
On the Preservation of Local Asymptotic
Normality Under Information Loss*

by

Lucien Le Cam
University of California

and

Grace L. Yang
University of Maryland, College Park

*Research Partially Supported by
National Science Foundation Grant MCS84-03239

Technical Report No. 53
November 1985

(revised February 1987)

Department of Statistics
University of California

Berkely, California



On the Preservation of Local Asymptotic
Normality Under Information Loss*

by

Lucien Le Cam
University of California, Berkeley

and

Grace L. Yang
University of Maryland, College Park

*Research Partially Supported by
National Science Foundation Grant MCS84-03239



1. Introduction
In the present paper we consider a situation where there are unobservable random

variables Xn ; j = 1,...* , kwy n = 1,2,... and where what is actually seen are other
variables Y,n that are less informative than the Xjn. For instance the Y,n may be
functions of the Xn.

It can then readily happen that the family of probability measures that governs the
behavior of the Xjn is simple and easily studied but that the corresponding family for
the Yjn is more untractable. We shall show that if the (Xj,j satisfy certain condi-
tions, such as the LAN conditions, then the Y,n will also satisfy the same require-
ments. This means that certain methods of estimation and testing can be carried out
with the Y, with some assurance of success without having to verify that their distri-
butions satisfy the necessary requirements. Actual computation of the estimates may
still be a complex task, but not nearly as difficult as the analytical effort needed in the
verification of assumptions.

The results are proved under suitable negligibility conditions imposed on the X,n
and mostly for the case where the Xjn are independent for each fixed n. However, we
point out that a similar phenomenon can also be expected for certain nonindependent
double arrays Xjn).

The problem was brought to our attention by several special examples. One of
them is in a neurophysiological study where the underlying model involved indepen-
dent variables Uvs X1lv,,... The variables Uv had a binomial distribution B(m,p) and the

Xj were positive i.i.d. variables whose common distribution depended smoothly on a
one-dimensional parameter 0. Standard textbook results on the asymptotic behavior of
the system were readily applicable to the variables (UV, XI,,,...) but what could be
observed was only the sums

y == (Xk,V; O< k < UvI v = 1,2,...,n.

Another example comes from what is called the use of counting processes for life
history data (see [1], [3], [15]). One has a large number n of different individuals
behaving independently of each other. During the observation period [0,L] certain
events Ai; i = 1,2,...,I can happen to them. At time t the instantaneous intensity for
the occurrence of event Ai for individual k is a variable Xkk(t). As functions of t these

Xk,i(t) are predictable random processes in the sense that Xki(t) depends only on the
history of individual k in the half open interval [O,t). In such problems there is a well
developed theory applicable to the situation where each individual is monitored con-
tinuously throughout the entire period [0,L]. Its elaboration, reviewed in [3], relies
materially on the fact that likelihood ratios can be written in a simple explicit form.
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The question arises whether the theory can be made applicable to a situation where
each individual is seen only at a few isolated times, say 0 < to < t1 < ... < ts < L.
Even in a purely Markovian system, assumptions made on the intensities Xki do not
translate into simple statements on the likelihood ratios for isolated observation times.
The fact that our theorems give some information on the behavior to be expected of
likelihood ratios allows one to direct numerical computations in an effective manner.

Our main results depend very strongly on the negligibility assumptions placed on
the X,. It is a trivial fact that the results are not valid without some restrictions, but,
except for a modification of a result of Robert Davies [8] given in Section 6, we do
not know whether extensions to other situations are possible.

Section 2 below gives the essential notations and assumptions with a statement of
the problem in a formal mathematical framework. Section 3 shows that contiguity is
preserved under loss of information. It also contains related inequalities that will be
used in the following sections. Section 4 is about the preservation of asymptotic nor-
mality for what we call bounded infinitesimal arrays. These are double arrays of
independent experiments where the total information (defined in a suitable manner)
remains bounded and where each individual experiment contributes an asymptotically
negligible amount of information to the total.

Asymptotic normality has been used mostly in connection with the so-called LAN
conditions (see [10], [20], [25], [34]). These involve not only the local asymptotic
normality that gave them their name but also linear relations between vector parame-
ters and logarithms of likelihood ratios. It is shown in Section 5 that such linear rela-
tions are also preserved. The technique of proof involves the use of quadratic forms
that "control" the asymptotic behavior of likelihood ratios. According to Davies, [8],
such "quadratic control" maybe preserved under certain information losses that do not
actually preserve the local Gaussian behavior. It is the main relation needed for the
improvement of auxiliary estimates, described later in the same section.

Section 5 ends in a description of a method of construction of estimates. One
starts with a good auxiliary estimate and adds to it a correction calculated from likeli-
hood ratios. This gives asymptotically efficient estimates. The general method has
been described elsewhere by one of the present authors. It is pointed out that, for our
infinitesimal arrays, the method admits a number of variants that are often easily appli-
cable in practice.

An application to the neurophysiological problem that motivated us is described in
some detail in Example 1, Section 9.

Section 6 departs from the general theme. It does not use independence or negligi-
bility assumptions. What it shows is that joint asymptotic normality of logarithms of
likelihood and of estimates available from the restricted information together with a

condition that these estimates be "distinguished" leads to preservation of the LAN
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conditions. For that LAN situation the result is an improvement of a result of R.
Davies who dealt in [8] and [9] with preservation of what we call "quadratic control".

Section 7 is an aside on the independent identically distributed case. It shows that
differentiability in quadratic mean (for square roots of likelihood ratios) is preserved
under information loss. This is not surprising.

Section 8 sketches a possible extension of the results of Sections 4 and 5 to cases
where the observations are not independent but where the information is still acquired
by infinitesimal amounts. It is clearly applicable to certain Markov models where the
information is lost by observing only at isolated times instead of continuously. Some
of the difficulties that arise in the non-Markovian case are pointed out.

Section 9 contains several examples intended as illustrations. The first is the
already mentioned neurophysiological problem that started our investigation. The
second is intended to show in an i.i.d. situation that one should not expect that good
behavior of maximum likelihood estimates would be preserved. It is also a warning
against iterative procedures often used to compute approximations to the maximum
likelihood estimates.

Example 3 explains how to deal with homogeneous Markov processes. It also con-
tains a warning about loss of identifiability for the instantaneous transition intensities.

Example 4 shows that asymptotic normality may be preserved even though the
rates of convergence of estimates are altered. This is to emphasize the caveats of Sec-
tion 2.

Example 5 discusses the method of moments used in estimation.
Example 6 shows that the techniques proposed here apply to the loss of informa-

tion incurred by grouping data.
Finally, Example 7 allows one to pass from ordinary data to censored data. Here

again the identifiability problems may interfere. Otherwise solutions are reasonably
simple. Each section, except Section 2, begins by a short description of its content.
The reader who is not interested in the techniques of proofs may skip them. It is pos-
sible to read the examples first, referring as needed to the statements of the theorems.

Acknowledgments
We are indebted to referees who pointed out a gap in our discussion of the method

of moments and the possibility of applying the results of Section 8 to the aggregated
Markov Chains situation.
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2. Notations and assumptions

The main results of the present paper refer to a situation describable as follows:
For each integer n, let On be a parameter set. For each pair of integers (j,n);
j = 1,2,...,kn, n = 1,2,..., let Ej,n be an experiment indexed by On, that is a family
Ej n = {Pj n(O); 0 E 1n} of probability measures on a a-field Aj,n Let En be the direct
product of the Ej,nq that is, En is the experiment where one observes independent ran-
dom elements Xjn in such a manner that, when 0 is true, the distribution of X,n is
given by pjn(O). The joint distribution is given by the product measure

Pn(O) = rIPi,n(0).
Consider another double array of experiments Fjn = (qjn(0) ; 0En I and the

corresponding direct product Fn. Assume that each Fj,n is less informative than the
corresponding Ej,n in the sense of Blackwell [6], that is for every decision problem any
risk function possible on Fj,n is also possible in Ej,n This can happen for instance if

n(03) is the restriction of Pi,n(O) to a sub-a-field Bjn of Aj,n.
In such a situation one may inquire whether certain asymptotic properties of the

sequence En remain valid for the weaker sequence Fn. For instance, let sn and tn be
two points of E)n. Consider the product measures Pn(sn) and Pn(tn) and the correspond-
ing products Qn(sn) and Qn(tn) relative to the experiments Fn.
(a) If (Pn(sn)) and {Pn(tn)) are contiguous sequences, is the same true of {Qn(sn)}

and (Qn(tn))?}
(b) If the pair [Pn(sn), Pn(tn)] is an asymptotically Gaussian experiment, is the same

true of [Qn(sn), Qn(tn)]?
(c) If E1n is a Euclidean space Rk and the En satisfy the LAN conditions, is the same

true of the Fn?
The answer to question (a) is easily seen to be positive. This will be proved in

Section 3 below. The answer to (b) and (c) is more complex. We shall show that it is
also positive under a "negligbility" requirement imposed on the components Ej,n
However the positivity of the answer must be qualified in an important manner. To
indicate the qualifications, note that for such product experiments there are some

natural metrics definable as follows. Let

h?, (s,t) = n (s n (t)

be the square Hellinger distance for E Let HW (s,t) = : hj2(s,t). Using the alternate

measures qj,n(s) in a similar manner, define from Fn a distance Kn analogous to Hn.
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For the experiments (P.(O) ; 0 e Qn) the metric Hn is a very natural one. The local
asymptotic theories are often carried out on neighborhoods of the type

Vn (0,b) = (t; tEE0n Hn(t,3O) < b}
for a presumed true value 0. This is what one does, more or less, for the LAN
assumptions. This is also what one does in the i.i.d. case for many nonparametric stu-
dies. (See [31], for instance.)

The corresponding neighborhoods for the Fn would be

Wn(,b) = {t; te E,nq Kn(t,0) < b).

Note that since Kn ' Hn, one has Vn(0,b) cWn (,b) but that Wn(0,b) may be
immensely larger than Vn (0,b) (in terms of the distance Hn).

What we shall show is that certain properties, such as asymptotic normality, are
inherited by the (Q(O); 0 E E)n on the sets of the type Vn. Nothing can be said in
general about the larger Wn, although Section 7 does contain a result of that nature.

For the same reason, existence of estimates that converge at a given speed on the
(Pn(O) ; 0 E 0nj is not a property that transfers to the weaker {Qn(0) ; 0 E On), since,
for instance, the measures Qn(0) ; 0 e En might be all equal to a single one, Qn(0O).
Section 7 again, contains some further elaborations on this point. The reader may
have noted that in the description of the experiments En = (Pn(0) ; 0 E En} the index
set is allowed to vary with n. This again because of the local nature of the results. It
is sometimes possible to stabilize the sets 0n by various transformations, such as using
0 = 4F (t - to) or more elaborate matrix multiplication. Then the 03n may be replaced
by a fixed set 0) independent of n. However such stabilizations are essentially
irrelevant to our main purposes and they would make matters more complex since the
stabilizing transformation needed for Fn may be different from that needed for En.
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3. Preservation of contiguity and some other inequalities

The purpose of this section is to show that contiguity is always preserved under
loss of information. This can readily be established directly, but we use a more
specific approach yielding inequalities on likelihood ratios. They will be used in the
subsequent sections.

