the power spectrum of X is given by IA(w)Ff(m),thesammlauushpasazlmfc
ardinary time series. _

Intlnmarkdasememaymeﬂn&ﬁnum

Jim ﬁm[}‘.u,ap{-vzm,}l’ , 0% 0 (112)

for the power at frequency w.
11b. CROSS-SPECTRA AND COHERENCE

In the case that cne has paint processes M and N, i, {0;}—e and {7, }; ., cne may define
their cross-spectrum as

fou (@) = lim 52— ave(T expi—iwm )@ explien)) , w* 0

where the sums are over j with 00y <7 and & thh057,<1' When M and N are
statistically independent, f,,.(o)-o If N is a lagged version of M, 7, =g +1,
Suu () = exp{—i wr)S,u (w). This last suggests an estimation procedure for such a .

The crass-spectrum may also be defined as follows: suppose M and N have rates py, py
respectively. Suppase, further,
Prob{N paintin (t+us+u+a) and M pantin (¢t +b)} = pyuy (u)ad

for small g, 5. Then ane could set
S (@) = 5= f (s (0) P pu Jexpl -4}

These last two expressions suggest that fy, (w) is measuring the association of the processes M and
N at frequency w.
A standardized measure of association is provided by the coherence

R(w)f = [fwar (@) P fuw (0)f aene () .
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This satisfies 0 < IR(m)FslmthOmtlncasedstamucalmdepcndemeandlmtbemsed
linear time invariant dependence.

llc. AN EXAMPLE: ARE EARTHQUAKES PERIODIC?

Kawasumi (1970) suggested that large earthquakes in the Kamalura region of Japan displayed
a period of 69 years. The dates of 33 events fram 818 AD to the present are known. Vere-Jones
and QOzaki (1982) present the periodogram

I (@) = 5o 7 @

of this data. It displays a sharp peak at w =091 radians/year corresponding to a period of 69
years. However, the periodogram is subject to substantial statistical instability. Vere-Janes and
Ozaki develop a farmal test of significance for the presence of a periadic effect. Because of the
substantial clustering of the data, sampling uncertainty turns cut to be large and the cyclic effect
turns cut not to be significant.

11d. AN EXAMPLE: PARTIAL COHERENCES OF NEURON PROCESSES

Nerve cell spike trains are conveniently dealt with by the techniques of paint processes. Various
are described in Brillinger, Bryant and Segundo (1976). One of these concerns three
neurons L2, L3 and L10 of the seahare (Aplysia californica). The three neurons were clearly
related (substantial coherences between all pairs of cutput spike trains.) It was known that L 10 was
the driving neuron, however it was not known if the neurons were in series L10- L3~ L2, ox
L10- L2 - L3 o if L3 and L2 had no direct connection, but L10 - L3 and L10 - L2 anly.

Pmalodamcemﬂy:unamefnﬂuﬂfagmd:mm Dencte the spike trains
by A, B, C respectively. The partial coherence between trains A and B, is defined to be the
m,w&eq\mm,bawmthem.d andBwnthtbhnutnm-mmamdfwtst

removed. It is given by the modulus-squared of the partial coberency
Rus =RucRcs
;(1 =RycRca)(1 =RucRea)
where, for convenience, dependence n @ has been suppressed. In the case cited, the partial

coherence of L3 and L2 with the effects of L10 removed was not significant and ane is able to
essentially infer that there is no direct connection from L2 to L3.

lle. HIGHER-ORDER SPECTRA
If anything, higher-order spectra may be expected to prove mare useful with paint process data
than with ardinary time series, for paint processes are far removed from Gaussianity.
mﬁspcmdmepdmpm{u};.. may be defined as
S(wy = lnn ave{dT (w)dT” (VdT ()},

e (2n )”I'

for , v# 0 and by contimity otherwise. From this definition it is apparent that f(wy) is

measuring the co-relationship of the components of frequencies w, and v with that of frequency
—w—vin the process (again the co-relatinship of three frequencies summing to zero).

Alternatively it may be defined via the Fourier transfarm of the product density
p(uy) = lnn Prob{paint in (¢t +u # +u +a) and in (¢ +v # +v+b) and in (2 # +c )} abe

Asmdxnnseenmrelmwﬂnmhmmwhchmplcdmfaummﬁedpmm

Suppase for example that the series X results from input of the paint process N to a linear time
invariant filter with transfer function A ,
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X(1) =I a(t—u)dN (u)

a() being the impulse response of the filter. Then one has
Sxxx(0p) =A(w)A (")A (w+v)fww (@) .

If for example is Pdsson o rate p, then fyyy(w) =p/(2%)* and so
frxx (@) =A (0)A (1:).47_}/(2«)z This bispectrum will generally be nonzero.

There are direct extensions of these ideas to spectra of arder £ and to vector-valued processes.
Extensions to marked point processes are also immediate as in expression (11.2).

12. HIGHER THAN UNIDIMENSIONAL ‘TIME”

These days many data sets involve functions of several variables, X (,,¢3,...,#/x ). One might have
a picture with ¢, and ¢, the length and width coordinates and X (7,4,) the intensity of light at the
location (1,,t;). One might have X (¢,,£3,¢) with ¢y, ¢, the coordinates of the location of leads on a
subject’s skull, ¢ time and X (¢,,;¢4) the EEG wdtage level recorded at time ¢ at location (7,45).
With the advent of array processors and clever optical processars (see Turpin (1981)) it turns cut
that one can deal with data of this sort quite effectively on many occasions.

Sanemwthnpmsemdaenrmmm These include: alternate forms of stationarity,

12a. FORMALISM

Suppcse the data X (t4,...%c), i =0,...,T: -1, k =1,..K is available. It is often meaningful to
form the Fourier transform
Tl Tr-1

AW =3 -+ 3 X(t1,sx)exp{=i(wnts+... 4 ux tr)}
t11=0 13=0

with @ = (a,....0x ). The amplitude of d7 is seen to be large for @ near (B8;,...5 ) when X (¢1,....0x )
contains components of the form a cos(f,#; + - - - + Bty +y). The transfarm itself is seen to be
equivalent to a repeated transform applied ance for each of the arguments of X .

The fdllowing limit, when it exists, may be defined to be the power spectrum at wave vectar e,

, m [,I'Il [ﬁ]]mld’(-)l*

ey Te-hrl
wr@p =g [E -3 x(m)x(t)]

x=0

One may write

with t =-(t,,. et )y 8 = (8y,.. ¢ ), () =Wy +.+ epug suggesting that this spectrum will be
appropriate when one has the stationarity condition: cxy (W) = cov{X (t+a), X (1)} =
cov{X (u), X (0)} for all t. (One reference is Priestley (1981), Chapter 9.)

In same circumstances, the covariance depends an [uf = uf +..+ u? alne, when the process is
said to be isotropic. The coardinates 1, mbemmlmscala,befuemtmpymmﬁyben

physically reasanable assumption.
For stationary birespanse data (X (t),Y (t)) one can define the cross-covariance function

cxr (W) = cov{X (t+a) Y (B)} , (12.1)
the crass-spectrum
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Sxr(w) =(2m)~* ? exp{—i (o) }czy (W) , (12.2)

and the coherence |R (@)[? = |fxy (@) [/fzx (@)fyr (). These provide measures of the degree of
linear time invariant relationship between the two data processes. In the case of (12.1), (12.2) ane
has the representation

oxr@ = J — [ cxpli(ue)}fzr (W)dordox (123)

The generic form of a linear time-invariant filter in multidimensional time has the farm
Y(®) =3 a(t-uX (v)
| ]

with a(-) the impulse respanse and
Adw) = 2.: a(u)exp{—i(wn)}

the transfer function. If the series X has power spectrum fry(e), then that of ¥ will be
|A (@) Pf xx (), reducing to the usual relationship in the case X = 1.

Suppcse that same of the "time" coardinates are fixed in a study of the bivariate series
(X(t),Y (t)). It is of interest to understand the relationship between the spectra of the full series
and those for such a time slice. The relationship is apparent from expression (12.3). The fixed
coardinates correspand to &, =0 in (123). In consequence the crass-spectrum of the reduced series
is seen to have the faom

[ o f for@do.dox

if ay,...,ay correspand to the time coordinates held fixed.
12b. SPATIAL PROBLEMS

The case of a spatial array X (x y), with x y indicating geographic coordinates, provides an
important, yet direct, extension of the umidimensional case. Standing (ar frozen) waves
a cos(fx +yy +8) provide the leading example of arrays demanding the Fourier approach. As this
leading example, consider X made up of a finite number of interfering standing (or frazen) waves

X(xy) =2°:°°!(B:x-my+5;) + naise

Wemmﬂymmdmemmtbmmbmﬂ,y of the individual waves and the
corresponding powers a?/2. The Fourier transform is a basic tool for doing this. Here the direct

tmmfcrmngmnbyay

T-1T-1

2 2 X (x y)exp{~i(\x )}

z=0

= E’ ; ay expf{i§ }JAT (\—8;)AT (k)

+ % 3 oy P-4 17 ()" (svy)

with AT (\) = 2 exp{—iN} as carlier. The amplitude of this transfarm will peak near the
vectars (B, ,y,) as desired. It is clear however that because of the rippling character of AT there
be leakage across A\ and u. As in the unidimensional case ane will need to taper, forming

a'é§



37 Spectrum Analysis ... Presence of Naise

example
d" () =3 AT (3 )X (x y )exp{—i (\x Ho)}

with A7 (x y) a smooth function vanishing everywhere cutside the domain of dbservation of the
array. One will want its Fourier transfarm

HT (M) =3 b7 (x y)exp{—i (Ax +wy)}
27

to be concentrated near (A1) = (0,0) and to die off rapidly as [\, || increase.

In the case that the array X is stationary with zero mean and power spectrum f (\,}) ane has,
for d7 above,

aveld” NP = f [ IHT (\—apu—B)Ff (aB)dadB

suggesting that cne might base an estimate on |d7 [2. It further suggests the essential need for
tapering in the case S (*) is not nearly constant.

Suppose next that the comtimious array X is isotropic, c(u,v) = cov{X (x +u y +v) X (x y)}
depending o u? +v? alone. The ising thing is that the power spectrum of X also depends on
2 + 2 alone. Specifically, if c(u v) = g(Vu2+?) then

Fw = El;{ Jo(r Vi3+2)g(r)dr

with J a Bessel function. The transfarmation here is a Hankel transformation. This result leads to
an improvement over the usual 2-dimensional case, in cur ahility to estimate such an isotropic power

spectrum. (See Brillinger (1970)).
12c. mxzp (SPATIAL-TEMPORAL) PROBLEMS

There are a variety of dynamic spatial problems, in which a process of concern may be
represented as X (x y #), where x y are spatial coordinates and ¢ is time. For example

a cos(Bx +yy +¢ +¢)

may be viewed as a wave moving in direction —y/p with velccity [3) VB +y?. The first two
coordinates, x .y , here have quite different character from the remaining ane, ¢. (In some situations
it may be reasanable to assume the process isotropic in x and y, but with ¢ and (x2+y?[* arbitrarily
involved together.)

If cne has but a single time slice, say ¢ =0, of the process, then the situation takes the form of
the previous section. Chdnothclnnd.mmysmanmewmhawmhlmgsmdsm
terms of the ¢ coordinate than for the x y coordinates. In terms of asymptotics it may prove
mblemmvmgethehrgstdxcvedt-vnlmtmngmw but this may not be sensible for x

(Cases with ¢ and a single x wheethuurelmlnvebenamdedby&ethctmm
McWiIhams(1980))

The Fourier transform that one might compute fram such a data set would be
d" (L) = T AT (5 y £)X (x5 #)exp{—i (Ax Hyy +ur)}

294

with A7 atapmngﬁm:mvmshngcﬂﬂnm:nddxm The power spectrum f (A, )
might be estimated by averaging |47 *. Real difficulties arise concerning the display of the resulting
estimate f7 (\ ) saﬁmmmd3vmalio.
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The spectrum of a single time slice, say X (x ;y 0) is given by
J FOww)do

i.e. if only a single slice is available, it should be remembered that the spectrum one has estimated is
a marginal (not a conditional) version of the complete power spectrum. Important detail in the full
spectrum may not be available in such a marginal spectrum.

12d. AN EXAMPLE: SWOP (STEREO WAVE OBSERVATION PROJECT)

At 1700 GMT an Octaober 25, 1954 sterecphoto techniques were employed to measure the state
of the seas in the Atlantic at about 39°N, 635°W. Basically, two pictures of the sea surface were
taken simultanecusly at known altitudes and distance apart. From these pictures the water heights
at selected paoints were measured. All tdd 5400 measurements were made, with x and y spacing of
30’ over a 2700’ by 1800’ rectangle. The data was carrected for trends by least squares fitting of a
plane. The autocovariance was estimated at each combination of 90 lags in the X -direction and 60
lags in the Y -direction. This was Fourier transfarmed and the transform smoothed by an extension
of the Hamming window. The estimated spectrum showed a main peak correspanding to the locally
generated sea and also a small peak corresponding to some swell.

By physical reasoning (that wave energy generated is driven off leeward) the authars (Cote et al
(1960)) were able to distinguish the direction corresponding to a peak fram its antipode (which
wauld have generated the same spectrum).
12e. AN EXAMPLE: MOVING EARTHQUAKE SOURCES

Bt et al (1982) present the results of spatial spectrum analyses of several nearby earthquakes
recarded by an array of 27 seismometers arranged an three concentric circles (and at their common
center). Spatial spectra are estimated for various time segments of the seismograms and several
(temporal) frequencies. Peaks, corresponding to the direction of the earthquake source and the
veladity of the waves are found in the spectra.

The location of the peak for ane of the events is found to shift with the time segment analyzed.
This shift may provide the first experimental measurement of how a seismic dislocation moves along
a rupturing fault.
12f. AN EXAMPLE: EVIDENCE FOR SCATTERING OF SEISMIC ENERGY

Spatial spectra have been used to provide strang evidence for backscattering of energy during the
passage of seismic waves. Aki and Chonet (1975) present an estimate of the spatial spectrum for
the initial group of shear waves (in the frequency band 1.0-2.0 Hertz) arriving after an explasion.
The data are the seismograms recorded at the Large Aperature Seismic Array (LASA) in Montana.
The estimate shows a substantial peak of energy in the direction of the blast, moving at an
appropriate velocity, and little else. Aki and Chonet next present an estimate of the spatial
spectrum of the later arriving shear waves (the coda.) This estimate shows energy arriving from all
directions with shear and surface wave velccities. Once again spectrum analysis of separate time
segments has displayed the presence of an impartant scientific phenomenon.

