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ABSTRACT

IIl-posed inverse problems rise in many branches of wience and engineer-
ing. In the typical situation one is interested in recovering a whole function
given a finite number of noisy measurements on functionals. Performance
characteristics of an inversion algorithm are studied via the mean square error
which is decomposed into bias and variability. Variability calculations are often
straightforward, but useful bias measures are more difficult to obtain. An
appropriate definition of what geophysicists call the Backus-Gilbert averaging
kernel leads to a natural way of measuring bias characteristics. Moreover, the
ideas give rise to some important experimental design criteria. It can be shown
that the optimal inversion algorithms are methods of regularization procedures,
but to completely specify these algorithms the signal to noise ratio must be sup-
plied. Statistical approaches to the empirical determination of the signal to noise
ratio are discussed; cross-validation and unbiased risk methods are reviewed and
some extensions, which seem particularly appropriate in the inverse problem con-
text, are indicated. Linear and non-linear examples from medicine, meteorology
and geophysics are used for illustration.

Key-words: ill-posed inverse problems, mean square error, averaging kernel, bias,
variability, optimal inversion algorithm, experimental design, B-splines, cross
validation, unbiased risk, predictive mean square error, estimable loss, random
spheres, integral equations, radiative transfer, distributed parameter
identification.

This work was supported by the National Science Foundation under Grant
Number MCS-8403239.



A Practieal Perspective on Il-Posed Inverse Problems:

A Revlew with Some New Developments

Finbarr O'SuUIvan

Department of Statistics

University of California

Berkeley. CA 94720.

1. Introductlon

Inverse problems have got to do with situations where one is interested in making inferences

about a phenomenon from partial or incomplete information. Accordingly, statistical estimation

and model building are both inverse problems. In modern science there is an increasingly impor-

tant clas of inverse problems which are not amenable to clasical statistical estimation procedures

and such problems are termed ill-posed. The notion of ill-posedness is due to Tikhonovl221 and

an extended treatment of the concept appears in Tikhonov and Arsenin[231. In an ill-posed

inverse problem, a classical least squares, minimum distance or maximum likelihood solution may

not be uniquely defined, moreover the sensitivity of such solution to slight perturbations in the

data is often unacceptably large.

A typical example of an ill-posed inverse problem is described by Nychka et al.[l91. Here

one is interested in the estimation of a 3-dimensional tumor size distribution in liver tissue, from

measurements on cross-sectional slices. A schematic for the experiment is given in Figure 1.1.

Figure 1.1 ABOUT HERE



- 2 -

Modeling tumors as spheres randomly distributed in the tissue an approximate integral relation-

ship between the 3-dimensional distribution of tumor radii and the 2-dimensional distribution of

radii observed in cros-sectional slices may be derived. Letting z, be the observed proportion of

2-dimensional slices with radii in the interval k ,z +tl one bas that

Z, = fK(2,,r)If r)dr + e, i =1,2, P,m

where e, are measurement/modeling errors. f 3 is the density of 3-dimensional tumor radii and

the kernels K (z, ,r ) are given by

0 e<r <z,

K (Z, ,r V77 zt<:r< z,+1
rm/;z, Fr_X +1T ,+,<r <R

Physically, e is the smallest detectable tumor radius and R is the largest possible tumor radius in

the given section of tissue. Since e<=-1<z2< <**z,,<R, the estimation of fJ must be

restricted to the interval le,R 1. It is easy to to appreciate the ill-posednes of this inverse prob-

lem. The kernels K (Z. ,) are smooth, and as a result relatively large perturbations in f 3 can give

rise to very slight perturbations in the data and conversely. It follows from this that least

squares, minimum X2, or maximum likelihood solutions will be very sensitive to slight changes in

the data.

Ill-posed inverse problems have become recurrent theme in modern science, see for example

Crystallographyj231, Geophysics(2, 8, 251, Medical Electrocardiograms[l19, Meteorology(46, 471,

M1croffuroimagery1351, Radio Astronomy [241, Reservoir Engineeringj27, 371, and Tomogra-

phy|1O, SS|. Corresponding to this broad spectrum of fields of application, there is a wide litera-

ture on different kinds of inversion algorithms, that is, techniques for solving the inverse problem.