One first easy remark is as follows.

PROPOSITION 1. Let {Pn(sn)) and (Pn(tn)) be contiguous. Then the sequences

{Qn(sn)) and (Qn(tn)) are also contiguous.
This is a special case of a more general lemma (see [27], Chapter 6, Section 2).

LEMMA 1. Let En = I Pn0, Pnj) and Fn = [ Qn,0, Qn1) be two binary experiments.
Assume that 1) the deficiency B(En Fn) of En with respect to Fn tends to zero and 2)
the sequences {Pn0), (Pn,1) are contiguous. Then the sequences Q,O), {Qn1 ) are
contiguous.

This lemma itself is an immediate consequence of an inequality that will be used in
Section 4. To state it, let S be a set of probability measures on a a-field A. Let X be
another positive finite measure on A. Let us say that the set S is (a, ck) limited if
iP-P ^ ckll < a for every Pe S.

Here the norm is the total variation norm and the measure P ^ ck is defined in the

following manner. One takes the Radon-Nikodym density dP of the part of P that is
dXL

dominated by X. One takes for P ^ cX the measure whose density with respect to x is
dPthe minimum of w and c.

LEMMA 2. Let E = (P0;O E 0) and F = {Qq;0e 0}) be two experiments with the
same set of indices 0. Assume

i) {P0; 0 )8) is (a, ck) limited,

ii) the deficiency B(E, F) does not exceed £/2.

Then there is a positive linear transformation T that sends probability measures
into probability measures and is such that

iii) IIQ0-TPII < e for all 0,
iv) if A = TX then F is (a+ e, cg) limited.

PROOF. The existence of T is part of a general theorem of [21]. Once this is
established note that

T(P0 ^ ck) < (TPO) ^ (Tck) = (TP0) A (cg).
Also
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IIT(Pe - Po ^ cX)II < IIPO - Po ^ ckll < a.

Therefore

IITPO-(TPO) ^ (c)II < a.

Now write Qo -TP0= D = D+ - D-. Then Qo < TPe+ D+ and Qo A Cg.
(TP0 - D-) A c. Therefore

IIQO - Qe ^ clill < IITPe - (TPe) ^ (cg)II + IIDII.
This gives the desired result.

Applying this to the case where 8(E, F) = 0, one sees that truncating the densities
of the measures Qo results in a modification of these measures that is smaller than the
modification made by the same truncation on the P0.

One should expect that some other inequalities would also be preserved. Many
arguments involving maximum likelihood estimates use bounds on expressions of the
type

4(x,(v) = ut [ f(x,t) 1

dPt
for densities f(x,t) = -A, A bound on an integral J4(x,v) dPoo will carry over to the

similar expression defined on the weaker F. However, some precautions must be
taken. See the examples of Section 9.
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4. Preservation of asymptotic normality.

In this section we consider experiments that are weakly asymptotically normal in
the sense of the Gaussian approximability described in Definition 2 below. It is first
shown that this property is equivalent to approximability of distributions of log likeli-
hood by multivariate Gaussian distributions at least whenever Hellinger affinities
remain bounded away from zero.

This being done we consider independent observations where the individual experi-
ments form what we call bounded infinitesimal arrays (Def. 3 below). For these it is
shown that, when loss of information occurs on each individual component, asymptotic
normality is preserved.

The approximations by Gaussian experiments involve quadratic forms that "con-
trol" the behavior of likelihood ratios (Def. 4 below). The forms that control the
weaker experiments are smaller than the initial ones in the sense that the difference is
positive semi-definite.

Explicitly, the situation can be described as follows.

An experiment G = {G0; 0 E e) is called Gaussian if it satisfies the following two
conditions:

i) for any pair (s,t) of elements of 0E the measures Gs and Gt are mutually absolutely
continuous

dGt
ii) Let A(t,s) = log dG The stochastic process t->A(t,s), tre0 is a Gaussian pro-

cess for the distributions induced by G.. Here s is an arbitrary point of 09.

It is easily checked that, under (i), if the condition (ii) is satisfied for some choice
of s, it is satisfied for all.

DEFINITION 1. Let En=Pn(O) ; 06E0n) be a sequence of experiments. One
says that En admits strong Gaussian approximations if there are Gaussian experiments
Gn = (Gn(O); Ge En) such that the distance A(En, Gn) tends to zero.

(The distance A is the one defined in [21] or [27].)

DEFINITION 2. One says that En admits weak Gaussian approximations if there
are Gaussian Gn such that for any subsets Sn'c En that have a cardinality bounded
independently of n, the distance between En and Gn restricted to Sn tends to zero.

The condition of Definition 2 is similar to a relation often used in asymptotics
under circumstances where QEn is a fixed set 09 independent of n. Then one can speak
of weak convergence of En to a Gaussian limit G = (Go;0E0). This is convergence
for the distance A for En restricted to fixed finite subsets S c@. Note that the weak
approximability of Definition 2 is considerably stronger than what would be obtained
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from weak convergence to a limit G. Our sets Snc () have bounded cardinality, just
as a fixed finite S, but they are allowed to vary arbitrarily with n. Thus our weak
approximability is uniform on all sets of a given finite cardinality. It would be incon-
venient here to use weak convergence to limits since our successive on need not be
related at all.

Definitions 1 or 2 do not put any additional restrictions on the Gaussian Gn.
Under some restrictions the weak approximability can be checked on the behavior of
distributions of likelihood ratios as follows.

PROPOSITION 2. Let En = (Pn(O);OrEen) be a sequence of experiments.
Assume that there is some e> 0 such that

inf dPn(S)dPn(t) 2 e.
n,s,t

Then the En admit weak Gaussian approximation if and only iffor every fixed k and
for every subset {so,nS*1,n * , skn) of elements of (3n the joint distributions Fn under

so0n of the logarithms

log dPn (si,n) j=l,2,...k
are approximable by Gaussian distributions in the sense that the Levy (or Prohorov)
distance between Fn and a suitable k-variate Gaussian distribution tends to zero as
n -* oo.

NOTE. By dP(t) is meant the density with respect to P(s) of the part of P(t)-'dP(s)
dominated by P(s).

PROOF. Consider first two point sets IsOn,sin} and the corresponding binary
experiments En' = (Pn(so,n),)Pn(s1,n)b. Taking a subsequence if necessary one can
assume convergence to a limit E' = {R0,R1). The lower bound imposed on affinities
implies that the Ri, i = 0,1 cannot be disjoint. Let Xn be distributed as

dPn (s ,n)
dPn (so,n)

under Pn (s n). There are numbers a < b such that Pr[a < Xn < b] remains bounded away
from zero. Let Yn be a normal variable with a distribution N(n, an2) approximating
that of Xn. Then Pr[a- 1 < Yn < b+ 1] stays bounded away from zero. It follows that

an must remain bounded away from 4-oo.

If so, Igpj must also remain bounded. This means that cluster points of the

sequence of distributions L(ex") cannot have masses at zero. Thus R1 dominates Ro.
This implies that the sequences (Pn(son)) and {Pn(s1,n)) must be contiguous. It then
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follows by a standard argument that the conditions given are sufficient to imply the
weak Gaussian approximability for an arbitrary k. The result in the opposite direction
is also the consequence of a standard argument for which see for instance [22] page
14.

Keeping in mind this result, let us return to the case of product experiments
En = [I Ej,n described in Section 2.

DEFINITION 3. The double array (Ejn,) with Ej= {p,(O), 0E En} will be called
bounded and infinitesimal if it satisfies the following two requirements for all pairs
(sn, tn) extracted from 19,n
(A) suplhj2(s, tn)<oo

n J

(B) lim sup h 2 (sn, tn) = 0
n i

(where hj is the Hellinger distance defined in Section 2).

Note that when (B) holds condition (A) is equivalent to the affinity restriction used
in Proposition 2.

For such bounded infinitesimal arrays weak Gaussian approximability can be
shown to be equivalent to any one of a large number of other properties. The one that
will be most convenient here is as follows.

PROPOSITION 3. Let {Ej.) be a bounded infinitesimal array. Then the product
En admits weak Gaussian approximations if and only if for every choice of pairs
(sn, t) of elements of Qn and every e> 0

1; IlPj,n (tn) -Pj,n (tn) ^ ( + e) Pi,n (sn)1
J

tends to zero.

PROOF. This is well-known and easily checked. (Let

Ajn = log dpj (tn)

The condition says that, under tn, the sum of the probabilities Pr[Ajn > log (1+ e)]
j

tends to zero. Then apply the necessary and sufficient conditions for the Central Limit
Theorem.)

From this result one can immediately obtain the following:
THEOREM 1. Let {Ejn) be a bounded infinitesimal array of experiments indexed

by Q)n. Let (Fjn1 be another array such that Fjn is weaker than the corresponding
Ej n. Let En = II Ejn and Fn = II Fj n. If En admits weak Gaussian approximations, so
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does Fn.
PROOF. It is clear that {Fjbnj is also a bounded infinitesimal array. By Lemma 2,

Section 3, there are transformations Tim such that the measures qj,n (t) of Fjn satisfy

qj,n(t) = TjnPjn(t) and also Iqj,n(tn)- qjn (tn) ( + ) qJ,n (sn)II
< IIPj,n (tn) - P, (tn) ^ (1 + c) pjn (sn)II. Hence the result.

Note that Theorem 1 refers to weak approximability. At the time of the present
writing we do not know whether strong Gaussian approximability is preserved. How-
ever, a conjecture stated in [26] would imply that, for bounded infinitesimal arrays,
strong and weak Gaussian approximability are equivalent.

The structure of a Gaussian experiment is well defined by certain quadratic forrns
that may be introduced as follows. Let Gn = (G0,n; O E Q be a Gaussian experiment
indexed by 13n Let Mn be the linear space of finite signed measures t that have finite

dGt,
support on en and are such that gt(En) = 0. Let An'(t,s) = log dG and let I4(g) be

the variance of fAn' (t,s) ,u(dt). This is a positive semi-definite quadratic form on Mn.
It can be used to complete a quotient of Mn to obtain a Hilbert space.

The quadratic form IF controls the behavior of the process An' in the following

sense: the integrals [An'(t,s)+ 1 (8t-6s)] j(dt) are almost surely zero if and only if
2

IQ(g) = 0. In other words linearity relations satisfied by the random part of An' are
those describable through 17.