E. SYSTEM IDENTIFICATION
We discuss linear system identification in this part.
13. INPUTS AND OUTPUTS

On many occasions time series are subjected, naturally or artifically, to operations. These
operations may be physical ar computational. Often the result of the transformation is a time series
itself. In this case one speaks of the initial series as the input and the transfarmed series as the
cutput. The collection of {input, operation, output} is referred to as a system. The problem of
system identification is that of developing a useful description for the operation given stretches of



39 Spectrum Analysis ... Presence of Naise

input and correspanding output.
13a. ONE OF EACH,NO NOISE
In the simplest case a linear time-invariant system has a single input and a single unique qutput.
Examples include:
Y(t) =[X(+1) +X(t) +X(-1))/3

Y(¢) =X(¢+1) - X(¢)
Y(t) =3 ¢*X(t—u), with 0<p<1.
s=0

As mentioned in Section 3, such systems are typically characterized by a single function of
frequency, the transfer function. If the input series is X (t) = exp{iut}, then the

cutput series is ¥ (¢) = B(w) exp{iur}, with B the transfer function. For the examples above B(w)
is

[142 cs w)/3
expliv} -1
V[1-p exp{~ic}]
respectively.
The value B(w) provides the change in amplitude and phase that the cperation effects on the

input series at frequency o. The amplitude |B(w)], is called the gain. The angle, arg{B (w)}, is
called the phase.

In practice, linear time-invariant systems are often described by providing the farm of B (w); far
example an ideal (unrealizable) band-pass filter at frequency A with bandwidth A is specified by
B(w) =K for |w=\| < &2

=0 cotherwise

for K constant, and w = 0.
13b. ONE OF EACH, NOISE; IMPORTANCE OF COHERENCE

Many of the systems encountered in practice do not have an cutput completely determined by
the input, since naise (including, for example, round-off) enters at some stage. In a simple case, ane
has a system, B, a naise series, ¢, and the system cutput is given by

Y(¢) =B[X](t) +d2) (13.1)

o ¥ =BX +« The similarity of this last relationship to the traditional cne of regression is clear.
The transfer function, B, correspanding to the system, is, as noted in 8d, a natural analog of the
ardinary linear regressin coefficient, b of clementary statistics. It is distinguished by being
complex-valued and a function of frequency.
IfY(t,»),X(tp),(tm)dmaethemhdmowband-pasﬁlteﬁngdwsaﬂa&{{,c.n

frequency A respectively and if the series X and ¢ are statistically independent, then the relationship
(13.1) leads to

( E{Y (¢ w) X} ~ B ()X (¢t 2)
Mhmgsdmmﬂqhdw‘_mmbﬁltasmplqed.hmﬂn
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appraximation.)
The determination of the linear regression coeffidient of a variate y on a variate x by the
expression b = cov{y ;x }/var x has the natural analog

_oov{Y (1) X} _ frx(w)
B = X @ (132)

in the present circumstances. The measurement of the proportion of the variation of y explained
through the (linear) variation of x by the coefficient of determination [cov{y x}]*/[var x var y] has
the natural analog

= Ifrx (m)lz
R@P Sxx (@)f rr (w)

with |R (w)[* the coherence of the series ¥ with the series X at frequency w. |R (w)[? is here a
measure of the degree of linear time invariant relationship between the series ¥ and the series X at
frequency w. Specifically, the power spectrum of the series that is the difference between the series
Y and the best (mean squared errar) fit to ¥ by the cutput of linear time invariant system with
input X , is [1=[R () ] frr ().

IR (w) ? also plays an important role in the formulas for the sampling fluctuations of the results
of a system identification via a cross-spectral analysis based an the identity (13.2). If

BT (0) =ffx(w)/fiz(w)
and the spectral estimates are each the average of m periodogram values, then

var B(o) ~ 2 (1=1R (@ Flf re (/fzx @ - (133)
For small variance cne wants both |[R * near 1 and m large. With the data at hand ane cannot
contrd |R ]2, but cne can contrd m. , ‘
13c. MORE THAN ONE

In many practical situations, a system under study has more than onc input and mare than one
autput. The input series, X, and the cutput series, Y, are vectar-valued. In this case the transfer
function; B(w), of the system is matrix-valued. The time series analog of the traditional multiple
regression model

y=bx,+ --- +hx, +¢
is
Y() =BXC) + + o+ +B K1) +<0) |
with the B, single-input single-cutput systems and with ¢ a noise series. The vector B(w) may be
estimated by
B () = ffx ()ffx(w)™

ance estimates of the needed power and cross-spectra have been formed.

The multiple coherence may be defined as [R ()P =1 — £ (w)/fry («) in this case. It proves a
useful parameter in practice. \'\ ' ‘
14. CHOICE OF INPUTS

Expressions (132) and (13.3) are most helpful in addressing questions concerning the choice of
an input series. Fram expression (13.2) ane sees that ane wants s, (w) # O at all frequencies w at
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which an estimate of B(w) is desired. When an estimate of the impulse response function b(t),
carresponding to B, is wanted, the input must be rich in all frequencies. Expression (13.3) gives
indications of how ane should choose the input, if this is in fact a possibility, in arder to have a
handle on the sampling fluctuations of the estimate B” (w). It makes it apparent that cne wants an
input with the input power at frequency w, f7 (w), high.

14a. QUASI-GAUSSIAN INPUTS

By a quasi-Gaussian process is meant one that shares the notahle Gaussian properties of different
realizations not looking at all identical, of nct being repetitive and of recognizable events not
dominating realizations. Natural inputs have these characteristics on many occasions. In one
important case the series X, is a series of independent identically distributed random variables.
Then cane has fzy = o*/2n, where & is the variance of X (¢). From expression (133), one sees that
it is desirable to have o® large. (In practice o can not be taken to be arbitrarily large for most
systems.) In this situation the impulse response, b, may be estimated directly via

cov{Y (t+u), X (t)} = b(u) var X(t) (14.1)

forall ¢, u.

There are results (Levin (1960), Mehra (1974), Brillinger (1981), page 220) suggesting that, if
a single input is to be used, one wants to arrange for fxx (w) to be nearly constant, if possible, in
arder to have efficient estimates. If the input must be bounded, |X (¢)| = C, for same finite C, then
it will be most effective, in terms of large-sample variance, to take X (f) = = C, randomly. If an
instantaneous nonlinearity is present, ar if quadratic and higher-arder terms appear in the cutput, it
will be useful to take X to be Gaussian (Wiener (1958), Brillinger (1977)).
14b. AN EXAMPLE: SPEED SPECTRUM RADAR

The notion of generating a naise like input signal to identify a system of interest occurred
amazingly early on. In 1938 G. Guanella filed a patent for a naise-correlation radar in which the
radiated signal is a noise-modulated carrier wave. The returning signal is demodulated and,
following (14.1), cross-correlated with the transmitted noise to estimate the impulse response.

J. Wiesner had a similar idea in the early fifties. Some of the histary is given in Schalz (1982).
l4c. SINUSOIDAL INPUTS

A direct method of determining B (w), the transfer function at frequency w, for the system B is
to take X () = cos u¢ as input. The cutput is then '

Lp(@e'= + L B(w)et= = 18 )] costs (o)

where ¢(w) = arg{B(w)} and |B(w)| and ¢(w) may be determined directly. In the case that the
system cutput is perturbed by noise, ane will regress the cutput an the input to estimate B (w).

This procedure has the substantial disadvantage of leading to an estimate of B anly at a single
frequency  at a time. It will:be a mare precise estimate than that determined by cross-spectral
analysis (having variance inversely proportional to the recard length rather than the number of

i averaged); however it gives no infarmation an the whole function B.

An improvement results fram taking

X(t) =pocs(wt+dy) + - -+ +pgcos(wpt+Hdy) ,
however the pasitive integer O must be large before the course of the function B(w) can be well

determined. If the ¢ here are random, then X will be appraximately Gaussian for large Q and ane
returns to the input of the previous section.
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l4d. PULSE PROBING

If X(t) =K for t =0 and X(¢t) =0 otherwise, then the cutput of the linear time-invariant
system B is propartional to its impulse response function b(t). If the system cutput is corrupted by
naoise ane will have to input a sequence of pulses, waiting far the effect of each pulse to die off. By
stacking and averaging the various transient respanses one may estimate the impulse response b(t).
The transfer function B(w) is the Fourier transform of b(z). It may be estimated by Fourier
transfarming (¢ ), employing convergence factars in the process.

In practice ane will take |K | to be as large as possible.

One difficulty with this approach is in knowing when the transient has died off. Another is that
this pulse fom of input may in fact be far removed from the type of input the box usually
experiences, so that the box may be thrown into an abnarmal region of operation.
14e. COMPARISON AND COMBINATION

The inputs described above have quite different characters and are useful in different types of
situations. If little is known about the system, then Gaussian input has substantial advantages. If a
few frequencies are of particular impartance (or if ane is looking for passible nonlinearities) then an
input that is the sum of a few sinusaids is useful. If the parameter of greatest interest is the impulse
response, and if the system naturally operates, at least sometimes, on pulses, then pulse probing may
be effective. If the acceptable size of the input is limited, |X(z)| = C, then pseudo-random-
binary-noise may be a goad input to employ.

If the system is in fact superpasable (linear) then one might use an input series that is a hybrid
of the three types described above.

For situations in which ane wishes to have a large cutput, concentrated in time, as opposed to
spectrum analysis, it is effective to use an input resembling (in time) the time-reversed impulse
response. This occurs in radar and seismic explaration, for example.
14f. DIFFICULTIES WITH NATURAL INPUTS

The best circumstance to be in is that of being ahle to input any chosen series (design an
experiment). There are however many impaortant situations wherein the input is not under the
researcher’s contrd. As happens in the case of multiple regression, this leads to real difficulties. In
particular, near collinearity in the input leads to estimates with substantial variance.

There are difficulties of interpretation of the individual values of the impulse response function,
and of the various individual transfer functions in the multiple input case. If fxy(w) ~ 0 for w
near \, then one will not be able to estimate B(\) o [R (\) P in any useful sense.

Further, as the analysis is correlational in character, one will not be able to make inferences
concerning directions of causation and the like. If ane is trying to understand a phenomenaon, this
can prove a substantial difficulty.

Briefly, all the woes of regression (see Mosteller and Tukey (1977), Chapter 13) may be
expected to arise and some new cnes as well.

15. IMPORTANT DIFFICULTIES

The previous section mentioned difficulties in the interpretation of the results of a cross-
spectral analysis. There are important ical difficulties as well.
15a. FEEDBACK

Suppcse that the system under study is described by:

Y =B[X U]

U=C[r]
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where U is fed back to enter cn a par with X. The transfer function fran X to Y is

B 1 .
T=5C C (when B is large)

cross-spectral analysis can estimate this transfer function, but what we learn may refer almost
entirely to the feedback path.

In practice, such a system must be dealt with by inserting some cbservable naise into the
feedback loop ar, perhaps, by modeling the system in greater detail (e.g. the filters are to be
realizable.) Cross-spectral analysis alone is nct sufficient to cbserve the inner warkings of a system.
Two references are Akaike (1967) and Priestley (1969).

15b. ERRORS INCLUDED IN INPUTS
Suppcse, next, that ane has the system
V =B[U]

Y =V +e¢
X =U+1

with ¢ m naises, and records of X, Y alone available. (These equations may be seen to have the
form of the Kalman state-space system. B is not necessarily realizable here though.) One now has
the problem of measurement error in the input series. Assuming ¢ and n arthogonal to each other
and to U, V, cne has

Srx(0) = fyy(w) =B (w)syy(w)
Sxx(w) =fyy(@) +fun(w) .

ey foo ()
Ta@ ~2@ 700 + @

Determining an estimate of fyy (w)/fzx (w) will not provide a reasonable estimate of B (w), since the
measurement erTor causes attenuation.

One clegant means of handling this situation, which sometimes warks, is via an instrumental
series. This is an observable series, W, that is arthogonal to the noises ¢, n but not to U and V.
QOne then has

Srw(w) =fyw (0) =B (w)fvw ()

Txw (@) = fow (@)
leading to a consideration of f7w (w)/fIw(w) as an estimate of B(w). A physical example of this
procedure will be presented in Section 16c below.
15c. ALIASING ¢

Asmthattbemx(t),r(:)mchﬁndfaemmm-a<t<¢ and have

second-order spectra fxz (), frr (w), fn(m) respectively. Suppcse that the sampled series are
available with ¢ =0, A, 2A,... Then ane has relationships such as

frx(o) '?frx [0 - T]
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for =/A < w < wWA. It may be that fyy (w)/fxz (w) is the desired transfer function; however, this
wil nt be givn by B(w =fn(u)/fn(w) generallyy. Nar  will the coherence
[frx (@) P/[f2x (w)frr (w)] generally by given by [R () * = |frz () P/[f 2z (0)frr (0)].

In the case of the coherence, aliasing causes the power spectra to be biased upwards; however the
crass-spectra fluctuate in sign and so, cn many occasions, the coherence of the sampled series will
tend to be less than that of the ariginal series.

In practice one will want to filter the series priar to sampling and to select a small enough value
of A to reduce the effects of aliasing.

15d. THE EFFECTS OF BIAS

Tapering and prefiltering are essential if ane is to be able to deal with power spectra that are
rapidly falling (mm)clnvehncmpmts. This is likewise the situation in the system-
identification case. The expected value of f7y (w) commonly has the approximate form,

f Wi(w—a)frx (a)da = f Wi(w—a)B (a)fzz (a)da
for some weight function W,. Likewise
ave(fIz (w)) ~ [ Wo(w—a)fzx (a)da .