The basic principle common to all such methods is as follows; seek a solution that is consistent

both with the observed data and pnor notions about the phyrsical behavior of the phenomenon

under study. Different practical problems have led to unique strategies for implementation of this

principle, such as the Method of Regularization[531, Maximum Entropy[241 and Quasi-

Reversibility[281. Understanding the performance characteristics of a given inversion method is
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an important issue: Firstly, such information has obvious intrinsic value and secondly, it can criti-

cally influence the choice of experimental design, see section 2.

The primary goal of this paper is to identify some tools for assessing the finite sample per-

formance characteristics of an inversion algorithm. These tools, most of which can be found scat-

tered throughout the diverse inverse problem literature, are considered in the context of the fol-

lowing generalized non-linear regression model: Measurements, z,, are of the form are of the form:

z,= 7(sz,,) + (, i =1,2, * - - ,m

where O is in e ( the nominal parameter space), (z,, are linear or non-linear functionals of U,

and the E, are measurement errors assumed to have mean zero. In all that we discuss, there will

be an underlying assumption that the unknown true function, 9, is well approxAmated by a smooth

function. Though this assumption does not allow Us talk about highly discontinuous functions,

such as those that arise in typical pattern recognition problems, the model is still quite general,

and includes for example linear and non-linear integral equations of the first kind. Examples used

later on include the temperature retrieval problem in satellite meteorology, and the system

identification problem of reservoir engineering.

1.1. Iuvwslon Algorithms and the Method of Regulrlsatlon

An inversion algorithm, S, is a mapping that takes data into parameter estimates.

a= S.
When S is linear then 0 can be written as a linear combination of impulse response functions, O,

i.e.

O(t) Ea,()z

where s, =So,, and *, is the i 'th unit vector in R . In statistical terms, an inversion algorithm

would be simply called an estimator, but here the terms estimator and inversion algorithm are

used interchangeably.
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One of the most useful techniques for generating inversion algorithms or estimators is the

Method of Regularization (MOR), see Titterington[541. The MOR procedure is due to Tikho.

nov(52, 531. There are various possible implementations of the method but they all amount to

choosing 0 to be the minimizer of a weighted combination of two functionals: The first functional

measures lack of fit to the observed data and the second measures physical plausibility of the esti-

mate. For example, we might choose 0 to be the minimizer of a criterion of the form

[Z[Z - i1(:, ,e)j2 + Al(O) , X > 0. (1.1)

The functional J is chosen so that highly irregular or physicall implausible O's have large values.

Statisticians will recognize this method as a version of Penalized Likelihood Estimation described

by Good and Gaskins[211; the sum of squares is the likelihood part and the functional J the

penalty term. The method is equivalent to the Method of Sieves introduced by Grenander(221.

Also, if J is chosen by some information principle such as entropy, J(0) = -f (t )logO(t )dt, then

the method of regularization yields a procedure equivalent to the Method of Maximum Entropy

pioneered by Jaynes, see Jaynes[241 and Chapter 4 of McLaughlin[341.

When the functionals, (;')are linear in 0, and J is quadratic with J(9) 2 0 ( 0 for

O = 0 ) then the solution to (1.1) is linear in the observed data. Nforeover, in this case the MOR

has an interesting Bayesian interpretation. To see this, first suppose that e is finite dimensional,

i.e. 0= uSon(ta with Ok linearly independent. The elements of 0 can be written as

#O for 5 = (Ol,2 * * - #K in RK, so that 0 can be identified with RK. Since J is
k

quadratic and J(0) = 0, J(0) can be expressed as a quadratic form in .0, J() = n,, for some

positive semi-definite matrix nl. It follows that the MOR estimator is t,'k t where j minimizes

>2[z, -X, 012+Xi no

Here X is a design matrix, X,k = v(z, 0k). Thus j is given by

-= Ss where S = [X' X + m)xnljlX'
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Obviously, the MOR estimator is linear in the observed data. A Bayesian interpretation for 0. is

obtained by specifying a Gaussian prior with mean zero and covariance matrix proportional to

0'. Then, if the e, 's are independent and identically distributed Gaussian random variables with

mean zero, the MOR estimator, p, is the posterior mean of p given the data.