For experiments that are only approximately Gaussian, the situation is not so neat
but one can describe an analogue as follows.

dPn(t)Let An (t,s) = log dP (). Let rn be a positive semi-definite quadratic form on Mn

DEFINITION 4. The sequence of experiments En is under the control of the qua-
dratic forms In if, for elements gne Mn that have bounded mass (sup I17nll< oo) and

n
supports with bounded cardinality, convergence of rn(Jn) to zero implies that

(An (t-sn) + -1rn (Bt- 8s)} gn (dt)

tends to zero in Pn(sn) probability.

This is obviously a way to say that, if l7'n(pn) tends to zero, the recentered An
satisfy approximately the corresponding linear relation. The literature contains several
conditions meant to express that log-likelihood admit approximate linear-quadratic
expansions. This is usually done assuming that e)n is a finite dimensional vector

space. One writes that An(t+ 0,0) is approximately t'Vn- t'Mnt. In the LAN
2
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conditions Mn is non random. In the LAMN conditions Mn is random, the pair

(Vn,Mn) has a limiting distribution L(V,M) where, conditionally given M, the variable
t'V is N[O,t'Mt]. The case where this restriction on conditional distributions is omit-
ted has been considered by R. Davies [8] as the case "when the amount of informa-
tion is random". For these conditions see Basawa and Prakasa Rao [4], Basawa and
Scott [5], P. Feigin [11], and Jeganathan [17].

Note that all these conditions imply a relation between the linear structure of On
and that of the log-likelihood. Our quadratic control condition is different. It does not
rely on any particular structure, linear or otherwise on en. To understand it let us
consider experiments E = (P(; 0 e 0) that do not depend on n at all. Suppose that E0
is the real line and that P0 is the distribution of a two dimensional vector (X,Y),
jointly normal with covariance matrix the identity and expectations E0X = 0,
E0Y = sinh 0. Then E does not satisfy the LAN or LAMN conditions on E, yet it is
controlled by a quadratic F such that F(t~_-) = It_ S2+ Isinh t - sinh SI2 for the Dirac
masses Ss and t. This is typical of Gaussian shift experiments where the shift param-
eters are not linearly related to the original 0.

However the quadratic control places a strong restriction on the log-likelihood. For

instance, let P0 be the ordinary gamma distribution with density yF(a) e7 xa-l. The

log-likelihood is a linear function of the vector {[, a, log 17(a)) but the experiment
E = (Po; 0 E 0) with 0 = (a,,B) does not admit quadratic control.

The following results say that linear relations are preserved by going from the pro-
duct rl Ejn to the weaker fI Fjn.

THEOREM 2. Let {Ejn) be a bounded infinitesimal array of experiments

Ej,n = (Pjn (0); 0 E On). Let Fj,n be weaker than Ej,n.
If the products En admit weak Gaussian approximations they are under the control

of quadratic forms rn and the weaker products Fn are under the control of quadratic
forms 1n such that rn -lrn is positive semi-definite.

PROOF. Select a point sn E E3n and let

Xm (t) = dPj,n (t) I1Xj,n(t) j- (sn
Let Yjn (t) = 1 ^ Xjn (t). It is easy to see that, under the conditions given, for any

sequence tn, the difference between An (tn, sn) and 7Yj,n (tn)- 1 1 variance Yjn (tn)

tends to zero in Pn(sn) probability. (See for instance [22] or [27].)
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On the space of measures Mn, define Fn(4) as the varance under sn of
J[ Yjn (t)] j (dt). Then the integral

J

J (An (t,sn) + 2 Jn[8t- 8Sn])}n(dt)
differs from J [;Yn (t)] gn (dt) by a quantity that tends to zero in probability as long as

1Ip,1J1 remains bounded and as long as the supports of the n have bounded cardinality.
Thus the assertion that En is under the control of the quadratic form rn is equivalent to
the statement that [XYjn (t)] p., (dt) tends to zero in probability whenever its variance

J
tends to zero. However the contiguity restrictions involved in the Gaussian approxi-
mability imply that the distribution of a term such as X Yjn (t) is approximated by a

j
Gaussian distribution with expectation zero. Hence the first assertion.

To obtain the second result, let us use again the transformations Ti n with

Tim Pi,n (t) qjn (t). Under some technical regularity conditions these Tim can be
represented by Markov kernels. If we look only at finite subsets of On and only at
distributions of likelihood ratios for the Fj,n these technical conditions can be assumed
to be satisfied. Thus the situation can be described as follows. Let Ajn and B,n be
respectively the a-fields of Ejn and Fjn.

Let Kjn (B, * ) be the Markov kernel of Tim evaluated at B in Bj,n. Define measures

by Mj,n[t; AxB] = K (B, )dpj,n(t). Their marginals on Bjn are the qjn (t) and
their likelihood ratios are Ajn measurable, equivalent to those of the Pn (t). Now
replace our previous Yjn (t) by the equivalent

dMj,n' (t)

dMj,n (sn)

with Mi n' (t) = Mjn (t) ^ 2Mjn (sn). Let Z,,,. (t) be the conditional eypectation (under sn)
of Yjn (t) given Bj,n This differs from

dqjn (t)

dqj,n (sn)

by an amount that can be neglected. It is thus possible to show that

IZIl, (t)- variance IZmj (t)
j 2

is an approximation to the logarithm of

dQn (t)

dQn (sn)
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for the product F.. For the same reasons as above, the Fn are under the control of the
quadratic forms defined by va(g)[=varJn[ Z J(t)] g (dt). However, since Z,j (t) is

the conditional expectation of Yjn (t) the variances are smaller so that F(g) ' (g)
for all j re Mn. This completes the proof of the Theorem.

REMARK 1. The forms In and rn used here are nonrandom. We shall see in
Section 8 experiments that are under the control of random quadratic forms. Under
some supplementary restrictions (contiguity for pairs (Pn(sn)J, (Pn(tn)), convexity of
en if imbedded in the Hilbert space) one can show that control by nonrandom qua-
dratic forms is equivalent to weak Gaussian approximability.

REMARK 2. The assumption that we have products with bounded infinitesimal
arrays (Ejn) and [Fj,) and with Fjn weaker than Ejn has been used very forcibly in
the above proofs. The results might be extendable to some other cases, as shown for
instance in Section 6. However they are not true without restriction. One can have an
experiment F weaker than a Gaussian E with F remote from Gaussian. For an
instance let E be the family N(O, 1) of normal distributions with variance unity on the
line. If X is the observable variable let Y be the integer closest to X. It does give a
family of distributions F = (Qo ; 0 e Qn} weaker than E. However the log likelihood
ratios for the Qo have discrete distributions that are far from Gaussian.
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5. Preservation of the LAN conditions, part I.

The contents of the present section bear on two separate questions. The first is
that, for the bounded infinitesimal arrays of Section 4, the LAN conditions are
preserved under loss of information if this loss occurs on the individual components.
The second refers to the construction of estimates by adding to our auxiliary estimate a
correction calculable from likelihood ratios. Here many different procedures may be
used. We describe some that can often be easily carried out in practice. An explicit
example is given in Section 9, Example 1.

The first recorded instance of the conditions called LAN that has come to our
attention is that of [20]. Since then conditions called LAN have been used by many
authors. (See [8], [10], [14], [34] for instance.) Unfortunately the statements used by
various authors differ in some aspects that are sometimes incidental and sometimes
important. Because of this we shall first give two sets of assumptions, and show that
they are equivalent if the index sets en are sufficiently rich. Then we shall show that
they are preserved by passages from a product En to the weaker Fn of Section 2. We
end by a description of a method of construction of estimates.

The LAN (for "locally asymptotically normal") assumptions used in the references
listed above differ considerably from the asymptotic Gaussian approximability condi-
tions of Definitions 1 and 2 of Section 4. They involve a finite dimensional vector
space V and a sequence of norms I - In on V. The sequence of norms is used for two
purposes: a) to indicate the size of sets on which Gaussian approximability is contem-
plated and, b) to relate the linear structure of V to that of the Gaussian experiments
used as approximations. The relations will be described in detail below.

For the typical LAN assumptions one considers a fixed finite dimensional real vec-
tor space V and a sequence (II I-n of norms on V. The parameter set en that indexes
the experiments En = (Pn(0) ; oeEn) is mapped into V by some function, say tn. The
assumptions usually refer to some particular 00.ne e n called the true value. The norms
are often obtained from a single norm I I on V by using either multiplication by some
numerical factors or more complicated matrix manipulation. Think of the fairly com-
mon renormalizations 10- 00,nIn = 4n 10 - 00,nJ or 10 - knin = IMn (0- OOn)I for matrices
Mn. These Mn are often selected to "stabilize" the image of en in V making it tend
to some limit.

These renormalization and stabilization operations may be convenient in practice
but they distract attention from the main statistical arguments. Thus we shall not con-

sider them.
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In fact, for simplicity, we shall just assume that E9n is a subset of V and that eo n is
the origin of V.

Consider then experiments En subject to the following requirements.

(R1) Each En is a subset of the fixed space V and the origin of V belongs to En.

(R2) If 1enin remains bounded the sequences {Pn (On)} and (Pn (0o,n)) are contiguous.

(R3) For any set Sn C E)n such that sup I lsln; s e Sn, n = 1,2,...) <0o the experiments
{Pn() ; ( e Sn I admit weak Gaussian approximations according to Definition 2
of Section 4.

To state the remaining conditions proceed as in Section 3 and introduce the set Mn
of finite signed measures g carried by finite subsets of En and satisfying g(en) = O.

For subsets Sn'zE1n, let Mn(Sn) be the subspace of Mn formed by measures g
whose support is in Sn (with ,u(Sn) = 0).

The existence of Gaussian approximations Gn = (Ge,n; Oe= Sn) implies the
existence of corresponding quadratic forms rn,sn defined on Mn (Sn). For g E Mn (Sn)
and for

* ~~dGtnAn (t,sn) = log ,dGn
the value rn s. (,) is the variance of JAn (t,sn) J(dt).

The link between the linear structure of V and that of the Gaussian approximations
is as follows.

(R4) Consider sets SnC en such that sup(Ilnl; S E Sn, n = 1,2,...) < oo and such that the
cardinality card Sn remains bounded. Then, there are Gaussian approximations
with the following property:

If gnEMn (Sn) is such that supll,nll <0oo and such that Ifs65(ds)ln tends to

zero, then Jn,S (n) -+0.

It should be clear that the role of the norms in (R3) is to indicate the size of sets

on which Gaussian approximability is contemplated. The role of (R4) is to link the
vector structure of V to that of the Gaussian approximations.

This set (R1)-(R4) of assumptions is often described in a manner that looks very
different as follows:

Let

dPn (t)An(t) = log-dP t

dPn (0)
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(Li) There are random vectors W. (with values in V) and Euclidean norms 11 Ilin such
that if sup Itnln<oo then

n

An (tn) - tn' Wn+2 iltnllZ

tends to zero in Pn(O) probability.