For f7z (w)/fIx(w) to be near B (w) ane will want the windows W, and W, to be concentrated near
0. This desire be addressed by tapering the individual records and by chaice of the window
applied to the quadratic in the cbservations. It is further clear fram the above expressicns, the mare
nearly constant are the functions fyy, fxx, the less bias may be expected. In comsequence, when
possible one should prefilter the series X and ¥ to make the second-order spectra more nearly
constant. If this can be done with the same filter for X and Y, ane obtains the transfer function
directly, no compensation for prefiltering is required. (In particular, it helps to make the phase of
the crass-spectrum more nearly constant.)

If, for example, B (w) dies off rapidly with w, one might detect this occurrence through having
employed a powerful tapering operation, e.g. using a prolate spheraidal function (see Thomson
(1977), for example.) Suspicions having been arcused, the higher frequencies in the series Y might
beunplmwulbymtablypmﬂtmgn,matodnmumdaﬁmhemaletnnate
The effect of this filtering may then be "cancelled cut” by dividing its transfer function into the
transfer function estimated by cross-spectral analysis.

16. EXAMPLES

Cross-spectral analysis has, by now, been used in many many system identification studies. The
concern of the studies have sametimes been the determination of a precise estimate of the transfer
function, sometimes simply to see if the series X does in fact affect the series Y, sometimes in a
search for interesting phenomena, and sometimes to design contrd systems.
16a. AN EXAMPLE: FEEDBACK IN A NEUROSENSORY SYSTEM

Marmarelis and Marmarelis (1978)\, page 128, describe an experiment an the retinal system of a
catfish with input a light stimulus and cutput intracellular response of a cell. There is evidence that
for this system feedback occurs at high mean light levels, while the feedback loop is inactive at low
mean levels. Hence the system can be studied both open and cased loop.

The system equations, with feedback, are, as we saw in Section 15a
Y =B[X+U]

U=C[r]
with U dencting the feedback component. With the feedback loop active, the transfer function,
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fram X to Y, is, again, B/(1-BC). This may be estimated by cross-spectral analysis. Further, B
itself may be estimated by rumning the experiment in open-loop conditions. Hence the feedback
transfer function C may be estimated by combining the results of the two experiments.

16b. AN EXAMPLE: INSTRUMENTAL SERIES IN MAGNETOTELLURICS

In magnetctellurics, simuitanecus measurements are made of magnetic and electric fields at
locations of interest. Crmgthcmplampdm(auamfeﬁmum)xdaungm
Unfartunately the time series involved are all subject to substantial measurement error. Warkers in
the field found that transfer function estimates determined by direct cross-spectral analysis were
unstable, varying substantially with repetitions of experiments.

Gamble et al. (1979) took measurements made at a second location as instrumental series and
wu;ablewdminmawqxablemamnddzimpdmmmﬁmdimm(m&cﬁm
m.

16c. AN EXAMPLE: ON-LINE SPECTRAL CONTROL

Rotating circular discs are widely used basic dements in many different machines such as
crcular saws and computer memary discs. Large vibration amplitude of a rotating disc, due to
transverse instahility, can cause inaccurate cutting in a drcular saw and headtracking error in a
computer disc drive. Rahimi (1982) considers the case of a circular saw in particular. He notes
that such a saw in a given environment has certain natural frequencies, that the blade stability
depends an the relation of those frequencies to certain critical frequencies and that the natural
frequencies may be shifted by applying heat (using say an infrared heat lamp.) Wark load variation
can have a saw operating with natural frequencies near the critical frequencies, leading to
instahility. Control is affected as follows: blade transverse displacement is measured, current blade
natural frequencies are estimated, these are compared to the critical values, and shifted by heating
(or coding) as necessary. This is all done in real-time making use of a digital computer. Rahimi
compares several methods of natural frequency spectrum estimation, including direct Fourier
estimates, estimates based on finite parameter models and estimates cbtained by inputting
ducvublemtothesystmmthemmcdlsn. The contrd algarithm continually attempts to
reduce the difference between an optimum frequency and a frequency based on the natural-
frequencies. In an example, Rahmﬁlﬂsthatemmdredtavihmamphmdatom%dthe
uncontrolled value.

F. LEADING CASES IN DATA ANALYSIS
17. LEADING-CASE PHILOSOPHY

Formal statistical theary, like classical mechanics, warks with leading cases or leading situations
(where these wards are used as they are in the law). No ane complains about using the mechanics
of paint masses to describe the motion of planets around the sun, although few of us would think
cither the Earth ar Jupiter was only a paint. Yet similar oversimplifications in statistical theary
tend to be discussed as "Yailure of assumptions”. :

It is not easy to be sure why this difference arcse and was maintained. Perhaps because
statistics must deal with uncertainty -~ often with uncomfartably large uncertainties - its thearists
and teachers felt a stronger urge far certainty. Perhaps because stochastic (probabilistic)
assumptions are always harder to check '~ since their consequences are mare subtle than functional
(deterministic) anes. Perhaps because statistical theary deals with methods of analysis - and it may
be very difficult to honestly adjudicate among methods of analysis that would lead to appreciably
different results in controversial instances. Perhaps because of a felt need for a coherent body of
deductive theary that could be lectured abaut ~ by vaice or written ward.

Whatever the reason, we have grown far too used to the dangerous ideas that:
1. methads should have - more realistically should appear to have - "derivations”
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2. what happens when the conventional assumptions do not hold does not deserve much
attention,
3. a method without an optimality thearem is a poor relation.

Yet none of these really apply in practice. If statistical ideas are to carry cut their real function,
which is to guide, suppart, and broaden the analysis of data, we must look at them quite differently.
17a. LEADING SITUATIONS, YES : HYPOTHESES, NO

Statistical techniques come into being in diverse ways, — sometimes, even, by "derivation”. They
earn most of their legitimacy fram some limited knowledge of how they perform in special cases.
Sanaimdiskmﬁedgcisqlitewuk;wmnymdsmﬁmlyﬂmmeygiveapprqﬁate
answers "on the average”. Occasicnally, it is quite strong; we may know that within a reasonably
mmaedfamﬂydpmadnuandaceadngwmappumﬂymmbbmtmm,thspmedne
performs "best”, at least in very narrow circumstances. (The last is more the exception than the
norm.)

In reality, then, the best we can do is to start with a leading situation, ar even with three leading
situations, and learn what we can about a procedure’s perfamance -~ o the comparative
paiumancecfseva‘alpocedwa in each of these. We do much better in understanding and
comparing bylmngmedetailsabanpefammcemthcddlmdngsmum,
bmratlxrbylmngmthmgabantharpefmmmlmﬁngsm“.

As George Kimball (Kimball 195&)mpnummqummmhm”meeua
further difficulty with the finding of "best” solutions. All too frequently when a ‘best’ salution to a
problem has been found, sameane comes along and finds a still better sdlution simply by painting cut
the existence of a hitherto unsuspected variable. In my experience when a moderately good solution
to a problem has been found, it is seldom warthwhile to spend much time trying to convert this into
the ‘best’ solution. The time is much better spent in real research in trying to find the variables
which have been overlooked” (ar "in trying to find a still better solution simply by considering some
mare general leading case” (cp. Tukey 1961)). As ane of us put it recently (Tukey, 1980b) “In
practice, methodologies have no assumptions and deliver no certainties.” They have no assumptions,
anly situations where they perform better and others where they perform less well.

17b. WHAT THEN?

If our techniques have no hypotheses, what then do they have? How is cur understanding of

their behaviar to be described?

As a generalization of an umbra within a penumbra. Here there are at least 3 successively

larger regions, namely:

1. An inner care of proven quality (usually quite unrealistically narrow) where we can prove -
and have proved - certain properties either by formula-manipulation mathematics, ar by
numerical and experimental sampling mathematics -- ar by both together.

2. A middle-sized region of understanding, where we have a reasonable grasp an cur technique’s
performance, where we know generally what is going on, but where we may nat (yet?) be able
to be sure of details.

3. A third region, often very much larger than the cther two, in which the technique will be used.
(Sometimes this region depends cn the individual concerned, sometimes there is reasonable
agreement among a commumity of intercammunicating users with experience.)

We have to anticipate three distinct regions, often of very different size, for any technique of data

analysis, be it statistical ar not.

Since the techniques discussed in this account are directed toward an essentially statistical

problem, we must try to understand them in terms of such regions, rather than in terms of narrow
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17c. SPECTRUM DEFINITION AND ESTIMATION; IN KNOWLEDGE, IN
UNDERSTANDING AND IN USE

Let us apply these ideas to the notion of a spectrum.
What are the innermost leading situations, where knowledge is clear? Surely

o individual realizations that are exactly sums of a few cosines, where all would be clear that
contributions to the variance (power, energy) are confined to these few (angular) frequencies,

e processes all of whose realizations are of such a form, involving, in total, cnly a few (angular)
ies for all the realizations of a single process.
Here no reasonable (trained) persan can be uncertain what a spectrum means.

And no ane can give a real-warld example that really fits into such a picture. The tides come
close, but storms perturb the cosine series of simple theary (and tidal forces slowly change the
moon’s distance). The frequendes that appear in the changes in the eccentricity, etc. of the earth’s
arbit, (Milankovitch 1930, 1941) are a better example, but there are irregular perturbations here,
too.) In the characterization of labaratory standard cscillations (cesium, etc.), emphasis has simply
changed from the study of the gross spectrum to the study of the spectrum of the frequency

This narrow region of complete and inevitable understanding of a spectrum is embedded in a
larger leading situation, consisting of processes for which there is a clear definition of what a process
spectrum is - and thus, it would seem, - of at what a spectrum for a realization should be painting.
(We return in a moment to same questions about this.)

This larger leading simaﬁmwﬂl,n\a\dmbt,bememadeupd"staﬁmary"mﬁth fnite
variance. This will not be because the region of use of the concept of a spectrum is confined to
stationary processes, but anly because stationary processes are easier to think about.

For many purposes, indeed, we think about a reduced leading situation where we have nct cnly
finite variance and stationarity, but also a continuous spectrum. (In the real world, naise and
perturbations always seem to make any spectrum continuous). So we often wark with a leading
situation which does not include those instances with which we started (only a few frequencies) and
for which we best understand the notion of a spectrum. This perhaps seems paradaxical, but is
realistic and comman in dealing with other concepts and other procedures of data analysis.

By going to this intermediate leading case, we have included instances which deserve mare
thought. A process, each of whose realizations is of the farm X (¢) = a cos(w¢ +¢), for some aw
and ¢ depending an the realization, with ¢ both independent of a and w and unifarm can (0.27) is
surely stationary, and can have a smooth continuous spectrum. If we have only ne realization, we
only know about one w, and - unless we have a It of side infarmation -~ a reasonable spectrum
estimate will put all of the estimated spectrum at - or very clase to - a single uy. In this case, the
process can be thought of as a mixture of subprocesses, e for each oy, and estimation from ane
realization leads only to an estimate for the subprocess. Without side infarmation we cannot
estimate things to whose consequences we have not been exposed!

If we leave aside such issues ~ always important in principle, and sometimes not negligible in
practice - we can say that we understand a reasonable amount about the concept of a spectrum and
about spectrum estimates for stationary processes with continuous spectra. As a result, it is anly to
be expected, that we will use the concept, and use cur understanding of spectrum estimates far
ocutside this region of understanding, often helpfully. We will use them, for example, (a) in non-
stationary situations, both those where non-stationarity is a mild imitation and those where non-
stationarity is reason why we can leamn anything helpful (e.g. Munk and Snodgrass 1957, see
Section 5b) and (b) even in analyzing time series which we find hard (ar perhaps impassible) to
consider as realizations of dearly conceptualized processes. (In the simpler cases, having a process
wauld require an ensemble of parallel warlds.)
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Growth from a seedling leading case, where all is clear, to the domain of understanding and the
domain of use has here, as 0 often elsewhere, invalved both:

1. growth by a wider definition - ar a reformulation - of what is estimated, and

2. growth by using both a concept and a procedure in wider areas than those in which they have
been precisely ar farmally defined or justified.

17d. AND ELSEWHERE?

dexmdmdhhtmﬁmmmmnyfmdmdnmpdmmdm
procedures of spectrum estimation. 'lbyarehaefcrtwom(a)becmsethsmptand
thaepmadnsmvmltothsmm,mi(b)smam:pledhw in a statistical
m,whwmmmagmecmmmwﬂnmuﬂauﬂnm
that arise. mmdm&mwmﬁmsnngareanmmtedwwudmmny
noise-like data, and have to be thought about statistically. Similar pictures involving:

1. immer situations where all is clear,

2. middle-sized situations where we have reasonable understanding (and which may not include
the inner situations), and
3. still larger situations where we use the procedures and concepts in hope of help (usually
successfully) ‘
are to be expected for all the other concepts and procedures we discuss.

17e. THE SPECTRUM AS A VAGUE CONCEPT

Most important statistical ideas, as well as those in many other fields, are centered in vague
caoncepts (e.g. Masteller and Tukey 1977, pages 17ff). Their expression in precise terms is always to
betstedagamttharwguemm.wlthmydscepamywbemdvedbymhﬁmgﬂn
precise version.

Itfdlowsthatwearemxlﬂ:dytbﬁndasng!epreusetmﬂanonthatapphammplete
generality, though we may have a sequence (ar tree) of different precise forms which work
satisfactarily over broader and broader classes of situations.

We all know, as noted above, what a spectrum is for an ensemble or process, each of whose
realizations is a finite sum of cosinusoids of a few frequencies, common to all. The special case
where 50% of the realization are pure 60 Hertz, 49% are pure 400 Hertz, and 1% are pure 23x60
hertz may, however, bother same of us.

If owr process, now relatively general, can - conceptually at least -~ be extended to
—»© < ¢t < ® and its second moments are "stationary,” then there is no conceptual difficulty in
defining its spectrum, although no one realization may even try to tell us about the whole of the
specu'm(asmtinnstratedtaavcysmph&dme) Mareover, since actual realizations will be
finite, there will in practice always be limited frequency resdution, with sufficiently clese frequencies
being effectively indistinguishable. (This is clear for "ndise-like” data; would be false far perfectly
measured "signal-like" dmamﬁhmwhehwiﬂnevched:tmmd,miumamn,pmﬁhlyuﬂy
for much finer resolution, for "signal-like” data measured with error, as all real data is.)