The foregoing statements carry through to more general settings. If e is a Ifilbert space

with inner product <, >, the 'i(;,j are bounded linear functionals and J is quadratic,

1(0) = <9,W9>, where W is positive semi-definite, then it can be shown, see Cox[131 for exam-

ple, that the MOR estimators have the form

9>= Ss where S =[X' X + mX\WIlX'

where the design matnx, X, is an operator derived from the the functionals i(: ,-. Thus S is a

linear operator from the data space into 0. General Bayesian interpretations for the method are

also available, these are discussed by Kimeldorf and Wahba[261. Further results on the optimality

of the MOR are described in section 2.

1.2. Outilne

Performance characteristics of an inversion algorithm are studied via the mean square error

which can be split into bias and variability components. Bias measures the systematic error while

variability measures the random error. In section 2 we consider linear inversion algorithms and

describe some ways of measuring bias and variability. Variability is calculated in a direct

manner. For bias it is convenient to introduce a generalized version of what geophysicists call the

Backus-Gilbert averaging kernel, see Backus and Gilbert[6, 71. The generalized notion of the

averaging kernel allows one compute the maximum or average expected bias and also leads to

some natural design criteria. These are described and illustrated in section 2.4. Optimal inver-

sion algorithms can be found and these turn out to be MOR procedures. The use of B-splines for

obtaining numerically convenient and accurate approximations to the averaging kernel and bias is

described in section 3. Though the theory of linear inverse problems is fairly well established, the

field of non-linear inverse problems is in its infancy. There are many exciting and challenging
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problers that need to be tackled in this area. The performance of MOR estimators when applied

to two interesting non-linear inverse problems is discussed in section 4. One of these problems

arises in satellite meteorology and is concerned with the estimation of atmospheric characteristics

such as temperature form upwelling radiance measurements. The second problem is of major

interest in reservoir engineering. It concerns the estimation of reservoir characteristics, such as

the easy of flow of fluid in the reservoir, from pressure-history data measured at distributed well

sites. As described in section 2, optimal inversion algorithms though MOR procedures are not

fully specified without supplying the signal-to-noise ratio. For a given problem this will not be

known and so has to be empirically determined. The final section of the paper deals with this

issue; the methods of cros validation and unbiased risk are described and some relevant exten-

sions to ill-posed inverse problems are developed.



2. Finite Sample Performance of an Inversion Algorithm

The quality of an inversion algorithm at some point, t, is measured by comparing the esti-

mate, O(t ), to the true value, O(t ). This difference can be decomposed into systematic and ran-

dom components as

e(#O(t) = O(t)-EO(I ) + EO(t)-O(t)

where the expectation is over the distribution of possible errors. The average performance of the

inversion at t is measured by the mean square error (MSE).

MSE(t E[O(te) O-t )12 1[(e ) - EG(t )12 + E[9(t ) - EO(t )12

=ise.2(t,) + var(t,9)

The mean square error depends both on O and the asumed error distribution. It is sum of the

squared bias, bias 2(t ,G), and the variance, var (t ,O). It the inversion algorithm is designed solely

to minimize bias then the variance dominates the mean square error and vice-versa. Thus a good

inversion algorithm must balance bias and variability, i.e. unbiasness may be a desirable property

in classical statistical estimation, but in the context of ill-pred inverse problems it is not.

Mean square error performance of an inversion algorithm can, in principle, be found by

Monte-Carlo simulation. Modern computing resources are making this a very viable and practical

approach. For linear problems one can avoid direct Monte-Carlo simulation and in the process

obtain some useful insights which can be applied to more complex situations.