(L2) Let Fn be the distribution under Pn(O) of the vector Wn. There are joint Gaus-
sian distributions Gn such that the dual Lipschitz norm IIFn-GnlD induced by
I In tends to zero. (The dual Lipschitz norm is

IIFn-Gnl D = SUPfIfdFn-JfdGnl
f

for a supremum taken over functions f such that If < 1 and lf(x) - f(y)Y ' Ix - yin.)

The sets (Ri), (R2), (R3), (R4) and (R1), (R2), (Li), (L2) are technically very
different. To relate them one encounters technical difficulties due to the fact that the
sets (n may be very sparse subsets of V. However the two systems are known to be
equivalent (see [27] for instance) under the following restriction.

(R5) Let k be the dimension of V. There are sets {I onsq * * *si,nScn 9n with the
following properties:

i) sup Isi,n1n < °°
i,n

ii) if tn1E On is such that sup Itnln<o then there are numbers cni = 19,2,...,k
n

such that
k

tns, = Cn,i(Si,n-So,n)

k
and such that IccnJ,I remains bounded.

(If one requires more, for instance that the simplex spanned by the sin be contained
in On, then condition (L2) is already a consequence of (Ri), (R2), (Li).)

As seen in Section 4, it is not true that replacing an experiment En by a weaker
one will preserve the Gaussian approximability. Thus the LAN conditions (R1)-(R4)
are not preserved either. However for product experiments one can assert the follow-
ing.

THEOREM 3. Let (Ej,n) be a bounded infinitesimal array of experiments and let

(Fj,nl be another double array all indexed by sets en. Assume that Fj,n is less infor-
mative than Ej,n and consider the products En = 1I Ej n and Fn = HI Fj,n.mative thanEj,n n~~~ J
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If En satisfies the conditions (RI), (R2), (R3), (R4), so does Fn. If in addition the
requirement (R5) is satisfied one can replace the conditions (RI), (R2), (R3), (R4) by
(RI), (R2), (LI), (L2).

PROOF. The preservation of the conditions (Ri), (R2), (R3), (R4) is an immediate
consequence of Theorems 1 and 2 of Section 4: contiguity, Gaussian approximability
are preserved and so are the linear relations satisfied by the Gaussian approximations.
Under (Ri), (R2), (R5) the pairs (R3), (R4) and (Li), (L2) are always equivalent.
Hence the result.

To be complete we should prove the stated equivalence of (R3), (R4) and (Li),
(L2). However, for bounded infinitesimal arrays one can use a number of other rela-
tions. Since these are important for the possible construction of asymptotically
sufficient estimates we shall now proceed to state some of them.

Suppose for instance that (Rl)-(R5) are all satisfied. For i= 1,2,...,k let Xj,ni be the
random variable

-rdP,n(si,n)-1AlXj,n,i = Ie-1] ^ 1.
L dPjm (so,n) ]

Let Yni be the sum XXj,n,i. Suppose that tn E 1n is such that supItnin<oo. Then, by
J n

(R5), there are numbers such that

tn-so,n = £cn,j(Si,n-sO,n)
1

and such that sup X IcnJI1 < oo. Let Dn (tn) be the difference
n i

rdP,n (tn) 1k
Dn (tn) = XI 1 -lcYn,i.

LdPJ,n (so.n) Ji=1
We claim that, under (Ri) to (R5), the difference Dn(tn) will tend in probability to

zero. Indeed, let pn be the measure that assigns mass (-cni) to sin for i=1,2,...,k,
k

mass 1 to tn and mass (X cn )-1 to som. By definition of the cni one has
i=1

$tpL (dt) = 0. Consider then the logarithms

dPn (t)

and the integrals JAn (t) gn (dt). According to (R1)-(R3) these integrals have a distri-

bution that is approximately Gaussian with a certain variance rn (Xn). Since

Jtp½ (dt) = 0 this variance 1n (,n) must tend to zero, by (R4). However, Dn (tn) is

approximately equal to JAn (t) jn (dt) recentered by subtracting the expectation of the
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Gaussian approximation. Hence the assertion.

The same conclusion can be obtained if one uses (Li), (L2) instead of (R3), (R4).

To see how this may be used for the construction of estimates, consider the weaker

Fjn = (qjn (0);Oeern} and the same sets Sn = ISU, Sni, ..* Skn}.
An estimation technique that is often successful is to maximize a smooth approxi-

mation to the logarithms

Ln(t) = log dQn(t)

Note that we said to maximize a smooth approximation not the Ln(t) themselves.
Let

=dqj,n (Sin) -

and let
*

,1.adltZi.n,i = Zj,n,i ^ 1.
k

Under the conditions of Theorem 3 for tn- SO,n = Vn, (Si,n S) a possible

approximation to Ln (t) is

* 1 *a[,TWLn (tn) = II;vn, Zj*,n, -2 v njZvnin,iniJ i 2 j

This consists of a random term that is linear in the vector vn' = (vnj,; i =1,...,k) and
a nonrandom term that is quadratic in that vector. In many cases the variances are not

readily computable. Then one may prefer to use the approximation

L)(tn) = IIvn ZiZ, ,I- IF2;Vn,iZjn,i]

In matrix notation this may be written as follows. Let Zn be the column vector whose
coordinates are the ;ZjAi Let Mn be the matrix whose (a, [) entry is IZ ,n,aZjn,

J j
Then

Ln) (tn) = VnZn- vn' Mnvn

When Mn is invertible this can also be written in the form

[2) (tn) = -2 { (vn-M- Zn)' Mn(vZ)-Zn' Mn-j Zn)2

from which it follows that the maximum of this approximation is reached at the point
Vn= MnZn
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To carry out the above operations one needs to know the sets { SO,n' s1,ni, '* * k,n}I
(and to be able to obtain good approximations to the likelihood ratios). Of course, if
the purpose is to estimate 0, one will not know what set I SO,n' ., Sk,n} to use.

The technique proposed in [20] and variously expounded in [22] and [27] is to
replace the set {son, * * Sk,n} by a suitable estimate of it.

As explained in [20] the validity of the technique seemed to depend on curious
cancellations involving the difference between SUn and an estimate 3O,n. However the
basic reason is very simple: the points that maximize Ln (ta) are the same as those that
maximize Ln (t,) - Ln (sO,n). This remains approximately true for the approximations of
the type WOl) or Q2).

Note however that for the validity of the argument the following must hold:

1) The auxiliary estimate ^ must with large probability be in the range where
the approximation holds.

2) Similarly, the correction term 'vn = M;1Z must be in the range where the
approximation holds.

In the present situation this calls for the following comments. The existence of
estimates that converge rapidly enough for En does not imply existence of similar esti-
mates for Fn. The fact that in Theorem 2, the difference IFn-rn is positive semi-
definite implies that the matrix Mn will typically be smaller than the corresponding
matrix calculated on En. The fact that this latter would not degenerate is no guarantee
that Mn will not. These properties must be checked for Fn itself.

The matrix Mn can be adjusted to a certain extent by modification of the basis
in- O i= 1,2,...k. It may be wise to check that a change of basis does not modify

the end result too substantially.
In spite of all these caveats we shall describe, in Section 7 below, a situation where

the necessary verification can be carried out rather easily.
To terminate this section, note that the approximations LQ') and LJl2) are not the

only possible ones. There are many more. In [27] one of the present authors sug-
gested estimating what takes the place of Mn by parallelogram differences calculated
on the log likelihood. For the situation covered by Theorem 3 one can use instead of
the

dqj,n (Si,n)

dqjn (so,n)

a variety of functions of them, in particular their logarithms or their square roots. For
instance, if
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Wj,n,i = { (s 1/2)J 1

then

r (tn) =-Xci,nWj,n

is an approximation to 2 L(tn).

The estimates {S3,n' ,k§n) used in [20] for instance were assumed to satisfy
certain discreteness conditions. This is for technical reasons: They should not seek for
singularities in the likelihood functions. That can be achieved by methods other than
discretization. If the likelihood functions are sufficiently regular one does not need to
worry about this particular point. A referee pointed out that the estimates described
here may display a severe lack of robustness. This is particularly true if the approxi-
mation called L(2) is used with untruncated variables. Fortunately one can often detect
easily forms of misbehavior of the variables Zj,.i Possible methods for doing so and
for correcting the system are too complex to be described here. We shall return to this
matter elsewhere.

Finally instead of using differences one can sometimes use derivatives and the
Newton-Raphson procedure. However to show that this particular technique will work
one needs assumptions that are much more restrictive than the ones used here.

The reader will note that in Sections 4 and 5 we replaced each component Ej,n by a
weaker Fj,n This is essential in the proofs. The next section expounds on a result of
R. Davies in which the loss of information occurs in a very different manner.
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6. Preservation of the LAN conditions, part H.

R. Davies [8], [9] has observed that the LAN conditions are preserved under cir-
cumstances that are rather different from the ones described in Section 5: No product
structure is assumed. Even if it is there, the loss of information occurs by passage to
sub-a-fields that do not preserve the product structure. To describe the situation we
shall consider a sequence {E.) of experiments Pn(0) ; 0 E 0)) where the Pn (0) are
measures on some a-field An. The weaker experiment Fn = Qn(0);0e n) is
obtained by taking the restrictions Qn (0) of the Pn (0) to some subfield Bn.

We shall show that the LAN conditions are preserved if the weaker experiments
admit "distinguished" statistics whose joint distributions with the log likelihood of the
initial experiment are asymptotically normal. The relations with Davies' work are
complex. They are described at the end of the section.

We shall assume that the experiments En satisfy the requirements (Ri), (R2) and
(Li), (L2) of Section 5. Recall that (Li) involves certain random vectors Wn and
Euclidean norms 11 I.ln

Consider also statistics Tn defined on the experiment Fn and taking values in a
fixed Euclidean space Rq. Recall that the sequence (TJ) is called distinguished for the
sequence I Fn) if the following property holds. Let Fn (0) be the distribution of Tn for
Qn (0). Take pairs (sn, tn) of elements Of 03n. This gives a pair {Fn (sn), Fn (tn)) of
measures on Rq and a binary experiment F ' = IQn(sn), Qn(tn)).

Compactifying Rq by adjunction of points at infinity one can extract subsequences
{v) c (n) such that i) the experiments Fv' have a limit F and ii) the measures Fv (SV)
and Fv (tv) tend in the usual weak sense to certain limits say Fo and F1.

The sequence (Ta) is distinguished if for all such subsequences the experiment
formed by the limiting distributions (Fo, F1 I is as strong as the limit experiment F'.
(The definition of [24] involves more than pairs, but it is shown in [27] that it is
enough to look at pairs.) For the purposes of our next theorem we shall metize V x Rq
by the square norms 11 +-1 12.

THEOREM 4. Consider experiments En = IPn (0); 0 E 0)) given by measures on a
a-field An and their restrictions Fn = (Qn (0) ; 0eE0) to subfields Bn C An.