In terms of data, then, we cannot sensibly define “the spectrum” in arbitrary detail. We achere
to the controlling vague concept when we think of ~ and wark with — averages of an ideal,
untouchable spectrum over finite frequency ranges.
17f. STATIONARITY.

Togofunhealmthaehmwelnvetothnkmedsplyaban"stanmty than is
customary. It long ago became clear that any solid definition of stationarity had to apply to
mnmmhmms. But it is still too comman to paint to a trace and say that it "is cbvicusly

not stationary.”
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All we know of the warld is consistent with the idea that all events are periodic with period 10
years. And a process made up of all displacements of a periadic phenomenon - with unifarm
probability - is a stationary process. Thus anything we find in the warld could, with this definition,
come fram a stationary process.

When spectrum ideas are used, we cften have anly a few realizations, perhaps only ane. Both
hghmdwmem&mmdmmmmmmkeladmwpmfamhng
with a mare spedialized process, fram which ocur realization(s) might have came, rather than a mare
generalized ane. Now, the mare specialized ane may fail to be stationary, and we cught to ask both
(a) is it too narrow?, and (b) even if it is not stationary, may it not be worthwhile to extend the
idea of a spectrum - as always, averaged over suitahly narrow frequency regions - to it? The
example of Munk and Snodgrass (1957), quoted above (section Sb) shows that the answer to the
second question can be "definitely yes!". Soananntynnaamtyfcrmeﬁnm
analysis.

To many, "it’s not stationary” uh’hlytomm'itbdlmasdxmghthclevd(aslmtedatby
local means, perhaps) is not constant.” A systematic trend could be a property of the relevant
ensemble, ar merely the casual result of a relatively large amount of energy at very low frequendies.
For the practice of analysis, these cases are likely to be indistinguishable. It is likely to be helpful,
if any other band of frequencies is to be examined, to climinate the "trend” - either by filtering the
data to largely remove anly low frequencies, ar subtracting a suitable slowly changing function from
it - befare proceeding to the main analysis.

If the variation about a time-varying process mean is stationary, there is no farmal difficulty in
d@ﬁmngaspecmm and no new practical difficulty in estimating the spectrum - except for very low

equencies where interpretation might well be at best difficult. And, as we saw above (Munk and
Sndgms,(1957))mthsmhdmnmmtymaynmbeme:bdicmdmmmts.

Apparent lack of stationarity in the data is NOT a reason to give up either the idea of a
spemum,cﬂnhwedmeﬁnmnmmsumatmg(mgaom) that spectrum. It is a reason to
be careful about computational' practice (dselenkagemay bury the infarmation that might have
helped you). \

17g. CONFIRMATORY OR EXPLORATORY?

Today, statisticians recognize a clear distinction between exploaratary and confirmatory data
analysis. In the former amalysis, our first and principal aim is to see what the data is saying -
though we may occasionally want to look at a rough standard error (is there any other kind) for
general guidance. In the latter we are really trying to confirm - or disconfirm —~ a previously
identified indication, hopefully doing this on fresh data. Formal statistics books emphasize the
latter. Intelligent statistical practice is heavy on the farmer.

In ar experience, almost all spectrum analysis is explaratory. There will be occasions where
some formal calculations appeared to be needed to deal with "doubting Thomases” (of ane sign or
the ather), but these are really the exceptions that prove the rule. In this spectrum analysis is like
the analysis of variance.

G. SOME STATISTICAL TECHNIQUES
18. FOLLOW-UP WITH NON-LINEAR LEAST SQUARES

There are a number of interesting scientific situations in which physical theary leads to a model
in which a few specific parameters play an essential role. As an example, consider the Chandler
waobble. Let X(t), Y(¢) dencte the location at time ¢ of the Earth’s axis of rotation as it cut’s the

Earth’s surface near the north poe. Let Z(¢) =X (¢t) +i¥ (¢t). Then Munk and MacDonald
(1960), using classical mechanics, deduce the equation of motion
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%‘@- =aZ (1) +e(t)

with e(¢) the excitation process and @ = —f +iy. Here B and y are of specal interest. B
determines the rate of damping of an excitation and <y the frequency of cscillation. In practice ane
wauld like estimates of B and v, together with estimated standard errors to go with those estimates.

18a. COSINUSOIDS IN NOISE

Physical theary, complex demodulation or a periodogram analysis may suggest that a pure
cosinusaid component is present in a time series of interest. A formal model that could be
considered then is

X(t) = a cos(Be +y) +e(t) (18.1)

where e(¢) is a stationary series with power spectrum f,,(w). It is of interest to develop spedific
estimates of the parameters a, B, v.

As has been mentioned earlier, the pericdogram of the series X may be expected to have a peak
in the neighborhood of the frequency w = . This suggests the consideration of the value, B, that
maximizes the periodogram /7 (w) as an estimate of B. Indeed Schuster (1894) this
estimate many years ago. Whittle (1952) developed the large sample distribution of 8. He found
that 7¥3(8—B) was asymptotically narmal with mean 0 and variance 48 n f., (8)/c. A variance
decreasing as T~ is unusual in statistics. That the variance is here propartional to the error
spectrum, and inversely propartional to the cosinusaid’s amplitude-squared, is not surprising.

Al ively cne migl ider an esti cbtained by minimizing the sum of

g X (t) = a cos(Br +y) (18.2)

with respect to @, B, y. This estimate turns cut to have the same asymptotic distribution as that of
Schuster’s methad.

It is instructive to consider the farm that expression (18.1) takes in terms of frequency domain
quantities. By Parseval’s formula, it may be written

- D 2
3 o [27""] - ara” [24;‘- - p]/z - aeAT [l;l."- + p]/z

TS (182)

s=0
The terms in A" will have their largest magnitude for 2mu/T near = . Expression (18.2) makes
ane wander if improved estimates might not be obtained by weighting the terms in it differentially.
Hannan (1971) shows that nothing is gained, for large T, by daing this. It may be warthwhile
tapering the data prior to forming the FT in arder to improve frequency resdlution, however.
A minor extension of the model (18.1) is

X(e) =§1 o cos(By t+y,) +e(r) .

One is now led to estimate the B, by the locations of the X greatest relative maxima of the

periodogram or by least squares. The estimates of £, turn cut to be asymptotically independent and
to have the same asymptotic distribution as in the case K =1. Another reference is Priestley
(1962).

18b. DAMPED COSINUSOIDS IN NOISE
In a variety of circumstances, physical considerations lead to the model
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X(@) =>; 0 os(By t 4y )P 1} + (1)

t = 0, ie. frequencies B, are present, (after time 0), however their strength decays as time passes.
Asmdcatedeechm?e,mplschnd:ﬂmanuapaemmdfadetecungsmhdecaylm
csdllations and cbtaining estimates of the f, .

Qne could leap directly to a consideration of least squares estimates; however, it is perhaps mare
instructive to proceed as follows.

The FT of the naise,
dH(w) = S () api-ius}

&unwhalmmbdce,mybecpctdmbedsm'b\nedwmdysamm
mthmmOandvmmeZsﬂ'f..(u) Furthermore, estimates at different frequencies may be

upectdtobeapw mately independent. It follows that the distribution of a number of FT
value,suyd,(q) for wy near B, may be appraximated by independent complex Gaussians with
o explive JAT (wy ~f +4 )/2

and variance 27T f.,(ﬂ.)_. The negative log-likelihood of these variates is
constant +}.‘. a7 (wy) — o explive )AT ()~ +& )/2P/ 20T £ (R)

with the summation over j such that w, is near f. (One might take w, = 2mj/T say.) One is led
to estimate the parameters by least squares in selected frequency intervals. The asymptotic
distribution of these estimates is given in Brillinger and Bdit (1979).

18c. OTHER FEW-PARAMETER APPROACHES

There are cther situations in which a finite dimensional parameter stands cut as of special
interest. (Box and Jenkins (1970) is ane pertinent reference).
Example 1. (ARMA models). Suppase the series X satisfies the relationship

X(t) +a()X(¢-1) + - -+ +a(P)X(r-p)

=e(t) +b(1)e(t-1) + --- +b(q)e(t—g)

where p, ¢ are finite and e(¢) is a white naise series of variance ¢*. X is then called an
autaregressive moving average (ARMA) process. It is of interest to estimate 8 = (a(1),..,a(p),
b(1),..b(q) o) for prd:l- of forecasting and description.

Example 2. (ARMAX models). Suppse one has a bivariate series (X,Y) satisfying the
relationship

Y(t) +a()Y(t=1) + --- +a(p)Y(t-p)

=b(0)X (r) +b(1)X(¢=1) + - - +b(q)X(¢—q) +e(2)

whaee(t)uanmemsﬂmisanARMAmdmkmwnm One will be interested
in the estimation of the parameters of the naise process and the a’s and b’s, given the data stretch
X)X () ,t=0,..T-1).

Example 3. ‘lhlgauahzaﬂnmmdaunpladml&mdlsb. Suppase

X(t) =s(28) +e(r)
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where s(2,0) is a signal o known functional farm involving the unknown finite dimensional
parameter 0 and where ¢ is a stationary ncise process. One would like to estimate 0 given
X(l)} ww-,r -1.

Example 4. In structural engineering one may have a finite dimensional model of a building
response to an impulse. Suppcse this impulse response is a(¢,8). One might have data on the
respanse Y to an earthquake X. The situation might be modeled as

Y(#) =T a(u9X(¢-u) +e(t)

with e a naise pracess. (One reference is McVeary (1980).) The series Y being a delayed version of
X would be another example of this farm.

The general properties of FT's of stationary processes indicated earlier lead to a general way of
ctmaungdxepuamﬁcbmtheeaamplamdmammemumalmudthe
estimate. The procedure will be indicated for Example 4. The FT is d7(w), of the noise may be
treated as if they were complex normal with mean 0 and variance 21T S, (w). FT's at different
frequencies may then be treated as if they are statistically independent. Consider a number of
frequencies B, scattered almgﬂ:muval[o,ﬂ,mydﬂnfmnz'rtlx Cansider a number of
frequencies ay;, j=1,..,/ near . The negative log-likelihood of the df(wy ) is appmmately o
the form

constant +?{§|d,’(m,.) = A (0 A)df (wp ) /29T Se(B:)

with A (w0) the transfer function of the impulse response a(t6). 0 and the S, (f:) may be
estimated by minimizing this expression. One might construct estimates without including §,, in
the criterion. They will be consistent, but not necessarily (asymptotically) efficient.

In proceeding in this fashion, it is not necessary that the noise process be Gaussian. The
estimates may be expected to be mare efficient in the Gaussian case, however. (They would fail
dismally if the 4™ ’s followed very stretched tail distributions, but this does not seem very likely.)

18d. AN EXAMPLE: VARIANCE COMPONENTS AND TREND ANALYSIS

Qndtbmpanmplmecf\ﬂnmlymdvmm??xstom:thembﬂnyd
quantities extracted fram structured data. The quency-side analysis provides a means of
doing this, even when the data is autocarrelated in time.

Bloomfield et al. (1980) are concerned with whether there is in fact a trend in atmospheric
azone concentration. Monthly mean values are available for stations in several regions over a twenty
year period. An examination of the data suggests the presence of a common component, of a
regional component and passibly a trend. Substantive knowledge suggested a particular farm for the
trend function. The problem was to estimate this trend function’s (possibly 0) multiplier and the
uncertainty of an estimate. ‘

There exists a frequency domain analogy of the random effects acrass ?? model (with
covariates). Details are given in the above repart. The approach is based upon the approximate
i and normality of the discrete Fourier transfarm values of stationary time series. The
problem of Bloomfield et al. also involved elements of nonlinear estimation.

19. ROBUST/RESISTANT APPROACHES

The last decade ar two has seen the development of statistical techniques that are resistant in the
sense that a small percentage of exctic values, no matter how extreme, have little influence on the
result. Among these resistant techniques some are robust of effidiency, providing highly efficient
results (i.e., results nearly as stable as possible) in each of a wariety of more or less realistic
situations. Since it is cbserved that all techniques that are highly robust of efficiency are also
resistant, it is natural to call them robust/ resistant.
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It may help to motivate the discussion if we distinguish three cases: 1) thase where the
cbservational naise is intrinsically long-tailed and independent of the phenomenon being studied (for
example nearby lightning strikes ar power line inductive transients), 2) long-tailed distributions
caused by the process under study, h;tsﬂmnﬂe(fcmmﬂemamedbydxpmdm
extremes ar “clicks” and “snaps” Rice (1963)), 3) cases where the exctic values provide the
infarmation (for example the earthquakes an a 24 hour seismogram.)

If we are summarizing measurements y;.y3,...,ys of the same thing, the mean, y, is not resistant,

since changing any cne value will charge y’ any amount desired. The median y, the middle value
among the y’s reardered by their value, is usually resistant. If you change cnly ane (even sample
size) or two (odd sample size) y's in any way, the most you can do is to replace the ariginal median
bymecthealrrdﬂnvalnsdﬂny,smdmelyadmtmthatmgmalm:ﬁm The
dhemydthemed:mnmlynﬂcatdyhgbfa&mmmpb(hghefampls&un
distributions that provide more frequent exctic values). We can preserve the resistance and improve
the efficiency (a) mewlnt,bydxmtotbmdmmy‘ the mean of the middle half of the
ardered y’s, ar (b) considerably further, by going to slightly more subtle estimates, such as the ane-
steplxwagbts(Matdlerand‘I\:kq(l%)c(c)mewhatf\nhcmnbygangtotwo(a'few)
situation analogs of Pitman estimators (Pitman (1939), Pregibon & Tukey (1981).)

Smmwmwmttomummlqs,mostq)cnnﬂu-stq),dtbmtephwaghn,wewm
define the latter here. To combine y,,y;,....y, into the ne-step biweight estimate of location, we
take the scale estimate S = half the difference between the hinges (or quartiles) of the ardered

cbservation; ¢ = a mm,dtabatmﬁmd%?ose’th:ry'c(sligInbeatu')y‘. We then
define the excticity by

2T
S
the (bisquare) weights by
w =(1-u)?, for u?ls<1
d =0, cse

and the ane-step Wem(mmmshmmmm:smedby
themmmalvaluedcmed)by

2w,
Yoom 3'}-”‘—{‘ .