2.1. Linar Problems

By a linear problem we shall mean that both the functionals, vi(z, ,), are linear in O, and the

inversion algorithm, S, is linear in the data.

2.1.1. VariabilIty

Variability computations for a linear inversion algorithms are very straightforward. Here,

variability does not depend on O and
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var(t,e) - var(t ) var ( u,(t)ej

where u, is the impulse response function. Thus if the errors, e,, have covariance ES, then

rar(t) .(ty e(g)

where r(t) (ul(t ),t2(t), ,u, (S()Y . In particular, if the errors are independent with con-

stant variance a2, then the variability is simply

var(t) a2 (t ys(t

2.1.2. Bl.

Bias properties are best understood by introducing the notion of the Averaging Kernel. In

certain circumstances the averaging kernel yields a representation of the form

Ee(t)= A(ts)O(u)du , (2.1)

for the systematic part of the estimate. The function A (t, ) is known as the averaging kernel at

t and A (l ,) determines the nature of the bias incurred at t. The averaging kernel is related to

what engineers and astronomers call the pointspread function. The point-spread function at t

is defined to be the solution obtained by the inversion algorithm when the true function is a Dirac

6-function at S and there is no measurement error. Thus from (2.1) if the averaging kernel at t is

A (t ,) then the point-spread at t is the function A ( ,t ).

The representation in (2.1) is an L2 representation for the averaging kernel. In the Geophy-

sics literature this representation is known as the Backus-Gilbert averaging kernel, after two geo-

physicists Backus and Gilbert[6, 71. Alternative representations for the averaging kernel are also

possible and these alternative representations are more useful when it comes to computing bias.

The averaging kernel and its generalizations are described next.



2.2. Averaging Kernel

2.2.1. Backus-Glibert Formulation

Backus and Gilbert worked in an integral equation context.

i(2 ,) = Ks (a)()d. =12 m

and the kernels K, ( ) are known smooth functions. For a linear inversion algorithm the E&(t) can

be written as

EO(t )- s (t f|Ks (o )(s )do

So, taking the summation inside the integral sign, we have

EB(t = A(tu )U(* )du
where

A(t,) 2,(e)K,()t

The function A (t, ) is the Backus-Gilbert averaging kernel for the inversion algorithm S at t.

For illustration, an averaging kernel corresponding to a method or regularization procedure

applied to the tumor size distribution problem, described in section 1, is given in Figure 2.1.

Figure 2.1 ABOUT HERE

One can see that the kernel is well centered about the point or interest, r =.4. Moreover the ker-

nel seems fairly symmetric so that if the 3-dimensional tumor radius density were locally linear in

the neighborhood of this point then the inversion algorithm would be locally unbiased. Properties

of the averaging kernel can be varied by changing the regularization parameter, X - large values

of X cause the averaging kernel to be more spread out. Techniques for empirically selecting this

parameter are discussed in section 5.
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The center, spread and skewness of the averaging kernel give a rough appreciation for its

behavior. Assuming they exist, these are defined to be the first, second and third moment of the

absolute value of the averaging kernel when suitably normalized. Letting

= ,~~~~then
fIIAx(t,)I dt

Characterlstles of the Averaging Kernel

center: c()=f I Xx(t,*)I d.

spread: 8p(1)= If IAx(t,u)I(e-c(t))2d.

skewns: ek (t f IXx(,)v ('C(3t))Isdo

The skewnes is dimensionless while the center and spread are in t -units. Skewnesis important

since a symmetric averaging kernel ( uk (t )=O.) will exactly pas a linear trend.

Intuitively, the bias at a point, t, is determined by the how close the averaging kernel is to

a Dirac 6-function at t. Backus and Gilbert tried to develop some direct meaures of the nearness

of the averaging kernel to a Dirac 6-function - "6-ness of the averaging kernel". By choosing the

inversion algorithm, so that the averaging kernel is as 6-like as possible, subject to some upper

bound on the size of the standard error, one obtains so called Backus-Gilbert inversion algorithms.