Assume the following

i) The En satisfy the LAN conditions (Ri), (R2), (Li) and (L2).
ii) The joint distributions L[Wn, Tn I Pn (0o,n)] admit Gaussian approximations

in the sense of condition (L2) and, in this approximation, the variable T is cen-

tered at zero.
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log dQn (tn)
dQn (0O,n)

must also tend to zero. Hence the result.

The result presented here is related to a result of Robert Davies ([8] and [9]). His
assumptions differ considerably from ours. Davies is interested in the situation where
the restricted experiments Fn do not necessarily satisfy the LAN condition but only
what we have called "quadratic control" by random quadratic forms. This
corresponds to the approximability of the log likelihood as in condition (Li) of Section
5 but with random norms 11 - lln. He assumes that the conditional distributions
L{WnJBn,Pn((%,n)) are approximately Gaussian. To prove this in particular cases he
uses local limit theorems and an argument previously used by G. Steck [37].

We have limited ourselves here to the case of control by nonrandom quadratic
forms. For that particular case our assumptions are weaker than those made by Davies
in that joint asymptotic normality of Wn and Tn does not necessarily imply asymptotic
normality of the conditional distributions L{Wn I Tn, Pn (0,n)).

For instance it is highly visible that the vectors Z4 used in Theorem 3 and further
on to describe the construction of estimates are distinguished. Thus, one could prove
the required joint asymptotic normality as in Section 4 and then apply our present
Theorem 4 to obtain an alternate proof of Theorem 3, Section 5. This does not require
examination of conditional distributions.

However it can also be argued that, under the conditions of our Theorem 4,
Davies' conditions are almost satisfied. Indeed it can be shown (see [27], Chapter 7,
Section 3) that the assumption that the sequence (Tn} is distinguished is equivalent to
an assumption to the effect that the likelihood ratios

dQn (tn)

dQn (00,n)
can be approximated by smooth functions of Tn. To state that more specifically, take a

fixed k independent of n and sets t,i; i= 1,2,...k) in 0n. Let Zn be the k-dimensional
vector formed by the densities of the Qn (tQ,i) with respect to their sum P,l It is shown
in [27], Chapter 7, Section 3, that {Tn) is a distinguished sequence if and only if for
each set {t,i;i= 1,2,..k} there is a fixed finite set (yv; v= 1,2,...rI of continuous func-
tions from Rq to the unit simplex of Rk such that

inf 1Zn -yv (Tn)J din
v

tends to zero. (Here the norm is the maximum coordinate norm.) The proof of that
statement is rather involved. Under the contiguity restrictions used here, one can
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replace the sum n by Qn (%0,n). Suppose then in addition that the sets 19n are
sufficiently rich in that, for instance, they contain a fixed open subset of V.

It is then possible, using Laplace transforms, to conclude that the conditional distri-
butions of Wn given Tn are approximable in Qn (e0n) probability by equicontinuous
functions of the Tn. If the joint distributions converge to normal limits, Steck's
theorems will then imply that these equicontinuous approximations will also converge
to normal limits. This is all that would be required for the application of Davies'
theorem.

Thus, modulo a rather lengthy and complex argument and for sufficiently rich sets
,n, one can say that our assumptions imply those made by Davies. It should be noted,

however, that to derive Theorems 2 and 3 from Theorem 4 one still needs to carry out
a good part of the arguments previously described in Sections 4 and 5. As already
pointed out above, to derive Theorem 4 from Davies' results one needs a considerable
amount of work. This is also true for Theorems 2 and 3.

A further remark is that the proof of Theorem 4 does not actually depend on the
fact that the spaces V and Rq have a fixed finite dimensionality. One can carry out a
similar proof in infinite dimensional spaces. This is useful in non-parametric situations
and will be published elsewhere.
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7. Differentiability in quadratic mean and the i.i.d. case.

Let 09 be a subset of a Euclidean space and let (p(0): 0 E 0) be a family of proba-
bility measures on a a-field A. A condition often used to study the i.i.d. case is a con-
dition of differentiability in quadratic mean expressible as follows. At a point 00 let

42 (s), 4(s) .0, be the density dp(s) of the part of p(s) that is dominated by p(00).
dp(00)

(DQM) (i) There are random vectors X such that as ItI - 0

Ee0 1 (0o+ t) (0)-t'X 12 00Iti2
and
(ii) Let P(00+ t) be the mass of p(Oo + t) that is p(Oo) singular. Then

- I(0o + t) - O as ItI - 0.
Iti

Now replace the a-field A by a smaller a-field B and let q(O) be the restriction of
p(0) to B. We shall show that, if (p(O); O E e) satisfies DMQ at 00, so does
{q(O); 0 E 0)}. For this we shall use an indirect proof, using the asymptotic properties
of the likelihood ratios when the number of observations increases indefinitely. A
direct proof can be carried out but it is less informative than the indirect proof for the
standard i.i.d. case that can be described as follows.

Let E be the system of measures {p(0); 0 E 0) on a a-field A carried by a set X.
For each integer j, let {Xj, Aj, Ej) be a copy of {X,A,E}. The experiment carried out

n
at stage n is the direct product En = II Ej of n copies of E. That is, En is the experi-9 n~~~~~~~~j=1n
ment that consists of observing n independent variables oh, (02, *. , o°n with common
distribution equal to a certain p(OO), 00e 0. As n tends to infinity we assume that the
"true" 00 stays fixed independent of n. (For certain purposes, for instance to prove
uniformity of convergences, one makes the "true" value of the parameter depend on
n. If so, the situation one encounters is more restricted than the general situation
covered by the infinitesimal arrays of Section 4. However, the restrictions are not as
drastic as one could presume.)

For the experiments Ejn = {P,n(O); 0r En} of Sections 2 to 5 we shall take the
copy Ejn = (p(O) ;00 En) with 0 restricted to lie in a subset 13n of 0. Finally we
shall consider only the case where the E)n are of the form

On (b) = (0 EE,4,.10 - 00I< b) or perhaps of the form Ent'(b)=0 E E, an 10 -0oI < b}
for some other coefficients an that tend to infinity.
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It is well known that in such situations the condition DQM implies that the pro-
ducts En satisfy the LAN conditions on sets of the form
9n (b) = (0 e 08; 4 10- 0o1< b). It is also known (see for instance Example 4, Section

9) that cases occur where DQM is not satisfied but where the LAN conditions are
satisfied, for instance on sets (0 E 0; 'In logn 10-0 01' b). Even if one sticks with the
sets On (b) and the speed of convergence '1H, the validity of the LAN conditions does
not imply that of DQM. (An example is given in [23], page 816.) Thus, the preserva-
tion of the LAN conditions by passage from the a-field A to a smaller aY-field B does
not logically imply that DQM will also be preserved. We shall now show that it is
preserved.

It is known (see [27], Chapter 17, Section 3) that the DQM requirement is
equivalent to the following. For a pair (s,t) let An(t,s) be the logarithm of likelihood
ratio

dPn (t)

dPn (s)

for the product measures Pn (s) = II pj,s where pj s is the jth copy of Ps
J

(DQM)' There are random vectors Xj defined on (Xj, Aj) with the following proper-
ties.

i) the Xi are copies of a given X1

ii) Eeo Xj=O and for te V, Eeo(t' Xj)2 <oo.

iii) If Itnl remains bounded then

An(0+& I,0)tn'( Xj)+ j E0o(tn'X1)2

tends to zero in Pn (so) probability.

In other words, for any fixed b let

0n(b) = (0eO;-HIj0-0oIjb)
and let En be the product experiment indexed by En(b). The (DQM)' condition is

equivalent to the requirement that the En satisfy the LAN conditions (Ri), (R2), (Li),
(L2) of Section 5 with the further specification that the linear term tn'Wn of condition

i n
(L1) have the special form tn'( X X.).

~hj=i

Instead of using the logarithms An(0o+ t, I) one can use the sum

r I

Sn(tn) = |j=l [dpj9 ]
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where On = e0 +-. The condition is then that
N n

Sn (tn)-tn (>
f

j

tends to zero in probability.

Now let us consider experiments Fj,n that are weaker than our Ejn. Passage to
weaker experiments need not preserve the i.i.d. structure. For instance it could be
obtained by passing from the a-field Aj to a a-field Bjn c Aj but in such a way that the

Bj n are not copies of each other. An example can be readily constructed by looking at
the counting processes described in the Introduction. They might be i.i.d. on the total
observation period [0,L] but on the weaker experiment the isolated times at which the
patients are observed may depend on the patient.

We shall consider only the situation where there is a a-field B c A with copies
Bj cAj and where the jth experiment Fj is obtained by restricting the po of E to B and
copying the result on Bj.

One immediate result is as follows:

PROPOSITION 4. If the po; 6 e0satisfy DQM at 00 so do their restrictions q0 to
the a-field BC A.

1nPROOF. Use the variant of (DQM)' that says that S (tn) j
t Xj) tends to

zero. According to the argument of Theorem 2 the corresponding sums S
*

(tn) for the

weaker experiment will be such that S* (tn) - t(` Xj = E (Xj4 DB=).

(The preservation of DQM is no surprise in view of its relation to Lipschitz condi-
tions or to the rate of separation 4nh. See [23].)

In the present case, since the rate of convergence 4n for estimates is about as bad
as can be, one can also hope that the weaker experiments will still give suitable esti-
mates. This need not be so. However here is a usable result.

Consider the expectation E00 (t'X1)2 used in (DQM)'. It may be written t' I(0) t

for a certain matrix rT(o0) called the Fisher information matrix.

PROPOSITON 5. Assume that the pe satisfy the following requirements.

i) if Ok 60 then the total variation IlPek -Poll tends to zero

ii) if t * s then lIpt-psll > .

Then there exists estimates Tn based on n observations such that 4n(Tn -0) stays
bounded in Pn (0) probability for any 0 E 0 that satisfies (DQM) with a non-singular
information matrix F (0).
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PROOF. This is a known result. See for instance [22].

Now consider the weaker experiments with measures restricted to the copies Bi of
a a-field B c A. Let qo be the restriction of po to B.

It is obvious that whenever condition (i) of Proposition 5 is satisfied by the p9 it is
also satisfied by the q9. Condition (ii) need not be preserved. That pt ps does not
necessarily imply qt* qs. However, that si t implies qt# qs is often easy to check.

Thus we are essentially left with the question of non-singularity of Fisher informa-
tion matrices. A technique that often works is the following. If the qo are compli-
cated, there may be ca-fields Cc B on which their restrictions re are quite manageable.
It is sufficient to verify the nonsingularity of information matrices for the re.



- 30 -

8. An extension to a dependent situation.

The proofs of Sections 4 and 5 depend very strongly on the independence assump-
tions made there. However they suggest a possible extension to a dependent situation.