(In generalizations of this problem, it may be well to write T, for yj.., and then repeat the
calculation, replacing T in tum by T',,T,,....)

19a. THE NEEDS

It is far fram infrequent to deal with data in which a small fraction of the cbservations have
been heavily corrupted in some way. We refer to an example of dust in a waveguide shartly. Low
duty-cycle impulse naise, e.g. lightning strokes, provides many cthers. It is easy, either overall, or in
some restricted frequency band, for the corruption to invave mare energy than the signal (which
may well be naise-like) that we want to study. Estimating the spectrum of the corrupted signal
belps us not at all in such cases, since it tells us almost exclusively about the corrupting spectrum.

We must look beneath the impulses. We can do this either by using resistant summaries of the
data an the way to estimates of the uncorrupted spectrum, ar we can madify the cbservations in
such a way that most of the corruption is removed.
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19b. ONE APPROACH.

The latter approach has been studied and developed by Kleiner, Martin and Thomson (1979) to
the paint where, as we have seen in an example (Section Sc), it can handle very extreme conditions.
The basic ideas are simple:

(1) We must iterate cur maodifications and our spectrum estimate together.

(2) Given a spectrum estimate, we can forecast each cbservation fran the (modified)
observations befare it (linear prediction).

(3) We can treat the difference between dbservation and prediction in a robust/resistant
way, accepting all of it when it is small, but none of it when it is large.

(4) We can then add the acceptable part of the difference to the prediction to dbtain an
adjusted value.

For details, see Kleiner et al. (1979).

See subsection Sc for an extreme example; estimating characteristics of a WT4 wave guide that
wauld have been wholly unmanageable without robust/ resistant techniques.
20. MISSING VALUES

Missing values plague most kinds of data to some degree; though their frequency of occcurrence
varies widely. What needs to be done about them also varies widely, but forgetting them is rarely
desirable. This is particularly true in time series wark, where comsistency of spacing is almost
always impartant. They are, however, always much less treacherous than exctic or corrupted values,
since their presence (i.e. their absence) is ardinarily unmistakahble.

The two descriptive parameters of importance are (i) how frequently missing? and (ii)
individually or in blocks of what length?
20a. INTERPOLATION

When missing values are scattered, occurring mainly alone, or in pairs, the solution of
interpolation, say between adjacent pairs of non-missing values, is often reasonably satisfactory.

Since we would prefer to interpolate in a white-naise (a flat-spectrum series), ane way to proceed
is as follows:

) imﬂpammuciﬁmls?ia,
(2) find a good prewhitening filter for the result (always equivalent to the error of a good
predictive filter)

(3) form the prewhitened series, delete the values interpolated in step (1), and reinterpolate
them in the resulting series (possibly basing the interpolation on the two or three values
an each side of the gap)

(4) if necessary, apply the inverse of the prewhitening filter.
Notice that, if we are going an to most forms of spectrum analysis, we need not take step (4), since
we can usually do better analyzing the prewhitened series, compensating for the prewhitening at a
later stage. ‘
20b. APPROACHES USING ROBUST TECHNIQUES

The details of a robust technique for dealing with missing values have been considered by
Schwartzchild (1979) in his Princeton Ph.D. thesis, and by cthers in references that thesis cites. A
less satisfactory approach would be to insert rather bad values wherever values were missing and
then apply the robust technique discussed in the last section. (This might be attractive when the
robust technique is already implemented.)
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H. DIVERSITY IN SPECTRUM ANALYSIS
2]. THREE MAIN BRANCHES

The present account has concentrated on the main branch where the data are "noise-like” —.
where a ‘repetition” would mean a recard with similar underlying characteristics but a quite
different appearance - where, as we have pointed out, thinking about Gaussian processes may be a
very useful guide (but often not ane to rely an in detail ~ where what we calculate can easily be
rather more variable than for a truly Gaussian situation).

Many of the other papers in this issue discuss the second main branch, where the data is
“signal-like” and a repetition will differ mainly in ancillary and measurement noise. As we have
already stressed, this is quite a different problem, so we should not be surprised by quite different
salutions.

Finally, there is a third branch, ane to which the limitations of the data have forced many,
particularly statisticdans. Here we usually lack all the powerful tools that help us ctherwise. Our
recards are not long. The appearance of our data is not distinctive. Our models are not narrowly
restricted by reliable subject-matter knowledge. And equivalent records do not look alike. All in
all, a horrid fate.

With almost nothing to work with, it is very hard to do anything much mare than fitting a few
constants. So we go the AR, MA, ARMA, etc. (AR = autaregressive, MA = moving average)
route. Statistidans who face such difficult situations (i) are usually familiar with the book by Bx
and Jenkins, and (ii) are most often concerned with adjusting their data befare applying statistical
procedures whose leading cases call far uncarrelated cbservations. This approach seems to wark
rather a lot better than might be feared, since local irregularities in the spectrum - inevitable when
a real, even very madestly complex, spectrum is “whitened” by fitting a few constants -- turn cut not
to bother many of these statistical techniques seriously.

Sometimes, though not as generally as often supposed, some of the constants fitted in this third

branch are meaningful (cp. Sections 5d, 20 and 20c). Usefulness of the third branch, however, most
often comes from preparation for further analysis.

35. THREE ASPECTS

Time series analysis, whether ar not specifically based on spectrum estimations, can differ in at
least three major ways: in aimhs, in revealed behaviar, and in character of data. These refer,
respectively, to us, to what can be seen in the data, and to what could be seen if we had enough
repetitions of the data. Mdhﬁummmmmemwamm we
have repeatedly stressed an at least two-fold separation ("noise-like” and "signal-like”) for character.
Thus there are at least 100 combinations.

We cannct plan to have 100 different kinds of time series analysis at hand at one time, so we
must look toward considerable unification of methods. Part D of Tukey (1980a) can be consulted
for suggestions of what a unified procedure might be like, especially in its iterative, graphical, and
dualized nature. We content curselves here with two condensed descriptions of diversity: e of
different kinds of aims and ane of different kinds of revealed behavicr.

23. DIVERSITY OF AIMS
We can easily put down a half-dozen kinds of aims, namely:

(1) Discovery of phenomena — of distinctive things that are rather isolated - in frequency, in
time, or, as we may sometimes see, in frequency-and-time-combined.

(2) '"™Moadeling” - dften prevalent among those who see an abstract good in identifying a few-
constant structure that is at least not powerfully contradicted by the data (even though, as
frequently happens, this structure is not at all reasonable in detail).
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(3) Preparation far further inquiry - a practically very important aim, for help in doing which
Tukey (1980a) lists 8 classes of techniques. (Should be counted as two ar mare aims.)

(4) Reaching conclusions in statistical terms — as when we desire statements about statistical
significance ar about confidence intervals.

(5) Assessment of predictability -~ how well can it be done for how far into the future (usually
equivalent to finding a procedure that whitens the data, and then using these whitened data
values as prediction residuals).

(6) Dexcription of variahility, at least roughly (most useful in spectrum terms) - where we must
be keenly aware of the inevitable uncertainties of variability assessment for noise-like data.

All are practised and all are important (except perhaps "modeling”). No cne can be replaced by
another (unless in those instances where "modeling” is used, but "description of variability” is
meant).

24. DIVERSITY OF BEHAVIOR

When we consider behaviar, the issue is usually phenomena. It helps to describe kinds of
phenomena accarding to a number of coardinates:

(1) Where? - time or frequency (or perhaps both together).
(2) How strong? - conveniently dassified as "dull,” ‘'interesting,” “"distinctive” o
"unmistakable.”
(3) How simple? - how many constants does it take to give a useful (but incomplete)
description?
(4) How dominant? -- to what extent will the results of our analysis, unless we take special
steps, refer mainly to this one kind of phenomenon.
Natice that phenomena can be distinctive without being dominant. It may suffice to be sharp in
time or frequency. Examples include the "pole tide” (Haubrich and Munk 1959) and isclated peals
of thunder.

Together, these coardinates easily describe mare than a half-dozen impartant patterns of
behaviar.
25. PARSIMONY VS.FULL AND FLEXIBLE INQUIRY

The unified approach discussed e (Tukey 1980a) might work with 300 relevant data
paints, is mare likely to wark with 1000,\and has a good chance of warking with 3,000 or 10,000 but
will not always. What if we have fewer than 300?

As it is put in the reference just cited:
"(a) We have finite data - and face infinite passibilities.”

"(b) How much can we AFFORD TO TRY to learn?”

There is no trace of jest in this statement. We all know what we would think of a surveyor who
used 27 measured angles to locate even 28 coordinates of otherwise unmeasured paints (to say
nothing of 280). If, for another example, we want to estimate the average spectrum of an
electroencephalogram between 10 and 11 Hertz using 30 seconds of data, we need to be keenly
aware that we have anly the equivalent of 30 relevant data paints. If the subject’s brain waves are
nearly Gaussian we can anly get the total power to half a significant figure (cp. cur introduction),
and dare not think of asking narrower questions about 0.1-Hertz bands, far with 30 seconds of data
we would anly have 3 independent looks at the spectrum for each.

For those who must deal with "naise-like” data, the conflict between



57 Spectrum Analysis ... Presence of Naise

(1). the necessities of parsimony, AND

(2) our desires for detailed answers
can anly be managed - too often only by giving up an detail - and cannot be removed. (The
conflict between frequency resolution and variability-estimate precision is anly one example of a
wider conflict.)
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1. DISTRIBUTIONS OF FOURIER TRANSFORMS
la. FOURIER TRANSFORMS OF NEAR-GAUSSIAN PROCESSES

Directly or indirectly, spectrum estimates of the sort we are discussing are constructed from
Fourier transfarms. For Gaussian processes, the correspanding transfarm processes are simply and
nicely behaved. For processes that are nearly Gaussian, transfarm process behaviar is nearly simple
and nearly nice. We need to understand a little mare detail than this, but in the present context not
too much.

1b. THE GAUSSIAN CASE

Ifnmeudscae,nﬂwfoanmaﬁntesegmmtdit(schtadwaysmt),themﬂting
te process comsists of finite realizations {X (0), . . . ,.X (7 =1)} corresponding to finite transforms
{X(O)X (1) X (T ~1)} related by

() s';': X () expi—=i21pt/T}

p =0,.,T-1 and
X)) =TS X(p) explizmp/T}
20

Thus, since the relations are linear, if cither the X -vector or the X -vectar is multivariate Gaussian,
30 too is the other.

If the variance and covariances of the X -vector are stationary, (cov{X (¢f+u)X (¢)} = c(u)),
then

eov{X (p) X (VT

= rf exp{~i21pu/T }c(u) [};ap{izu(q-p):/r})/r

s==T+1
with the inner sum over ¢ satisfying 0 < ¢t s+u < T-1. For large T, the imner sum will be

essentially 1 if p = ¢ and essentially O if p # ¢. Taking note of the definition of the power
spectrum we see that the transfarm values satisfy
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@ @R @7 ~ 25 (2] it p =g

~0ifp+gqg

Distinct values of the transfarm are appraximately arthogonal, and the variance of a particular value
is propartional to the power spectrum at its frequency. The basic requirement here is that the
spectrum changes anly slowly over the frequency ranges relevant to single transfarms (say of width
2,4 or 6 times 27/ T). The distribution of the values is further (complex) Gaussian.

Such near arthogonality (corresponding to near independence in the Gaussian case) is one of the
reasons it is aften simpler to proceed in the frequency domain.

Qnmmdyﬂndﬁaﬂsdthsmctbgmhtymtwoqmtedﬁcmtways @) malnng
asymptotic calculations, (ii) warking with exact representations and then making appraximations
suggested by easily established properties. We shall do anly the first here, except for ane illustrative
formula at the clase of the subsection.

If the Fourier transform is evaluated at an arbitrary frequency w,

d (@) =§ X (r) expl-ias}
then one has
cov{d” (w) 47 (V)} ~ 2mA" (0—)S (w) (1.1)
with
Ar() =S expl-iur}.
s=0

Being a linear function of the X (¢), values of 47 have a Gaussian distribution. For « and v not too
cose, (modulo 27w), appraximate arthogomality of d”(w) and d7(v) holds, under the usual
conditians.

In the tapered case, where
d"(w) =3 X(1)hT () exp{—iar}

the values of 47 continue to have a Gaussian distribution and one now has
cov{d” () AT ()} ~ 2z HI (@0—)S () 1.2)
with
HI(w) =3 A7 (t)%exp{—iur} .
By chaice of A7, such that H] dies off rapidly, the values d” (w) and d7 (V) may be made more

strangly arthogonal.
One also has the (non-asymptatic) result, illustrative of the other approach,

cov{d” (w) 4" (W} = [ HT (w—a)H" (v-0) S(a)da (1.3)
where
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HT (o) =3 7 (¢)expl—iar}

(The covariances indicated above are derived in Chapter 4 of Brillinger (1981).
lc. NON-GAUSSIAN CASES:LARGET

These simplifications, of approximate independence and Gaussianity for the Fourier values,
continue to hold, to a satisfactary approximation, for a broad class of non-Gaussian processes as
well. This appraximate Gaussianity has long been part of engineering knowledge in the guise of a
folk thearem - narrow bandpass filtered noise is Gaussian - far the series

real part (7 ~'d” (w)expliur})

t =0,],.. may be viewed as the cutput of a nmarrowband filter centered at frequency \. (See
Brillinger (1981), page 97).

The natural assumptions under which this folk theorem may be derived mathematically are
stationarity and mixing of the process X. Mixing in the sense that well-separated values of the
process are at most weakly dependent in a statistical sense. Mixing typically accompanies
continuous spectra (of all arders not just of 2nd arder). (In the absence of mixing, ergodic
companents of the process are likely to have Fourier values with appraximate independence and
Gaussianity.)

The covariance continues to be given, appraximately, by expressions (1.1) and (12) in the
untapered and tapered cases, respectively. The transform value d” (w), w # 0, can be shown to be
asymptotically complex Geussian with variance proportional to the power spectrum § (w) and the
transfam values d7 (w), €7(v) can be shown to be asymptotically independent for distinct
frequencies w and v. It turns out that not anly are the values at distinct frequencies appraximately
independent, but 50 too are values of the Fourier transform at the same frequency that are based
distinct stretches of data.