The idea seems perfectly reasonable, however, there is some degree of arbitrariness in the 6-ness

criteria defined by Backus and Gilbert, moreover in general it is not true that the function max-

imizing a 6-nes criterion will necesarily be the Dirac 6-function. Problems with the 6-ness cri-

teria really arise because the Backus-Gilbert calculus takes place in an L2 setting where evalua-

tion is not a continuous linear functional. If we work in a space where evaluation is continuous,

we can derive a more reflned formulation of the averaging kernel and use a straightforward cal-

culus to assess 6-ness. The reflned definition of the averaging kernel also allows one deal with
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more general linear functionals q(z,,O).

2.2.2. Reained Formulation of the Avera g Kernel

Prellmlnarles: Llnar Functionals and Representer

We shall need the notion of a representer of a continuous linear functional. To motivate

this concept, consider first the cue where 0 = spSnif (t} and the Ot are linealy independent.
1<k<K

Here, elements of 0 are identified by a K -vector of coefficients, t in RK. Moreover the usual

inner product on R K determines an inner product on 0 by

<91,92> = .'6>2

K K
where 1 = O91k 4k, and °2 = S2t Ot. If i(,s,)i linear then for any 9 in 0

u(z .°)-X,' p (2.2)

K
where O= O and X, =-(i(,,AI,02), ** ,(Z,tK )f . X, determines an element,

IC
K

St E X,t t . in 0 with the property that for all 9 in 0

ii(,,fl)=,,0

In functional analysis terms, *, is the representer of the linear functional i(,). An important

linear functional is evaluation at point. The representer in 0 of evaluation at t is given by

IC
et = o2 (t )ok

One can easily verified that

0(t < et< re,> , fIor all in e.

The notion of a representer can be extended to more elaborate function spaces. The level of

functional analysis needed to understand this is very elementary and the interested reader might

consult Rudin[451. It is important to realize that, in general, the form of the representer depends
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on which inner product is used. Let 0 be a real Hilbert space with inner product <, > and

norm 11[11. A linear functional I is continuous if there is a constant M such that

1I(0)1 M Olell forall 9 in 0

Corresponding to any continuous linear functional, I, there exists a representer f in 0 such that

l(O) =- <C,9> tor all in 0

This is known as the Riesz representation theorem, Rudin(451. A Hilbert space of real valued

functions in which evaluation is continuous is known as Reproducing Kernel Hilbert Space

(RKHS). Reproducing kernel Hilbert spaces play an important role in applied mathematics. The

importance of RKHS in the study of ill-posed inverse problems has long been emphasisd by Pro.

lesor Wahba, see Wahbaj6g| and the references cited therein. Evaluation is not continuous in

L2, but is continuous in the space of functions whose fint derivatives are square integrable.

Represntr of the Averaging Kernel

Given the notion of a representer, the generalization of the averaging kernel is very simple.

Let 0 be a real Hilbert space with inner product <, > and suppose that the functionals (Z, ,)

are continuous with representers *,. Since

Ee(t ) ,(t )q(Z, ,e)

the representer of the averaging kernel, A (t ), is given by

Thus the averaging kernel is a linear combination of the representers of the functional v(s,).

The linear combination is determined by the impulse response functions of the inversion algo-

rithm.
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2.3. BIas Measures and Some Design Criteria

The more general formulation of the averaging kernel leads to natural ways of measuring

bias and this in turn motivates some useful design criteria. Let 0 be such that evaluation at t is

continuous and let et denote the corresponding representer. From the averaging kernel, the bias

at I may be written as

O(t)-~~ett_c-A (t)PO>

Average Blas

The representation, <et-A (t ),6>, can be used to compute the expected squared bias with

respect to a prior distribution on possible O values. Thus, if 0 = opan (0i) and a prior mean

and covariance for 6 is be specified by means of the coefficients of the *k 's, O,

E#10-Oo= , Var,[jSJ

then the average expected bias is

bl(t) = E[6(t )-E(t)2= Eo< et -A (t),>2= CttsoCt + <et-A (t ),9o>2
K

wherect =(<et -A(t),tj>,<et -A(t),42>..-p,<et- A(t ),OK>Y andO0= EfO k k.