It often happens that an experiment has the following structure: It is given by
measures Pn (0) on a a-field An but there is a filtration

AlmCA2,nC * *. C Aj,nc.Ai+Ln c ... c An formed by a finite or infinite increasing
family of sub-a-fields. Since our purpose is not to attain maximum generality, we
shall assume that the filtration is a finite sequence with An being the last one of the
sequence.

Except for technical details that are annoying but not so important, one can
describe such a situation in a more intuitive manner as follows.

One starts by performing the experiment with the P0 restricted to A1jn. If every-
thing has been carried out up to and including the j'h step one performs an additional
experiment Ej+ln where the probability measures depend on the observations seen up
to and including the jt step. One continues till the end of the sequence has been
reached.

To retain a notation similar to that used previously, we shall let pjn (0) be the con-
ditional distribution used at the jh stage when the value of the parameter is 0. It is a
function of the previous observations, measurable with respect to Aj_ln- Just as in
Section 2, one can define quantities hj,n by

hJ2(s,t) = 2 [4d-pjn(S)-1dpjn(t)]2

for integrals taken conditionally given Ail,n. Now the hj,n are Ai,ln measurable func-
tions. The joint distributions will be denoted Pn (0) as before.

By analogy with the requirements imposed in Section 4, we shall assume that the
following conditions are satisfied for all possible choices of pairs (sn, tn) in en
(A) As n -4 oo the quantities sup hjn (sn, tQ) tend to zero in Pn (sn) + Pn (tn) probability.

J

(B) There is a number b < oo, independent of (sn, tn) such that IhJ2(sn, tn) < b.

(C) For every fixed e> 0 the sums

E; IlPi,n (tn) -[(1 + 0) Pj,n (sn)] ^ Pi,n (tn)||

tend to zero in probability.
Note that here the conditions (A), (B), (C) are no longer sufficient to imply asymp-

totic normality of the logarithms

An(tnr,Sn) = s1og dpj, (tn)
j dPin (sn)
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As far as we have been able to determine, necessary and sufficient conditions for
the asymptotic normality of An (tan sn) are not known, even under the restrictive condi-
tions (A), (B). In particular it is not known whether (C) is necessary. We have writ-
ten it by analogy with the conditions that are necessary and sufficient in the indepen-
dent case. The literature does contain necessary and sufficient conditions for the
asymptotic normality of the likelihood process considered as a function of 0 and of a
time parameter corresponding to the index j of Ajn These are the so-called "invari-
ance principles" for which see Aalen [1], Rebolledo [33] or Shiryayev [35]. However
that is a different matter. Here we are interested only on the behavior of the likeli-
hood ratios on the final a-field An.

Under the conditions (A), (B), (C) the Taylor expansion argument that gives an
approximation for the log likelihood An (tn, sn) is still valid. Therefore it is still true
that the difference

dPF ( dPi,n (tn) 2

An(tn,s)-n - ] 2± [d 1]

tends in probability to zero. This suggests the introduction of quadratic forms rn as
follows. Let Mn be the space of finite signed measures with finite support on en and
total algebraic mass zero as before. Select some sne Qn and let

rn (p.) = £i[IdP-n(t) 1] g (dt)12.

Consider also the forms

Kn (p) = -4XJfh,2 (s,t)p (ds) p (dt).

THEOREM 5. Let the Ejn satisfy the conditions (A), (B), (C). Then the experi-
ment En defined by the Ej,n is controlled by the quadratic forms Kn. Also if the cardi-
nality of the supports of measures an remains bounded and if sup IjI < oo then

n

Kn (jn) - rn (pn) tends to zero in probability.
PROOF. According to condition (C) there is no real loss of generality in assuming

that the conditional distributions pjn (0), 0 E e are mutually absolutely continuous. A
standard truncation argument shows also that one can proceed as if the martingale
differences

Xin(tn) -dpg,n (ts)Xwere a ( a)

were all bounded by unity. The integrals fXj (t) gn(dt) are also martingale
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differences under Pn (sn). Their sum will tend to zero in probability if their quadratic
variation rn (pn) tends to zero. This quadratic variation can also be replaced by the
sum

IEj-1 [ Xj,n(t) Xi (dt)]2

where E, denotes an expectation taken conditionally given the past at j- 1.

(For these relations, see Neveu [29].)

A Taylor expansion argument shows that if Yi,n (t)= 1+Xj, (t)-1 then Xi,n (t) can
be replaced by 2Y,n (t) in the preceding formula. Thus we are led to consider the
expressions

4Ej_j [JYj,n (t) Xn (dt)]2 = 4Ej_j |Yjf n (s)Y n (t) gn (ds) gn (dt)

= 4J[1 - h (s,t)]JLn (ds) ln (dt)

- Kfl(p[)

yielding the desired result.

The fact that the experiments En are quadratically controlled can often be used to
construct estimates that possess asymptotic minimaxity or asymptotic sufficiency pro-
perties. A theory to that effect has been expounded in [27], Chapter 11. The tech-
nique of [27] requires for its validity a number of additional restrictions such as
existence of well behaved auxiliary estimates and dimensionality restrictions on the
parameter spaces 0n. For such conditions we can only refer the reader to [27] and to

the work of Jeganathan [16] [17].

Now let us pass to the situation where there is another filtration Bj n j = 1,2,... with

Bj,n Bj+,nc...c* Bn. If BinCc A for every j it may happen that the conditional
experiment Fjn carried out at the jh stage is always weaker than the corresponding

Ej,n This is far from automatic. It is also plain that conditions such as (A) or (C)
have no reason to be inherited by the conditional distributions qjn (0) used on the
weaker filtration. Note that the conditional measures qjn (0) are Bj-..n-measurable
while the P,n (0) are only Aj-ln measurable. We shall restrict our attention to cases

where the experiments qjn(0) ; 04EEn are always weaker than the pjn(0) ; 0 E n)
no matter what may have happened in the passage from Bj-,,n to Ajl,n. This may
seem to be a very strong restriction, and it really is. However there do exist interest-
ing situations of that type.

For an example, consider a finite state Markov process (X(t): te [0,L]) observed
during the entire interval [0,L]. One can obtain the type of structure described above
by dividing the interval [O,L] by times ti such that
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O= to1<t < ... < tj+1 < ... < tk = L. The conditional experiment Ej,n is then
obtained by observing the process during the entire interval (tj1, tj]. One obtains a
weaker Fj,n by observing X(t) only at the end point tj.

Another example is that of "aggregated Markov chains" for which see [19] and
the references given there. It occurs as follows. Let {Xs (ti);j = 1,2,...k; s = 1,2,...m}
be m independent identically distributed finite state Markov chains.

At time tj the fully informed observer sees the actual states for all the individual
processes Xs (tj). The restricted observer looks at each possible state i and is given the
number N(tj, i) of processes that are in state i. Here, in spite of the fact that Ailn can
be considerably larger than Bj.ln the fully informed observer can carry out his condi-
tional experiment Ejn using only the information in Biln but he keeps track of who
goes where while the restricted observer is given only summary information.

In view of such examples the following result may be useful.

THEOREM 6. Let the Ej,n satisfy conditions (A), (B) and (C). Assume that no
matter what was observed in the Er,n, r < j - 1 the conditional experiment F n is always
weaker than Ejn. Then the Fj,n also satisfy the conditions (A), (B) and (C). The glo-
bal experiment Fn defined by the Fjn is under the control of quadratic forms K$ such
that the differences Kn- Kn* are positive semidefinite.

PROOF. This can be proved exactly as for the independent case, using Lemma 2
of Section 3 on the conditional distributions.

A corollary is that if the En satisfy the LAMN conditions, then, under the restric-
tions of Theorem 6, the log likelihoods for Fn will posses the same kind of linear-
quadratic expansions. All the arguments of Sections 4 and 5 remain applicable, except
that we have said nothing at all about asymptotic normality. The construction of esti-
mates described in Section 5 remains feasible. The resulting estimates will still be
asymptotically Bayes, asymptotically minimax, etc. as shown by P. Jeganathan [16].
Together with estimates of the quadratic forms, they will be asymptotically sufficient.

As to the matter of asymptotic normality, standard martingale limit theorems (see
[33] or [35]) show that the sums SfXj,, (t) pn (dt) used in Theorem 5 will be asymptot-

J
ically normally distributed if the quadratics In (1n) or Kn (1½) differ from non random
quantities by amounts that tend to zero. It would be convenient if that property was
inherited by the weaker Fj. However it need not be. To give an example consider
the case where one has n independent identically distributed variables 41,42, * * * ,n
and where Ejn consists of observing 4j. Let Nn be a stopping time of the sequence
41t2, * * * Ejn with Nn<n. Let Fjn=Ejn if j<Nn. If j>Nn let Fjn be the trivial
experiment where nothing is observed.
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Suppose that the Ejn satisfy the differentiability in quadratic mean condition of

Section 7 with non degenerate derivatives. Then if the - have distributions that do
n

not degenerate as n -e oo, the Fn will not be asymptotically normal.

We have already observed that conditions such as (A) and (C) have no reason to
be inherited in the passage from a-fields Aj,n to smaller Bjn Condition (B) is of a
different nature. Something like it is inheritable. Indeed conditions (A) (B) (C) imply
the contiguity of pairs {Pn (sn)), {Pn (tn)). It has been shown by P. Greenwood and A.
Shiryayev ([12] Theorem 4, page 48). That contiguity is equivalent to the conjunction
of two conditions one of which is that the sum Xhj2 (sn,tn) remains bounded in

Pn(sn)+Pn(ta) probability. Since contiguity is inherited by the weaker experiments, if
(A) (B) (C) holds for the Ejn then the corresponding sum of conditional square Hel-
linger distances for the weaker experiments F. will still be bounded in probability
whether or not they satisfy (A), (C) or the conditions of Theorem 6.

In Section 6, we mentioned the work of Robert Davies [8]. He considers a super-
critical Galton-Watson branching process where the observer sees for each j < n the
size Zj of the jth generation. This can correspond to our experiment Fj,n. Davies stu-
dies the properties of the experiment Fn obtained from the Fjn by introducing stronger
experiments Ejn as follows. Label the Zj.1 individuals of the (j-l)st generation by
integers i=0,1,2,...,Z _1. For individual i, let 4i be the size of his progeny in the jth
generation. Record the 4i for i =O,l,...,Zi_1. Letting j vary from 1 to n this yields our
experiment En. The situation so described is analogous to the situation we mentioned
earlier for Markov processes except that here the loss of information from Ejn to Fjn
is due to a different cause.

However, the theorems given in the present section do not apply directly to
Davies' situation. The negligibility condition called (A) here is not satisfied. A for-
tiori (C) is not satisfied. To see this it is enough to note that for n large the passage
from the (n - 1)st generation to the nth one gives a large fraction of the information
contained in the entire set of observations from 1 to n. This is so because of the
exponential increase in the size of the population.

The reasons for the validity of Davies' procedure were described in Section 6.
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9. Illustrative examples.