The approximate distributions indicated here are useful in suggesting approximations to the
distributions of various time-series statistics and for suggesting salutions to estimation problems of
interest. For example, in the untapered case the pericdogram is given by

I" (@) = (27 ) |d" (W)

with d7 (\), A # 0, approximately camplex Gaussian having mean 0 and variance 27TS (). The
mod-squared of a complex Gaussian has an expanential distribution (a chi-square distribution with 2
degrees of freedam). Hence one is led to appraximate the distribution of /7 (w) by that of an

ial variate having mean §S(w) -~ a surprisingly useful approximation. (It must be
remembered however, that if there is an appreciable dynamic range in the population spectrum,
leakage may occur, and the mean may be far fram § (w).)

The approximate narmality of Fourier transform values is a form of Central Limit Thearem
result. The approximation may be expected to break down in situations where the Central Limit
Thearem is likely to break down, e.g. long range statistical dependence in the process or low arder
maments either failing or nearly failing to exist.
1d. IDEAL DEGREES OF FREEDOM

The preceding discussion suggests a direct estimate of a power spectrum, and an appraximation
to the distribution of that estimate. The estimate is

L
$@) =L 3 I" ()

¢=1

where the w, are distinct frequencies near w, say of the form 2n(integer)/T. The mean of the
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approximating distribution is S (w), the variance is S (w)*/L. An appraximate 100 B% confidence
interval is given by

2 sk (3R) < 5@ < 2 yd (CFR)

suggesting that it will be better to graph log § (w), rather than to look at § (w) itself. (Here x}(y)
denctes the 100 y% paint of x* on f degrees of freedam.)

This last expression gives guidance an how to choose the value of L if ane has some idea of the
desired precision for log § (w). It must be remembered that it has been assumed here that the
frequencies wy used in the construction of the estimate are near w, in the sense that all S (w) are
near S (w). In practice this limits the size of L, for, as some wy get removed fram w, the estimate
gets mare biased.

le. PRACTICAL DEGREES OF FREEDOM

It is seldom that the direct estimate will be formed in such an elementary fashion as in the
previous section. In practice the data will have been tapered and the periodogram values will be
averaged with unequal weights. If periodogram values based on different stretches of the data are
averaged, the stretches may be overlapping (and a shingled estimate farmed).

In these mare complicated cases, approximating the distribution of the estimate by S (w)x//f
remains useful, however, the degrees of freedam may not be determined by simple counting. If
§ (w) denctes the estimate, then ane way to determine an f is to equate the large sample variance of
the estimate to that of the appraximating distribution, i.e. to take

f ~ 28 (wivar $(w) .

(S (w) will drop cut of the right hand side here for large T .)
Many estimates may be written out as quadratic forms
;q’(t#)x(r)x(u)
in the data, with the ¢q7 varying with the tapering and weighting employed. As indicated in Section
6g the variance of such an expression is, in the ian case,
2f [ 107 (aP)P'S (a)S (B)da dB
where
Q" (aB) =.Eq’(w) expli(fa—up)} .

This discussion leads to the expression, if S (w) is nearly encugh constant,
f=uf [ |0"(aB)Pdadp

=UQ2n)* T ¢"(t4)

for the degrees of freedom.

For the simplest estimates, if the halfwidth (frequency resolution) of O (a,a), the window with
which the estimate looks at the spectrum (see Section 6g again), is 8 and if there are N data paints
equispaced by A, 30 that N degrees of freedam are equally spaced fram 0 to w/A (hence at a rate of
1 every wN A), then about
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Y(wNA) = (¥m)(NA) ' (18.9)
degrees of freedam cught to fall in each estimate. Expression (18.4) is then the product of the total
cbservation time and frequency resolution.

Actually we are likely to get up to 50% fewer - perhaps because the underlying spectrum is not
constant enough ~ ar S0% more —~ because the tails of our windows contribute same stahility. Thus

(18.4) with a large grain of salt (+25%on +50% perhaps) is often a reasonable basis for assessing
degrees of freedam.

If. RESULTS FOR VECTOR CASE
Suppcse the series of interest X(¢), ¢t =0,  1,.. is r-dimensionally vectar-valued, stationary,
with variance-covariance function
c(u) =ave{[X(¢+u) = W[X(¢) - W%
where ™" indicates transposing a matrix, and with spectral density matrix

S =20 T e(u) api—iw} .

. -0

The Fourier transfarm of the data stretch X(¢), ¢ =0,...,T =1 namely
£ () =')_’:: X(r) expi-iur}

satisfies central limit results analogous to those of the univariate case. Before indicating these, we
define two distributions that are basic to the description of statistics in the vectar case.

A random variate of the faom Y=U +iV is said to be multivariate complex normal of
dimension » with mean 0 and and covariance matrix X if [U",V']" is ardinary multivariate normal
with mean 0 and

ave UU", mw=%k2

mvv'-%nnz

The averages of matrices here mean the matrices of corresponding averages. One has ave YY" =3
and ave YY' =0. A random variate of the fam
w=3Y¥
J=1

is said to be complex Wishart of dimension r with degrees of freedom » and parameter 2 if
Yy, ...,Y, are independent multivariate complex narmals with mean 0 and covariance matrix 2.
(Note that these are complex degrees of freedam, each corresponding to the real degrees of
freedam.)

These definitions having been made, ane can now state ane of the central limit results for & . If
the series X is stationary and suitably mixing (see 18b), then & (w), for w # 0, is asymptotically
multivariate complex normal with mean 0 and covariance matrix 27T S (w). It follows directly that
the matrix of periodograms

F(w=02T)" & (0) F (0)°

is asymptatically complex Wishart with degrees of freedam 1 and parameter S (w).
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Fourier transfarm values d at distinct frequencies (eg. of the form 2n(integer)/T are
asymptotically independent. This last suggests taking

S =L"3 Fla),
€=0

with the w, distinct and near w, as an estimate of S (w). It further suggests appraximating the
distribution of the estimate by L~! times a complex Wishart with degrees of freedam L and
perameter § (w).

Details of the large sample distributions of varicus statistics based an § (w), e.g. coherences, and
of the construction of confidence intervals, as well as references, are given in Brillinger (1981),
Chapter 7.

1g. RESULTS FOR CEPSTRA
For the Gaussian case, see Bogert and Ossanna (1966).
1h. RESULTS FOR BISPECTRA
The variance of the third arder periodogram is given by
var I7 (w3) ~ = S (S (S (wrh)

for 0 < w < v< 7. Periodogram values at distinct bifrequencies are asymptotically uncorrelated.
Hence if a bispectrum estimate is computed by averaging L distinct periodogram values, then

var § (@) ~ 7 S (@SOS (@)

Tﬁslmapum‘misdimpatame,bothinlaﬁngtoueifam-woﬁspemumtobe
demonstrable in a situation at hand and in the setting of confidence intervals around a computed
estimate.

The distribution of the estimate may be further shown to be asymptctically normal, see
Brillinger and Rosenblatt (1967).

In some circumstances it turns cut to be mare convenient and appropriate to estimate the
variance by the expression

S 0, ~F)in(n-1)
J=1

with the Y, estimates based on disjoint collections of periodograms (see Helland et al. (1977).)
li. FOURIER TRANSFORMS OF POINT PROCESSES, ETC.

One can Fourier transform anything, often meaningfully. Like many other representations, the
Fourier transfarm can represent anything in discrete time and almost anything in continuous time.
Fram what we have seen in the case of ardinary time series, the use of a Fourier transfarm does not
imply that there are periadic phenomena (although there may be). Speaking more broadly, the
importance of the FT is not a consequence of the nature of the data cbserved, rather it is based an
the presence oar usefulness of linear-time invariant filters in many situations of interest.

As suggested above, ane can carry through spectrum estimation and system identification by
frequency methads for random processes of characters different from those of ardinary time series.
Some details will now be presented.

1j. POINT PROCESSES
The finite Fourier transfarm of the stretch 7, < ... S 7y(r) of paint process data is given by
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d7 (w) =':§) exp{—iur}.

Suppose that this transfarm is computed for a paint process, N, that is stationary with rate p and
power spectrum S (w), and that is mixing (that is, that values of the process far apart in time are
not strangly dependent statistically). For the transfarm d” (w) ane then has

ave d’(m) =p¥ (w)

var & (0) = [ | (o) S (a)da
where the function
¥(w) =jr' exp{—i wt }dt
°

has its mass concentrated in the neighborhood of w =0. The mean and variance of the standardized
transfarm (277 ) */%d” (w), w # 0, may now be seen to tend to 0 and S (w) respectively as T - o,
This suggests basing an estimate of S (w) an the periodogram I7 (w) = (20T )7 |d” (w)[>. In the
neighbarhood of w = 0, the expected value of d7 is seen to go to = with 7. This suggests that the,
msm‘ly present, very-low-frequencies (crudely “d.c.”) leakage would be reduced by basing an
estimate on the mean-carrected FT d7 (w) — p¥ (w) where p =N(T)/T. Further, the earlier
discussion of the key role of tapering suggests computing the FT

a7 (@) =3, A ()expl—iwn,} - pHT ()

=1

HT () = [ A7 (¢) exp{—iwt}ds
with the suppart of AT corresponding to the domain of dbservation of the process. For large T one
has, for this Fourier transfarm,

wve LT @)= [ T (m0)PS (a)da @1)

~ 5@ | ()P

for all w.

In the case that well-separated values of the process are not strongly dependent, a central limit
effect is present. For large T the distribution of the FT is approximately normal (with mean 0 and
variance (2.1)). Further, and this is perhaps surprising, for w and v moderately far apart, the values

independent.

d” (w) and d7 (v) are asymptotically
This discussion leads to the consideration of

S@=¢ Z W@ f W (@Pda

unanmated.s'(w) for w,...,..x distinct frequencies near w. desmsnmﬁmlnmggemthat
the distribution of §(w) may be appraximated by S (w)x?e/(2K) with )* a chi-squared variate.
This is the same distribution as was appropriate in the ardinary time series case.
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Expression (2.1) indicates that if S () is far fram constant, prewhitening may be essential. This
is possible in the present situation, at the expense of converting the data from paint process to
ardinary time series. Spedifically, suppose ane farms the ardinary series

X(1) =§ a(t-)

for a function a("), i.e. one inputs the point process to the carresponding filter with impulse response
a(r). Then the specirum of X will be |A (w) [ (w). By judicious chaice of the filter ane may have
A ()PS () nearly constant and reduce one’s concerns over bias in its estimation. The spectrum
estimation procedure, with prewhitening, is, then, first pass the paint process through a linear filter
to obtain an ordinary equi-spaced time series with relatively flat spectrum, then estimate that
spectrum, then take this result times |4 ()| as the final point-process spectrum estimate. If ane
proceeds via this route, an FFT may be used in the computations.

As remarked above, FT values at distinct frequencies are asymptatically independent when the
process is mixing. It may also be shown, (see Brillinger (1974) for example), that, under these
hypotheses FT's evaluated at the same frequency, w, but for disjoint stretches of data, are
asymptotically independent and Gaussian. Thus estimates of spectra may even be formed by
averaging the periodograms based an different segments of the data.
lk. MARKED PROCESSES

For the marked point process {(r, M,)}——a et
XO= 3 M
Olvl<t

ie. X () is the accumulation of the marks fram time O to time ¢. Were the 7, earthquake times
and M, the energy of the j-th quake, then X (¢) would represent the total energy released from time
0 to time ¢. The FT of a stretch of this process is given by

T
d’(w)= 3 Map{—iur}={ ap{-iu}dX(r).
0 oy<T 0

If the process X is stationary, then ave {dX (t)} and cov{dX (¢t +u)dX (¢)}, for example, will not
depend an ¢. The spectrum of the process may be defined as

S (w) =(2m! } exp{—i am }eov{dX (¢ +u) X (¢)}/dt .

As in the previous section, this spectrum may be estimated by smoothing |d7 (w) P, or better yet
smocthing the mod-squared of a mean-carrected tapered (complex-valued) FT. The FT will be
asymptotically normal provided that well-separated segments of the process are anly weakly

statistically. This once again leads to a chi-squared appraximation for the distribution of
the spectral estimate.

Prewhitening may be carried cut, farming
Y () =f a(t—u)dX (u) =§M,a(t-r,)

priar to spectrum estimation, if desired. Essentially, this reduces the problem to cne of the
estimation of the spectrum of an ordinary time series, provided there is enough data that the initial
transient from the filtering has died away.

The corresponding bispectrum, § (w,), appears, for example, as
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jim = @ ),1. ave {d" (w)d” (Wd" (wh)}

o, v# 0, as it did for the FT of an ardinary series.
1l. PROCESSES WITH STATIONARY INCREMENTS

It may be the case that a series, X(-), is not stationary; however that differences
AX(t) =X (¢+A) — X (t) are stationary. (For example see Lindsey and Chie (1976).) Such a
series has a time-side representation

X(t) =a+p +j.' u)du
°

with ¢ a stationary series, and a frequency-side representation
X(@)= } [ﬂl%}.-_l]z (dw)

where Z (dw) is a random measure with the property cov{Z (dw) 2 (dv)} & w—)S (w)dudv (see
Yaglom (1958).) Ansumatedﬂnq:ectnmS(m) may be based an the FT

{ exp{—iar} dX(t) .

In the discrete time case one would evaluate the FT of the differenced series,
r-2
S ap{-w}{X (+1)-X(t)] .
=0

The operation of differencing plays an essential role in these analyses of ardinary time series data
devdopdmhmdlmhm(l”ﬂ),fmmmﬂe. Its use can be thought of as secking out
operations to apply to a nonstatiomary series, ar to one containing pure periodicities (seasonal
effects) to make it mare nearly stationary with smooth spectrum.

2. PLANNING/DESIGN

Weﬂmtomewmlyﬂznntmnalmmcbngnmgdatacuﬂmm(pasblywm
planning experiments) to callect data for later spectrum analysis. Much mare detailed consideration
of mare diverse issues is likely to be very rewarding.

Careful thought about measurement techniques is always very desirable. In particular, what is
wanted is useful measurements, for examination over some limited frequency range (which may
cover many octaves, but may nat). Good frequency response cutside the desired frequency range is
adundnmage,ladngtoahasn;p’dimand,mm.tomecanﬁlymllumemcvalsm
digitized series. It may be warthwhile to modify the measuring device to make its frequency
response poorer! And if we cannot do this, we may want to put a suitable filter as close to the
device as is reasonable.

