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Approximate Normal ity of Large Products

D. Blackwel I

It is well-known that the beta density, proportional to

P(x)=xA(1-x)B, 0< x< 1,

and the gamma density, proportional to

AP(x)=x exp(-x), x > 0,

are for large A and B nearly N(A/(A+B), AB/(A+B)3), N(A,A) respectively.

These are instances of the following general observation:

(*) If the product P of a large number of smooth positive functions has a unique

maximum at xo, then P is often nearly N(xo,a2), where a2=-P(xo)/P"(xo), i.e. the

standardized Ps defined by

Ps(z)=P(x0+cZ )/P(xO)
is often nearly exp(-z2/2) for moderate z, say IzII5.

The smooth positive functions are of course x and 1-x for the beta, and x,

exp(-x) for the gamma.

We shall give below a crude, slightly messy general result that makes (*) precise

and covers the beta and gamma cases. First, let us recast (*). With L=log P,

L =log P , it is easily checked that

L (0)=0, L'(O)=O,5 5

L(0)=a2L" (xo)= a P"(xO)/P(xO)=-1,
3/2

LsI'(z)=Cj3L"' (x +cyz)=L"' (xo+az)/IL"(xo) 9

so that
2 3 li 3/2

Ls(z)=-z /2+(z /6) L''(x0+6az)/IL''(xo)I , 0< < 1, and (*) asserts that,

often, E=maxIL"'(xo+cjz)I/IL"(xL)I 3/2 is small.
Izi< 5



It is easier to state the hypotheses of our general result, not in terms of

the functions p whose product is P, but in terms of their logarithms f=log p,

whose sum is L. Here is the result.

THEOREM. Let (a,b) be any interval, let £, M be positive numbers, and denote

by J the class of all smooth functions f on (a,b) that satisfy f" < -E,

If"'!l < M on (a,b). If the sum L of n functions in S has a maximum at a point
xo with a+6 . xo < b - 6, then E < M/(E3/2n1/2) for n > (5/6)2/

PROOF. On (a,b) we have L" < -n E, |L"| < n M, so that, if xo + 5Sa is within

(a,b), we shall have E <n M/(nE)3/2 =M/(3/2n/2 ) as claimed. Since

CY2=-1/L"(xo) <1/ne, we shall have xo + 5Sa within (a,b) if 5/(ne)1/2 < 6, i.e.

n > (5/6)2/e.

To apply our Theorem to the beta case, note that L=A log x + B log(1-x) is the

sum of rFA+B functions, each of which is either fl(x)=log x or f2(x)=log (1-x).

For any a, b with 0 < a<b <1, both f1 and f2 will be inJfor suitable £, M.

Our Theorem has the following

COROLLARY. If p is a smooth positive function on (ao,bo) that has a unique

maximum at an interior point xo of (ao,bo) with p"(xo) < 0, then p=pn is nearly
normal for large n.

PROOF. With f=log p, we shall have f" <-£ = f"(xo)/2 in some interval (a,b)

around xo. With M=max If"'! on (a,b), we have f £Jr and the Theorem applies.

Note that in our Theorem a2-* 0 as n -.+, so that it does not apply directly to

the gamma case, where a2=A is large in the case of near normality. But for

any P, if we change the x-scale bv choosing c > 0 and defining Q(x)=P(cx), it is

easily checked that Qs= Ps5 so that, if Q satisfies the hypotheses of our Theorem,



then P satisfies the conclusion. For the family defined by

P(x)=xA exp(-xk), k > 0, x > 0,

where gamma is the special case k=1, we have
A A k kQ(x)=c x exp(-c x 2

so that, with c defined by ck=A, we have

Q(x)=cA [x exp(-x) IA
and approximate normality for large A follows from our Corollary, with

P(x)= x exp(-x k), x > 0.

If we think of x as an unknown parameter, and P as the likelihood function for

x after many experiments, our observation says that, often, P is nearly normal

with mean x0, the maximum likelihood estimate, and variance a2=-P(x0)/P"(xO).
This a2 is clearly analogous to the reciprocal of Fisher information in

classical statistics. Since (Savage's principle of stable estimation; see

Savage (1962)) the likelihood function is the first approximation to the posterior

density of the parameter, our observation says that, often, the posterior distri-

bution of a parameter after'many-observations is nearly normal, so that x0 and

C2 are nearly sufficient. For the case of iid observations, these ideas have

been deeply explored by Le Cam, DeGroot and others: see Le Cam (1966), Le Cam's

comments in Berkson (1980) and the references cited there, and DeGroot (1970),

pp. 212-218.

n
Are Cauchy likelihoods nearly normal, i.e. is P(x)=nlc(x-xi),

2 i=1
where c(x)=l/(l+x ) and xl...xn are real numbers, nearly normal for large n?

It depends on the xi. If the xi are uniformly distributed over a fixed interval

say (-H,H), then, with x0=0, we have L"(xO)=Ef"(-xi) - fHH f"(-t)dt * n/2H for

large n, where f(x)= log c(x). But f"(-t)dt is negative for all H, so that-H f(td sn



L"(xo) < -en for some £ > 0 and all large n. Since f"' is uniformly bounded,

we have IL"'I|< Mn for some M, and the proof of our Theorem shows that E -+ 0

as n - X (all the proof uses is L" < -en, IL"' < Mn). But if the xi are the

integers -k,... ,k, so that n=2k+1, we shall have
k 0

L"(O) f"(-x) )=-.148
-k -1 o

as n o, so that c - 1/(.148)1/2 = 2.599 *.. . Also
k 0

L"'(x)-z f"'(x-x.) - E f" (x-xi).
-k 1 1

In particular L"'(.8) - -.885 as n > X (there is nothing special about .8), so

that, since .8 is well within 0± 5Sa, E will be at least nearly .885/(.148)3/2=

15.5..for large n.
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