Example 1. The problem that motivated us to write the present paper arose from
stochastic modelling of the activity of nerve cells [39]. The membrane of such a cell
contains numerous channels responsible for exchanges between the interior of the cell
and the surrounding medium. In the experiments reported in [2] a nerve cell was
electrically stimulated every second for a total of approximately 500 seconds and the
behavior of sodium channels was monitored on a microscopic patch of the membrane.
Opening of a sodium channel results in an influx of sodium ions and in a measurable
change of the electric potential between the interior and the exterior of the cell.

Experimenters try to isolate patches containing very few channels. The actual
number m of such channels on a patch is a number that can be ascertained by neuro-
physiological means.

The channels can be in several different states. In the experiments described they
always start in a closed resting state and end in an inactivated absorbing state. The
actual states are unobservable, however every passage through an open state results in
a measurable voltage change. For each stimulus, the number of passages through the
open state is recorded. The actual activity lasts about 15 milliseconds. It has been
modelled by Markov processes as follows.

It is assumed that the various sodium channels in the patch behave independently
of one another. For a given stimulus, one channel has a probability p of responding.
If it responds, it moves through various states according to a homogeneous Markov
process, the total number of passages through the open state being random, distributed
according to a geometric distribution. This gives a variable W such that
P[W=0]=l-p and P[W=k]=pOk-l(1-0) for k>l. Since there are m channels on

m
the patch the result actually observed at the jth stimulus is a sum Y = l Wv -of m

independent replicates of W.

The relevant density is given by P[Yj =0= (1-p)m and for k= 1,2,...,

P[Y k]= zl l [k-1 IP (1-p)M-l ok-l (1 _0)1P[Yj =k] mI p1

which is a mixture of negative binomials with binomial weights.

There are three parameters p, 0 and m. However, for the data described in [2], m
was supposed to be equal to 4. In addition p had been estimated from other considera-
tions and could be taken equal to .4. Thus we were left with the problem of estimat-
ing 0. In view of technical complications that arose in the experiments it was decided
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to use the conditional probabilities

q(k,O) = P[Yj = klYj *O].

It is a simple matter to obtain an auxiliary estimate On' by the method of moments and

to compute q (k,0n ) and q (k, (n + ) for all values of k actually observed in the

sample. In the particular data set we used, k never exceeded 7.

Let Nk be the number of times the value k was recorded and let Zk be equal to

q(k,0n + 1 )
Zk = _-1.

q(k, 0 )
Compute the sums S1 = XNkZk and S2 = YNkZk2. The recipe suggested in Section 5

k k

yields the estimated value Tn = 0 + -S
The operation was duly carried out. Unfortunately a chi-square test showed that

the fit was not acceptable. The fit from maximum likelihood was even worse. Thus
we carried out the procedure described in Section 5 estimating both p and 0 from a
data set of n = 560 observations. The method of moments gave starting values
p =.457 and 0 = .159. To compute the approximation LJ2) of Section 5 one needs
to select incremented values p* + h1/1 and O* + h2 / 4n1. This was done for various
values from hi = -1 to hi = +1. The estimates p so obtained varied only in their fourth
decimals. The estimates 0 varied in their third decimals, from .1635 to .1665. This
value 0 = .1665 with p = .4535 gave the best fit, as judged by chi-square.

For comparison, the maximum likelihood estimates were p = .4538 and 0 = .1649,
giving a slightly larger, but acceptable chi-square.

The technique also provides automatically approximate values of the covariance
matrix of (p, 0) from the estimated M,1 of Section 5. Here the estimated covariance
matrix is

10-4 1.88 -1.421
104 l-1.42 4.32J

Example 2. This is similar to Example 1 but intended to show that, often, one
must proceed with due caution. Consider a two dimensional parameter 0= (.,a) with
g e (-oo, +oo) and a E (0, co). Let f(x,0) and g(x,0) be two densities on the real line and
let a be a known number ae (0,1), say a= 1/10. (The case where a is also unknown
is very important. It can be treated by extensions of the arguments given here. How-
ever many complications can occur. They would take us too far afield.)
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Let us suppose that a refined experimenter could observe n independent pairs
(Xi, I) where Ii takes value zero with probability 1 - a and value 1 with probability ac.

Assume that if Ij=O then Xj has the density f(x, 0). If Ij= 1, then Xj has the den-
sity g(x, 0). For this observer, the likelihood function takes the form

Ln(0) = I [(1 -a) f(xj, O)I-Ij [ag(xj, 0)]Ij
j=1

If both f and g satisfy the DQM condition of Section 7 with respect to 0, so does
the density of (Xj,Ij).

Now consider a restricted observer who sees only the variables Xi. His likelihood
function takes the form

n

Ln (0) = F {(1 - a) f(xj, 0) + ag(xj, 0)).
j=1

According to Section 7 if DQM is satisfied for the refined observer it is also satisfied
for the restricted one. Thus one can proceed to the construction of estimates as in
Section 5 at least whenever the Fisher information matrix does not become singular.

Now consider the two special cases where f(x, 0) is the ordinary normal

f(x,0) = - exp 1 (x_ )2)2

and where, for case 1

g1 (x,0) - 1 exp(- - X(x-_)2),2a2
while for case 2, g2 (x,0) is the Cauchy

1 1+a-2(x_g)2
n

In both cases sup Ln (0) <o0 unless I Ii < 2. Thus sup Ln (0) < oo except for cases

having a total probability at most

[1 + (n - 1) a] (1 - a)".
By contrast (see Kiefer and Wolfowitz [18]) sup L' (0) = co always. The infinite value

can be achieved by taking j equal to any one of the observed xj and taking a=O0.
This does not contradict the inequalities of Section 3 since E(sup Ln (0)1 xl,...,xn) =0

even though the probability that sup Ln (0) be large tends to zero exponentially fast as

n -0.
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As a result of this state of affairs one can assert the following: Any procedure that
attempts to select, iteratively or not, a value en such that Ln (On) = sup Ln (0) will either

get trapped at or near a local maximum or it will be such that the dSn of On= (An,, n)
tends to zero, or it will not achieve any maximum local or not.

This is particularly visible in the Cauchy contamination case (called case 2 above).
There, an appealing auxiliary estimate of . is the median mn of the observations.
However, if n is odd, sup L [(rn, a)] = oo. Thus, an iterative procedure that starts with

an estimate (mn, an ) of e = (a,a) may readily be trapped into a path where Ln goes to
infinity. In spite of this, the arguments of Section 5 remain applicable. One can
prevent the auxiliary estimates from searching for singularities in the likelihood func-
tion by a variety of procedures: Discretization, smoothing, etc. If so, the one step
estimates of Section 5 are guaranteed to work "asymptotically". (Contrary to com-
mon advice, it may not be safe to iterate!) This, of course, does not guarantee good
behavior for a fixed finite n. As is the case for most statistical problems, we do not
have any general recipe that always avoids all troubles for all finite n. The only gen-
eral recommendation that comes to mind is to exert due caution and at least check that
the estimated model fits the data.

The general theme of the present example can be applied to many cases where the
densities are mixtures of smooth families. This remains true even if the mixing pro-
portions are unknown. However, in this more general situation, due care must be
exercised in the selection of auxiliary estimates. Also identifiability problems may
make life even more complicated (as is the case in the mixture of Gaussian distribu-
tions of our case 1. If a=1, the mixing proportion a is estimable for the refined
observer but not for the restricted one. Neighborhoods of the formr (a I 4E I a- ao I < b)
are then inappropriate. We shall return elsewhere to what happens on the neighbor-
hoods described in Section 2).

Example 3. Consider, for each integer j . n, an homogeneous Markov process

(Zj(t),te [0,1]) with three states SP S2, S3 and an infinitesimal generator A. Let the
experiment Ejn consist of observing the Zj (t) for the entire interval [0,1], the Zj being
mutually independent. Let Fj n be the experiment in which the values of Zj (t) are seen
only at times 0 and 1. Assume for instance that the initial distribution of Z, (0) is uni-
form over the three states. The problem is to estimate the generator A.

The transition probabilities P[Z (1) =Sk IZ' (0) = SI] are the entries in the matrix
exponential exp{A). For any fixed matrix A it is fairly easy to compute the exponen-
tial exp (A), but carrying out a maximum likelihood procedure is another matter.
However one can look at the matrix Mn that gives the observed frequencies of transi-
tions, take its logarithm and take the generator An closest to that logarithm. If A is
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unrestricted, there are six parameters. Application of the method of Section 5 will
necessitate computation of exp{A*} and of six exponentials of the type exp{A* +u i}
for suitably selected deviations u,ii, i = 1,...,6.

Often the generator A is assumed to belong to a parametrized family. For instance
one could consider a one dimensional family A(o) of the type A(0) = (1-0) AO+ Al for
fixed generators Ao and Al and for Ge [0,1]. In such a case one would take the A(O )
closest to logMn in the model. It would be enough to compute two exponentials of
the type exp(A(0*)) and exp{A(Q +un))}.

Here several complications may occur.

The matrices A may have complex eigenvalues. Thus the determination of logM
is an uncertain affair. It may also be that several different generators yield the same
transition probabilities. (See [7] and [36].) Here is an example of a parametrized fam-
ily A(O)=(1-0)AO+Al where exp{Ao)=exp(Al) but where exp(A(r))*exp(A(s))

3ic 3icfor any pair (r,s), r.s in (0,1). Let A0=-aI+aM--2 D and Ai=-aI+aM+-32D2 2

where a is the number a= 3 , the matrices I and M are respectively the identity
2

matrix and the matrix whose entries are all equal to 1/3 and the matrix b is

0 1/2 -1/2
D -^ -1/2 0 1/2

1/2 -1/2 0 J

The same type of example can be used to illustrate the results of Section 8.
Instead of observing n independent replicates Zi (t), te [0,1], observe just one process
Z(t), t e [0,n]. Let Ej,n be the observation of the process in (j - 1, j] conditionally on
the value at j - 1. The restricted experiment Fj,n consists of observing only Z(j). The
same kind of analysis will apply as long as all the states communicate with one
another.

Example 4. Let Xj, j =1,2,...,n, be i.i.d. with density [1 - x - 01]+ on the line. Let

Uj, j = 1,...,n, be i.i.d. independent of the Xj with a fixed known distribution, say
N(0,1). Let Ejn consist of observing Xj and let Fjn consist of observing Xj+Uj.

For the Ejn the LAN conditions are satisfied in neighborhoods of the type
Vn= InlognI0-00I<b). Thus, by Section 5, the Fjn will also satisfy the LAN con-
ditions in these same neighborhoods. However, this is no great consolation since in
these Vn the product Fn degenerates. The Fn do satisfy the LAN conditions in neigh-
borhoods of the type (h I 0-00 I < b). This is immediate from the fact that the distri-
butions satisfy the DQM condition of Section 7. However it is not a consequence of
the results of Sections 4, 5, 6 or 7. It could be deduced from the arguments of Section
6 if one knew already of the existence of distinguished sequence of estimates for the
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local problems.