Careful thought about the character of the measuring device’s errors may be very helpful. Even
simultaneous measurement with two devices may be worthwhile, cither because they will have
reasonably independent errors (when the co-spectrum of their cutputs will be closer to the spectrum
of their comman input than either of their spectra will be) or because they have different frequency
responses (when we can either use their cutputs in different frequency regions ar, even, do a careful
job of combining their cutputs into a single, broader-band result).

Besides issues of frequency response and independence of measurement errors, it is dften
important to face up to questions of dynamic range. How large a ratio, of largest measurable value
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to Jeast difference that needs to be measured, must we be prepared for? Can we reduce this ratio a
labyard’ullydstcrtmg (linear filtering) tbﬁeqmympmsedﬁzmumg&me,athcxby
changing it ar putting a filter close to it? (Differentiation or integration befare digitization are just
special cases.) Such considerations can also be vital.

It is probably best to think of all measuring devices as including an attached filter, carefully
linear, chasen to meet the real needs, not to gain a flat response.

In every case, we should at least think about measuring the frequency respomse - in amplitude
and phase - of our measuring devices; often this will be impartant, not anly to think about, but to
do. (This is clearly a matter of system identification, see parts E and K.)

If, as is so often the case, we plan to digitize the cutput from the measuring device, we need to
ask also about the quality of the digitizer, both in dynamic range and in noise background. Far
example ane might take a slow ramp as input.
2a. DESIGN FOR SIMPLE SPECTRA.

Here, besides the general issues just discussed, the main issues are measurement interval and
(relevant) recard length, both considered in relation to aliasing, resdlution, and precision of estimate.

2b. ALIASING.

Reduction of aliasing problems deserves cur most earnest and careful consideration: Realism
about the highest frequency that matters. Effarts to filter cut (reducing to unimportant levels) all
frequencies much higher than thase needed. Choice of time interval far digitization. All these
deserve careful attention. All must fit together.
2c. PRECISION AND RESOLUTION

For naiselike inputs, precision of spectrum-average assessment and narrowness of bands
averaged over are antithetical in nature. We have to buy the product of precision and resalution by
how many data paints we collect (see our intraduction for the simple farmmlas). Costs of recording
and processing, though still falling rapidly, can still contrd. Time durations required can cften try
to grow to unacceptable lengths. Good judgment and good engineering at this paint is crucial.
2d. PLANNED UNEQUAL SPACING

When our concern is with time and (1-dimensional) space together -- ar, if you like, with spectra
and cross-spectra for points along a line - we often have to accupy each paint from which we take
data with a separate measuring device. Expense and effart may dramatically limit the number of
occupied paints. We may be able to compensate samewhat for a shartage of paints by taking
recards for extreme durations. In such a case, uniform spacing is usually far from desirable, and the
difficulties of partial aliasing, though formidable, may have to be faced. Bretherton and
McWilliams (1980) have treated this problem with considerable care.

Occasionally, in such combined time-space analyses, we can successfully collect data for different
spacings at different times. Trying to do this is usually the mark of the eternal optimist, but Munk
et al. (1964) have shown cne instance where it works.

2e. DESIGN FOR VECTOR SPECTRA AND SYSTEMS

As long as we warked with single inputs, consistency of time was time’s anly vital aspect. Time-
jitter, as in time of digitization, for example, would be crucial, but absdute time would ardinarily
anly be needed roughly. Once we go to two ar mare inputs, we must add to all the single input
considerations a very real care about time shifts between inputs, both systematic and varying. Beng
very sure of what is likely here can be vital.

If we know them, time-shifts between simultaneously recorded or processed inputs (a) must be
accurately known and (b) can sametimes be helpful. In studying tsunamis criginated near East
Asia, far example, callecting records for the same dates and hours at Hawaii and La Jolla would be
silly. The rough travel time of the waves is well known. We ought to displace cur cdlection
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intervals accardingly. This both ensures looking at the same wave trains at both sites and reduces
technical difficulties with spiraling. This happens naturally for large earthquakes, when strong-
mation seismometers trigger on the first arrival of the signal.

We need not use the same filters an all inputs, but we need to know the performance of each
measuring device-filter pair, now borh in amplitude and in phase.

If delays - often group delays involving nearby frequencies rather than overall delay times -- are
unknown, we will do well to allow for correspandingly mare extended collection intervals, so that
compensation for spiralling (recall subsection 8f) is mare tharoughly available.

Frequency resalution is likely to retain its importance. Precisin of spectra may remain its
effective antithesis, but precision of coherence may take over from it. The antithesis -- and the
frequent need for mare data than seems desirable (or even bearable) remains.

All the other considerations for single inputs retain their own importances.
2f. DESIGN FOR CEPSTRA

If we hope that cepstra will help us, our first thoughts should probably be about aliasing. The
ripple associated with an echo goes right on and an, through the fdding frequency determined by
the digitization interval. Thus, if substantial power accurs above the fdding frequency, its ripples
will be folded on top of principal alias ripples, and cancellation may well occur. The best cure here
seems to be careful bandlimiting of the input data prior to digitization. The procedure is then:

(a) careful analog fitration, with cutting-off concenmtrated between w = % (L) ad
0=2-3 &),

(b) followed by digitization at interval A,

(c) fallowed by fine-grained spectrum calculation,

() followed by discarding estimates for 0 > 2 (F)

(e) followed by taking logs,
(f) followed by broad-stop liftering,

(g) followed by a spectrum calculation.
We are not now really warking in the frequency domain, so the resdlution(bandwidth)-precision
antithesis is not as clear. We do gain, however, the ahility to use a finer-grain (alternatively, mare
precise) initial spectrum when we collect more data, and this can be vital for a clean, well-
interpretable cepstrum. The antithesis may be concealed, but is almost always there.

A further question about frequency ranges arises. While many echoes are sharp, many are
dispersed. Once delay is frequency dependent, it may be urgent to separate two ar mare frequency
bands for separate cepstrum analysis. In any event, discarding the very-lowest-frequency part of the
initial spectrum, and the part well into or above the actual cutaff, is likely to be important.
2g. DESIGN FOR BISPECTRA

Various practical considerations arise in the estimation of a bispectrum. These include: sampling
interval, resolution, prefiltering, tapering and stability among cther things. All the dd questions and
difficulties of the second-order case arise and same new anes as well.
2h. ALIASING

Suppase that the continuous series X has bispectrum §(A4). Suppose that the values X (1),
¢t =0,1,.. will be analyzed. The bispectrum of X as a discrete time series relates to the continuous
ane via



Time Series 12

SO = § S (\42mj , p2mk) (2.1)

Further complications arise because § has the symmetry properties

SO =S (W) =S\ A—) .
The fundamental domain over which s needs to be estimated reduces to the triangle with vertices
00), (m0), (2n/324/3). All cther bifrequendies are reflected into the domain.

Expression (2.1) makes it clear that ane needs to take the sampling interval sufficiently small
that not much bispectral mass lies cutside the fundamental domain and that, where possible, ane
wants to lowpass filter X to remove bispectral mass cutside that domain prior to sampling the series.

2i. PREWHITENING AND TAPERING
If the series X has zero mean and if

d* (@) = 3 X (A () exp{~iax}

denctes the FT of tapered values, then
ave {d" (w)d" (W4T (~w-4)}

=Jf J H (HT B)HT (—a—B)S (w—a—B)dadp . 22)

This last expression makes it clear that tapering may be used to increase the resdution of a
bispectral estimate (decrease the interference between neighbaring bifrequendies). If the bispectrum
has substantial fall-off, tapering may be absdlutely essential.

Prewhitening may also be of great importance. If the series X is passed through a linear filter
with transfer function A , then the hispectrum of the resulting series is given by

A (@A (WA (—o-9)S (w) .
If this last bispectrum is more nearly constant (white) than S (w,) itself, then expression (22) may
be expected to be mare nearly propartional to it. After carrecting far the effect of prefiltering, i

dividing the estimate of the bispectrum of the filtered series by A (w)A (VA (—w—), a less biased
estimate may be expected to have been cbtained.

2j. BIOCOHERENCY AND BIOCOHERENCE
In dealing with the bispectrum it is often convenient to consider the biccherency

S (wp)/ VS (@)S (WS (w+) (23)
whose magnitude is not altered by linear filters, and which may be estimated by
$ () VS ()S ) (wh) . (24)

The large sample variance of the estimate (2.4) is given by T/4nL if $(w,) is constructed in the
mamner of Section 18g and if the power spectral estimates are formed with the same bandwidth,
20L/T, as § (wy). (In consequence their stability is much greater.) The expression T'/4nL may be
used to decide on values far T and L.

The estimate (2.4) is further complex Gaussian with mean (2.3) and the indicated variance. In
the case that (23) is 0, the mod-squared of (24), (the sample biccherence), will be appraximately
exponential with mean 7'/4nl . This result may be used to examine the significance of biccherence
estimates.
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2k. DESIGN FOR POINT PROCESSES

In some circumstances, one has some contral over the cdlection of paint process data. One may
be able to select the length of the time period, T', over which the data is callected, and thereby have
some effect on N (T') the number of paints cbserved. One may be able to increase or decrease the
rate of the process, which also affects the number of paints cbserved. In some situations ane may
even be able to choose the particular process, e.g. Poissan, from which inputs to a system are
selected.

2l. THE POWER SPECTRUM CASE

Suppase that the power spectrum, S (w), of the paint process N is estimated by: (1) tapering the
data with A7 (t) =h(t/T), (2) Fourier transfarming, (3) forming the periodogram, and (4)
smocthing the pericdogram with W” (a) = B5'W (By'a). (where W(a) is a weight function and
By is a bandwidth parameter). For this estimate ane has

var §(w) ~ Br)2n f W(aYda [ h(ey'ar (f meeyar) sy,

(See Brillinger (1972)). This relationship is the same as the ane for ardinary time series. It makes
it clear what one wants: T large, and both W and A nearly constant an their supparts. Fraom bias
considerations ane knows that ane wants the spectrum S near constant, B, small, and W and the
Fourier transfarm of A dying off rapidly.

2m. THE BIVARIATE CASE

Suppose that ane has the bivariate point process {M N} and either: N is the cutput of a linear
system with input M or ane is interested in predicting the process N' from the process M in a linear
fashion. For both of these problems cne is lead to consider the estimate A (w) = $yu (0)/S yur (w)
of the transfer function A () = Sy (w)/Suu (w). If estimates are constructed as in the previous
section the asymptatic variance of A (w) is

B:T)"2n f W(ayida [ h(eyas (f h(s)de)” (1-IR (&) Phaww () () -

It is clear that the behaviars indicated as desirable for By, T, W, A in the previous section remain
desirable here. It is further apparent that cne wants: the coherence |R P to be near 1, Syy (w) to be
mns Iﬂg'u (ﬁ’) toullfp.

These considerations refer to the estimation of A at a single frequency. If ane comsiders the
problem of the estimation of the whole course of the function A, then there are arguments
suggesting that ane should arrange for the input spectrum to be constant (at as large a value as is
passible.) This is the case for a Paisson input.

One final remark relates to bias. If the process N is a delayed version of the process M then, as
was the case with ardinary time series, it can be absdlutely essential that the two data stretches be
realigned. Otherwise the estimate Sy, can be attenuated to 0 by the spiralling.

3. COMPUTATION

The estimates and techniques discussed mean little if they are not actually evaluated in
drcumstances of interest. These days exceedingly large and complex data sets are collected
routindy. In other circumstances it may be necessary to wark in real time. Camputational
considerations can be very important.
3a. THE FFT's

In much of what has gone befare, the FT

')_:: X (1) api-iat},
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has been basic. Typically its values are required at frequencies of the farm w = 2m/U, ¥ =0,..,U~-1
with U an integer = T. If X(¢) is set equal to O far ¢ =T ,...,U -1, then what is being sought is
the discrete Faurier transfarm

z’ X (¢) expl-i2mt/U} (G.1)

u=0,...U-1. Imugﬂzqznumsreanedtoevalmtetbcmpluapamﬂ the direct
evaluation of (3.1) requires U? muiltiplications. If U is large, this can require much computing
time. Further, round-off error may become substantial. (Gentleman and Sande (1966)).

Luckily, fast Fourier transfarm algarithms exist to reduce the number of operations required. In
themmdtmqnedase,vsrmdﬂ:emqmdnmbcdmnuphcan-u
O(nU) = O(U logU). One algarithm for achieving this result is given in Cooley and Tukey
(1965). See also Gentleman and Sande (1966). More recently algorithms leading the FFT's
symmetrics have been presented that involve anly O(U) muiltiplications, see Winograd (1978),
Morgera (1980).

The multidimensional case involves repeated Fourier transfarming with respect to the various
time arguments. This may be dane via repeated uni-dimensional algarithms. Optical systems may
sometimes be used to advantage. Turpin (1981) indicates how a large uni-dimensional transfarm
(lo'clo’puns)mybemhnthhamndatcpucalsystan.bystadnngmvesegmmsd
the series.

Tapering a data set merely involves replacing the value of X(¢) by A7 (¢)X(¢) in the uni-
dimensional case. This doesn’t add much in the way of computations. The suppart of AT
correspands to the domain of observation. If this domain is irregular, as aften happens in the spatial
case, h” handles the difficulty quite directly, if its transfarm can be kept manageable. The FT may
then be computed over a regular region, with A" equal 0 where no datum is available.

3b. FILTERING AND COMPLEX DEMODULATION

Filtered series and, in particular, complex demodulates may often be usefully computed via an
FFT. Suppose ane has a stretch of a series X. Suppase ane wishes the series ¥ corresponding to
passing X through an linear time invariant filter with transfer function A . If d] (w) denoctes the FT
of X, then that of Y will be appraximately A (w)df(w). This suggests determining ¥ (¢) as

U ";': expli2wu/U)JA [2—;‘-141 [1;5] (2)

with U taken to be sufficiently large that aliasing difficulties do not arise. The FT values
dI(2mu/U) may be evaluated by an FFT, having padded the stretch X (¢), ¢t =0,...,T -1 with U =T
zerces. The inverse transform of (32) may be evaluated via an FFT. (See Gentleman and Sande
(1966) .) Programs may be found in Digital Signal Processing Committee (1979).

Suppase ane wishes the complex demaodulate of the series X at frequency A. Let A (w) be near 1
for w near \ and near 0 dsewhere. The demodulate is then given, appraximately by expression (3.2)
times exp{—i\¢}. Being slowly varying it will not need to be computed for every value of ¢, e.g. ane
might compute it for £=0,A24, (J-1)A. The inverse transform in (32) can therefore be arranged
to be of size U/J anly.

3c. THE POINT PROCESS CASE
The paint process FT is
N(T)

-1

In some circumstances it is convenient to appraximate this FT by that of an ardinary discrete time
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series X (€A), £ =0,1,..., where A is small and X(¢h) =1 for ¢ the integer part of 7,/A and
X (€A) =0 ctherwise. This series will be 0 most of the time. The difficulty is that now a transfarm
of length at least T/A is required and this may be very large. In essence ane is here choosing to

analyze the series X (€A) =N ((¢ -%)A. (¢ + Al

The paint process N may be replaced by ardinary time series in cther ways as well. French and
Holden (1971) suggest farming

X@) = ? [sin =t —,))/ (e —,)

att =0,1,... An FFT may then be employed.
Yet another approach would proceed as follows: set
7 =mh +}§ (28.1)
with m, integral and |3, | =< A/2. Then may be written
S ap{-iumh}(1 +iwl —of8Y/2 + ---)
J

=3 ek o(m) + in3 e"=x,(m)

SEetam)+ - @82)

ko(m)= 3 1
.F

k(m)=3 &
-ﬂ

ky(m)=3 &
-I-

Expression (282) may now be calculated by FFT's.

If we want to use w's up to wyax and require to approximate exp{iwh} to 1% then we can use
the first two terms far

B = @axh/2 s 14

To meet the same constraint with the first three terms would require
The ratio of numbers of intervals is 39/.14 = 2.7 which is greater than the ratio of numbers of

FFT's, namely 15, s0 that going as far as the third term may easily be worthwhile. Similar
calculations give
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max ratio
terms = FFT's |<nb| ratio
2 4 14
3 3 7
4 q 57
5 1 5
Suggesting it may pay to go to 4 ar 5 terms.

If we use the appraximation
e'* = 9994 + 9567i — 4853 ¢
which is good to |earar| = 01 for —6 < 0 < 6 instead of the leading terms of the Taylor series,

we can use the first two terms over about 4 times the interval. Economizing (see e.g. Anramonitz
and Stegin 1964, p. 791) the higher-arder appraximations over well chasen intervals will allow

corresponding gains.

It will be seen shortly that, in the paint process case, it may be mare effective to do some
computations an the time side, befare proceeding to the frequency domain.

3d. THE SECOND-ORDER CASE
Cansider the problem of farming estimates of power and cross-spectra, transfer functions and
coherence for ardinary time series and paint processes.
3e. THE POWER SPECTRUM OF AN ORDINARY TIME SERIES
The steps in ane power spectrum estimation direct procedure include:
preanalysis (e.g. trend removal, prefiltering, sampling, prewhitening
tapering,
padding with zercs,
Fourier transfarmation,
mod-squaring (to dbtain the periodogram),

smocthing (the pericdogram), (in time or frequency).
'Iheshmateatfrqxn:yuczmlu may be written

‘At AW N

S =3 W, I7 [MZT"‘] (1)

where the W, are weights summing to 1, where the data has been padded by adding U~T zercs,
where
I"(w) =

T e AT (£)X {¢) “w s KTy (32)

is the periodogram, and where X ' denctes the series after preanalysis. Padding with zercs plays
several roles. It allows an FFT requiring highly compasite U to be employed, it avaids the
unnecessary circularization of the data with the accampanying aliasing (discussed at the end of
Section 6a), and it lets the periadogram values be as finely spaced as desired.

In same circumstances step 6. may be replaced by:
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6'. inverse transform

7. multiply by lag window

8. transfarm v
for an indirect estimation procedure. This makes the smocthing window chaice a time -- rather than
frequency - side problem. (The computations may now need to be done in double precisian.)

As ane has the relationships

r-

T

|-1

b

6(v)=? z:. X(t+)X 1)
=22 'S It V) explizem/U}
U '§ ™ i2nvwu
and
I'(@) = 5= 3 &) expl—iuw)

proceeding in the last fashion is largely a matter of convenience.

The estimate (3.1) is based an smocthing the periodogram of the whole data stretch, as a
function of frequency. There are circumstances in which it is mare useful to proceed by computing
the periodogram, I7 (w,¢) of the £-th segment of the data as a function of ¢, to form an estimate

L il’(u,() .
¢=1
If the segments overlap, this is called a shingled estimate. In some circumstances it may be
convenient to weight the segments unequally.

This last estimate has the form of the narrow-band-pass filtered estimate or of the complex-
demodulate estimate. If d7 (w,¢) denctes the FT of the ¢-th segment, then exp{iw¢ }d7 (w,€) for ¢ in
the ¢-th segment provides a band-pass filtered (at frequency w) version of the series.

In same circumstances ane will smooth periodograms in both the time and frequency domains.

Each of the above estimates are quadratic functions of the cbservations. Employing an FFT can
reduce computation time and round-off error.
3f. THE CROSS-SPECTRUM

Suppase the stretch {X(¢),Y (¢)}, ¢=0,..T =1 of bivariate series is available. The spectrum
estimate analogous to (3.1) - (32) is given by
$o(e) =3 W.IF, [o+2l

‘ /)

where \ ]
I5(w) = [2 e AT ()X '(t)] [2 e hT (t)Y '(t)]lZu ShAT(1).

X' and Y’ dencte the results of preanalyzing the series (removing trends, prewhitening, re-aligning,
etc.) Different tapers may be employed for X’ and Y. (Notice the complex conjugate implied by
=i in the final exponent.) It is clear that an FFT may prove useful.

As in the previcus section, it may make sense to form an estimate by smoothing the cross-
periadograms of segments of the series,
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LS (W) .

=1

Once the estimates $yy, Syy, Syy are available, estimates of the transfer function, coherence
and residual spectrum may be farmed. The impulse response may be estimated by an expression of
the form

2(u) =P S axplizmp/PIA 2p/P)E’ (p)
0

with k”(p) a window function and P a pasitive integer. When the basic series involved are
continuous in time, insertion of a suitable window function can be crucial. Once again an FFT
generally proves useful.

3s. THE POWER SPECTRUM OF A SPATIAL PROCESS

Let
d"(NW) =3 ap{-1(xx 9T (x y)X (x y)
=9

dencte the FT of a piece of the spatial array X, with taper inserted. The pericdogram of this
(tapered) data is given by
P = W) P2a S BT (x y) .

To cbtain an estimate of the power spectrum of the series X, ane simply smocths this peri
as a function of \,.. The data may have been detrended prior to computing the (repeated) FT.

Naturally, in an often used alternate approach, periodograms might be computed for (tapered)
segments of the data and these periodograms averaged together. This might be useful, for example,
if there was a very large vaume of data.

In the isotropic case, the power spectrum is a function of A + 2 cnly. This means that a
further smocthing may be carried through, with a consequent increase in stability. Specifically,
periodogram values at frequencies A,u with similar values of A + 2 may be averaged together. One
interesting effect that oocurs is that estimates with larger A + 2 are mare stable, relatively,
because mare periodogram values may be averaged together. Brillinger (1970) provides a proof of
this last.

3h. THE POWER SPECT. RU‘M OF A POINT PROCESS

The power spectrum of a paint process may be estimated at frequency w # 0 by smoothing the

. \
periodogram .
I'(w) = (w)"Iz =p{-zm,}|= :

i

Alternatively it may be estimated by averaging together periodograms based on different stretches of
the process.

In a number of circumstances it tuns cut to be faster to form the estimate in an indirect

fashion, fdlowing definition (11.1). Specifically one estimates p(u) = Prob{dN (t+u) =1 and
dN(t) =1} by

PW) =3 #liym—w| < g2}/ gr (33)

for some binwidth 8. Then ane computes
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8@ =2 + 2 S vt 08 pup - 7] (34

where p =N (T)/T is an estimate of the rate of the process and where w” is a smoothing window.
The estimate (33) may be computed rapidly, as it simply involves counting. Expression (3.4) may
be camputed via an FFT.

3i. THE HIGHER-ORDER CASES

In estimating higher-order spectra, such as the bi- or tri-spectrum, computational considerations
can become crudial.

3j. THE BISPECTRUM
Set

d"(w) =3 exp{-iINAT ()X 1)

where X {¢) denctes the preanalyzed values. The third-arder periodogram is given by

I* () = d7 («)d” (94" (~m /(20 T A7 (1)?
The bispectrum may be estimated by averaging this function. In carrying out this averaging, the
periodicity and symmetry properties should be preserved. These include:

Moy = I'(vwv) = I"(~w-vw)

Iy = I"(wR2my) = IT(0p+2n)

I"(wy) = I"(-w™)

Alternatively, the bispectrum may be estimated by averaging third-arder periodograms evaluated
at the same bifrequency (wy), but based on different stretches of the data ar by averaging
X(tp)X(t,l)X(t-ur-'v)slf\mmdl where X (¢t ) denctes the result of narrow-band-pass

the series X at frequency w. [’Ihuﬂmmybemeddrmgbbymﬂa
dumnmmnhnm:fbmd.]

3k. SPECTRA OF ORDER K \
Suppcse that a stretch of all J vector-valued series {X,(¢);j =1,...,/} is available for analysis. Set

) =3 exp{—iM AT (£)X, (¢)

mx,dmﬁqﬂnp&ndyudjdnm The periodogram of arder K, corresponding to
companents a,, . . . ,ag (selected from 1,..,J) is given by

L. q... o)
=d]\(w) - - - df (e} 2m)* ; AT ()"
It is convenient to make this definition by means of a dummy argument «y given by —uw, —...~wg ;.

Daing this makes the symmetries and computational approaches stand cut mare dlearly.
The carresponding spectrum is now estimated by smocthing the periodogram, eg. by
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21, 2mug
T ama——
.‘;.‘W"...,‘I [q+ U soee 0 + U ]

where the weights sum to 1, vanish if any », =0, and are symmetric in u,, ... ,ug. (It is here
assumed that the « have the fam 2n(integer)/U and that discrete FT’s of length U have been
formed.) This gives the estimate appropriate symmetry and periodicity properties.

Estimates involving the averaging of periodograms based on separate stretches and based on
narrow-band-pass filtered series are also available. Brillinger (1965) and Brillinger and Rosenblatt
(1967) are relevant references.

4. IDENTIFICATION OF NONLINEAR SYSTEMS BY FREQUENCY METHODS
Section D indicated how linear time invariant systems could be examined by spectrum methaods.
This section considers some nonlinear, but time-invariant, systems.
4a. INSTANTANEOUS NONLINEARITY
Cansider a system described by
u(e) -? a(t—u)X (u)

Y(r) =g[U(r)] +e()

with ¢ a naise series, a(*) the impulse response of an lincar time invariant filter and with g(-) a
function of a single variable. A surprising result, first noted by Bussgang (1952) for the case of
pdyncsaial g, is that if the input X is Gaussian stationary, then

85 (w) =cA (w)s,, (w)

with ¢ a constant. In other wixds if ane identifies the system, by crass-spectral analysis, as if it
were linear, then the transfer function obtained is proportional to that of the linear part of the
system. Kaorenberg (1973) goes on to comsider the case of several linear filters and several
instantaneous nonlinearities. Brillinger (1977) presents same statistical details and considers general
8().

The essence of this result is that if a system is identified by cross-spectral analysis with Gaussian
input, then the resulting transfer function can have a simple interpretation in a much broader class
of instances than ane might have anticipated.
4b. QUADRATIC SYSTEMS

A natural generalization of an linear time-invariant system is an bilinear time-invariant system,
a system with two inputs that cbeys superpasition in each input separatedy. Such a system is
bilinear, not linear, and can behave in non-linear ways, particularly when we connect the same X (¢)
to both inputs. The resulting quadratic time-invariant system, with ane input and ane cutput, can
be defined abstractly by the property C[X+Y] — C[X Y] is a bilinear system with inputs X and
Y. If this holds for all X(¢) and Y (¢), then C is a quadratic time-invariant system, and will have
each of the representations for such. Let us turn to this case. Suppose that

Y(¢) =3 b(t—u s —v)X ()X (v) +e(t) @1

with e noise. Let
B(w)) =3, exp{~i(um+w)}b(xv)

dencte the bitransfer function. Suppse that X is zero mean, Gaussian, stationary with power
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spectrum Sy (). Then the crass-bispectrum of Y with X satisfies
Szxy (@) =28 (~w,~v)Sxx (0)Szz (V) . 4.2)

This result was recognized by Tick (1961).

An estimate of B may be farmed once estimates of S,, and S,,, have been constructed. The
bi-impulse response function b, may be estimated by Fourier transforming B, using convergence
factars as necessary.

If the system (4.1) is extended to contain a linear term, 3 a(f —u )X (4), the relationship (4.2)

continues to hold. The transfer function A mybesﬁmatedf:ycaupmmnlyﬁs

Hng et al (1979) determine the first and second degree kernels of the human pupillary system
by this technique.
4c. COSINUSOIDAL INPUT

An informative technique for the examination of some systems is to take a pure cosinusoid
a cos(fr +y) as input. If the system is linear time-invariant, then frequency B alone will appear in

the cutput. If it is quadratic time-invariant, then the frequencies B, 28 will appear. If it is time-
invariant polynomial of arder L , then frequencies B, 28, . . . ,L f will appear.

QOn occasion subharmanics /2, §/3,... may appear, as with the edge waves in Section 7f. This is
an indication of a less simple sort of nonlinearity. Further infarmation concerning the system may
be found by taking a pair a;cos(By¢ +y;) + (Bt +y;) of cosinusaids as input. Subcambination
frequencies » = (qB,+ef)/n, n =23,..; @ == 1,2 2. will be induced by some (non-
pdynomial) non-linear systems. The relationship of B, and B; to the natural frequencies of the
system becomes very important here.