Example 5 (Method of moments). Let Cl)1, (02' *on be independent random ele-
ments with values in a set Q and a common distribution Pq; 0 E Q. The method of
moments consists of selecting a measurable function 4n from n to a Euclidean space
Rm and estimating H by minimizing the Euclidean norm

n
j-l [On (oj) - 0 On ((0o)II
j=1

We shall assume that Qn is a convex subset of a Euclidean space Rk and that the
origin of Rk belongs to 0E).

The passage from coj to the vector 4n (oh) can result in a loss of information. It is
subject to the results of Sections 4 and 5. Let

Pe,n = L[co1, °29 *..* I. 1)

Qe,n = L[4>n (w), * On(.. n) I0]
If En={P0,n;0e()n) is asymptotically Gaussian, so is Fn={Q0n;(0e3n}. If En
satisfies the LAN conditions, so will Fn.

n
The passage from the n-tuple (On(0i1), O (ton)) to the sum Tn= E (c(i) can

j=1
also result in a further loss of information. Here the results of Sections 4 and 5 do not
apply. The situation is complex. We shall discuss only a special case for which we
need an appropriate affine invariant distance between measures on Rm. We shall use
the half-space distance. A half-space is any set of the form (x: t'x > a) or {x :t'x> a)
with a real and with t' in the dual of Rm. The half-space norm of a signed measure g
is

11N11H = SH1p (H)l

for a supremum taken over all half-spaces.

We shall use the following restrictions

a) The experiments Fn satisfy the LAN conditions.

Let us call "outliers" any one of the On(coj) selected by the statistician after
inspection of the n-tuple (On (oj) ; j = 1,2,...,n) by any measurable criterion he pleases.

b) Let Tn* be the sum Tn with one outlier removed. Then no matter the choice of
outlier the difference

L(Tn I0)-L(Tn1 I0)
tends to zero for the half-space distance.
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This is a commendable form of robustness. By a result of P. Levy it is equivalent
to the assertion that there exist Gaussian measures Go,n such that IIL(Tn I 0) - Gon IH
tends to zero.

The following condition can always be insured by restricting oneself to an affine
subspace.

c) The support of L(Tn I 0) is not contained in any proper affine subspace of Rm

If (b) and (c) are satisfied one can renormalize Tn so that G0,n is the standard
N(O,I) distribution on Km. We shall do so.

Let A.(0)=log .dQD Condition (a) implies the existence of random variables= o'dQ0,n
Vni, functions Of On (coj), and the existence of matrices Mn such that

n 1
An (0) -O '; Vn - + - 0 Mn 0

J 2

n
tends to zero in probability. Furthermore, let Vn= 2 Vn. Under conditions (a) (b) (c)

j=1
with the renormalization indicated the joint distribution L[Vn, Tn IO] admits a Gaussian
approximation for the Levy or Prokorov distance. Indeed L(Vn IO) and L(Tn I O) admit
separate Gaussian approximations and the joint distribution L(Vn,)Tn10) admits an
infinitely divisible approximation. It follows that there are matrices Bn such that if

on EE3n then

IIL[Tn I on] - N[BnOn, 1]IIH
tends to zero. These matrices can be obtained as covariance matrices in the normal
approximations to L[Vn, Tn I10

This suggests that the experiments Fn = {Q,n; 0 E E)n) with Q( n = L[Tn I 0] will also
be asymptotically Gaussian. Indeed, we do not presently have any examples to the
contrary. It does not follow however that if the Fn are asymptotically Gaussian they
are approximable by the Gn= (G0,n; 0 : 0) with Gem = N[Bn0,I], as will be shown
below.

To enforce such a property one needs to add further restrictions. To state them
consider the following possible modifications of Tn. Let en be independent random
vectors independent of Tn. Let Tn'= Tn+ en. Also, consider an integer v (n) and let
Tn' be obtained as follows. Write the coordinates of Tn in decimal expansions. Then
Tn' has the same decimals as Tn up to v (n). The remaining ones are all put equal to
zero. Consider binary experiments Bn = (Qo,n. Qe,,n). Bn" = (Qo,n", Qe3,n'), and
If= tQo,n' Q ' I with 0ne in and with Qogn'=L[Tn` 01, Q,n' =L[Tnf ,0].
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d) For any arbitrary choice of noises En if lIQO,n- Qo,n'IIH tends to zero so does the

dQnn10] n IdQe n'n
Levy distance between the distributions L[ dQ0 | ] and Ld[Q" ' 0].

d') Assume that L(Tn 1O) has be normalized as mentioned above. Then for any choice

of cut-off v(n) such that v(n)-oo the Lkvy distance between L[ e0] and

dQ0o
L[ 1I 0] tends to zero.

Conditions (d) or (d') can be taken as expressing the fact that the information con-
tained in Tn occurs there in a robust sort of a way.

Under conditions (a) (b) (c) (d) the Tn form a distinguished sequence for the exper-
iments Fn. Thus Theorem 4 of Section 6 becomes applicable. The same holds true if
(d) is replaced by (d').

This is not difficult to prove. If (d) is used one can find noises en such that
L[Tn'10]-N(0,I) tends to zero in total variation. The same will then be true of

L[TnjOn]-N(BnO,nI). If (d') is used instead one can obtain a similar type of effect
by considering discretizations of N(O,I) that match L(Tn' 10) in total variation norm
except for a difference that tends to zero as n--+oo. The argument is given in [27]
Theorem 2, Section 3, Chapter 7. Condition (d') suggests a construction to obtain
sums Tn that satisfy (a) (b) (c) and are such that the corresponding experiments Fn are
asymptotically Gaussian but significantly stronger than the Gn.

To do this suppose for simplicity that the 4n are real valued and that they and the

vnj have been truncated so that Ion(coj) I < 1 and VnV jI < 1. Under (a) (b) (c) and the
normalization described earlier, this can be done without modifying the asymptotic
behavior of the distributions or experiments concerned.

Let )n(coj) be n(coj) with all its decimals beyond the nh one put equal to zero.
Let On+(c) = $n (CO)+ 10-2n Vni.

n
Then the sum T+= £ + (coj) defines an experiment F+ that admits a Gaussianj=1nn

approximation Gn+ such that the difference between Fn and Gn+ tends to zero. Indeed
the sum Vn is asymptotically sufficient and distinguished for Fn. The asymptotic
behavior of distributions is not changed for the half-space distance. However Gn+ can

be considerably more informative than Gn. This can be seen for instance in the
1 n

gamma density [F(a)]t ex xal if one estimates a by - I Xj.n j=i
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A further remark is as follows. In the method of moments one estimates 0 glo-
bally while our conditions (a) and (b) are meant to be applied locally in small sets En.
In the local situation it is tempting to replace the expectation E0 T" by the centers Bn O
of the Gaussian approximations. This can be done under suitable integrability require-
ments. Then minirnizing the Euclidean norm IITl - Bn Oll becomes a linear problem. It
will have a point solution On only if the dimension m of Tn is at least equal to the
dimension k of 0 and if Bn has full rank. The solution is then (n = (Bn' Bn)-1 Bn Tn- If
m> k, passage from Tn to On will often lose information. If m= k no information is
lost. However, unless conditions such as (d) or (d') are satisfied, information may be
lost in the passage to approximate solutions. This can happen in particular in the
minimization of IlTn- E Tnll.

Example 6 (Grouping data). Let Xj, j = 1,2,...n, be i.i.d. with densities f(x, 0),
O e 0, on the real line. For Ejone observes Xi itself. For F. one sees only the

integer Yi nearest to Xj. (If Xj happens to be equal to k+- one takes k or k + 1 by

tossing a coin.)
k+12

Even for fairly simple functions f(x, 0), integrals of the type 1/2 f(x, 0) dx are
usually obnoxious to deal with. However, let us assume for instance that 0 =R1 and
that the f(x, 0) satisfy DQM of Section 7. It is often fairly easy to verify that the Fj n

satisfy the identifiability conditions of Proposition 5, Section 7. Assuming this, and
assuming that one can find suitable auxiliary estimates 0*, the method described in

Section 5 will require only computation of the integrals K1/2 f(x,s) dx for q+ 1 values
of s and for those k that have been seen in the sample. Note that the results remain
applicable to situations where the grouping classes are made dependent on the number
n of observations.

For grouping in classes that are random, dependent on the observations, other argu-
ments are required.

Example 7 (Censoring). Consider independent pairs (Xj,Yj) of positive random
variables with a joint density f(x,y,9) that depends on a Euclidean parameter 0. The
refined experiment Ej,n consists of observing the pair (Xj, Yj). In the restricted experi-
ment Fjn one sees only min(Xj, Yj) and an indicator variable Ij equal to zero if Xj> Yj
and to unity if Xj< Yj. Assume that the Ejn yield a product experiment En that
satisfies the LAN conditions on sets of the form (0: 10--ol < b). Then the res-
tricted product Fn will also satisfy the same LAN condition. If in addition the densi-
ties f(x,y,0) satisfy the differentiability in quadratic mean condition of Section 7, the
same will be true of the distributions of (min(Xj,Yj), Ij).
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In such a situation it is well known (see [30] and [38]) that a 0 that is identifiable
on the complete experiment may become unidentifiable on the restricted one.

However most of the examples discussed in the literature satisfy conditions analo-
gous to the following.

1) The densities f(x,y,0) have the form f(x,y,0) = g(x,0) h(y,0) so that Xj and Y
are independent.

2) The supports of Xj and Y, are the same.
00 00

3) Let G(x,0) = g(t,0) dt and H(y,0) = h(t,0) dt be the survival functions
attached respectively to g and h. There are two positive numbers a and [ such that

101 - 021 > a implies sup IG(x,01) - G(x,02)1 > 1B.
x

4) The family {g(x,0) ; 86E0) satisfies DQM with nonsingular covariance matrices.

Under such conditions, 8 is identifiable. Also one can get auxiliary estimates *n
that converge at the l;- rate. A possibility is to start with some nonparametric estimate

G. of the survival function, for instance the Kaplan-Meier estimate or the Nelson-
Aalen estimate from cumulative hazard functions. Then apply a minimum distance
technique as in the procedure that yields Proposition 5 of Section 7.

A direct verification that nonsingularity of Fisher information matrices is inherited
by the weaker experiment seems awkward. However, this nonsingularity is implied by
the properties of the estimate just described.

(In the most standard case, where h does not depend on 0, verification is trivial.)

Thus the results of Section 5 can be applied here. The density of Zj= min(Xj,Yj)
has the form

g(z, 0) H(z, 0) on Ij = 1

and

h(z, 0) G(z, 0) on Ij = 0.

Assuming that these formulas can be computed for the observed values (Zj, I) and a
few values of the parameter 0, Section 5 will yield asymptotically efficient estimates.
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