Maximum Bias

A less sophisticated measure of bias is the maximum bias over all functions in 0 whose

norm is less than some specified value, p. From the averaging kernel representation for bias and

the Cauchy-Schwartz inequality, this is given by

8up 1[(1 )EG(s )12 8=up <et-A (t ) 9>2 tIl-A (t )II22
Ils10<0,2 iim 2<,,2

Thus letting bM,(t) = Ict-A (t )JI, bJ(t) is proportional to the maximum bias over any ball in 0.

Figure 2.2 plots the maximum bia, bM(S ), and standard error, square root of variability, for

a MOR inversion applied to the tumor size distribution problem. Both the bias and standard

error have poor behavior for small radii, suggesting that there is dificulty in getting reliable
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estimates of the size distribution for small radii. This is largely a consequence of the fact that

small tumors are hard to detect, see Nychka et al.1381 for more discussion. The ripples in the plot

are due to the finite sample size, m =50, in this illustration. The vertical scales on the bias and

variability plots are left unspecified. If particular values for the g and a are asigned then an

appropriate scaling can be setup.

Figure 2.2 ABOUT HERE

Design Criteria

Combining bias with variability gives an overall asessment of the performance of the inver-

sion algorithm which can be used for design purposes. The average bias measure gives rise to a

an Average Mean Square Error design criterion (AMSE):

AMSE(t )P(t ) + var (t)

Also, from the maximum bias measure, we obtain the Maximum Mean Square Error design cri-

terion (MMSE):

MMSE(t) =2b2(a)+ var(t)

2.4. OptImal Inversion Algorithms and Experimental Design

Since both the average and maximum mean square errors depend on the inversion algo-

rithm, we can select the algorithm which perfornm best with respect to either of these criteria.

Interestingly, the solution one obtains in each case is a MOR procedure. This analysis can be car-

ried out in a very general setting, however the structure of these results becomes most clear when

0 is finite dimensional and the measurement errors are mean zero uncorrelated with constant

variance a.
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Mllmlsang the Average Mean Squar Error

Let s() =(l(t ),u (t), * * , K(t)). For simplicity suppose that the prior for P ha zero

mean and covariance 12 E. The average mean square error can be written as

AMSE(t )=2(Xt-Xe(i )f E (X-Xi )) +a9(Iy e(t)

where Xt = (01(0),4(t), * K* (t )f and the i 'th row of X is given in equation (2.2). MInim-

izing with respect to (t ) we have

a2IX'P OX + 7 1 i(t )=X' EoXt

This holds for any 1. If Ep is invertible, then, by straightforward algebra, the optimal inversion

algorithm can be expremed as

S-=X' X + 7E-11-7XI

Comparing this with the forms given in section 1.1, it can be seen that the optimal algorithm

corresponds to a MIOR estimator with X =
2

and J (0) = Pj'p. X-1 is interpreted as the

signal-to-noise ratio.

Malmlsug the Maxlmum Mean Square Error

The maximum mean square error in a ball of radius A is given by

MMSE(t) = p2jXt _ S (t )X 1' IXt - EV.(t)X, I + c2s(t)' (t)

Minimizing with respect to s(1 ), we get that the optimal vector satisfies

tx' x + 42i11Q)=- X' xt

Thus the optimal inversion algorithm is given by

02
S1- X'X +yIIX'

Again, this is a MOR inversion algorithm with X = 22 and J(0)= I11011. X-1 is againmpis
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interpreted as a signal-to-noise ratio.

Versions of the above results have appeared at several times in the literature. Weinreb and

CrosbylOOI credit Foster[18j, see also Strand and Westwater[SI|. The optimal inversion algorithm

from the point of view of average mean square error is called the minimum-rms solution while the

optimal solution for maximum mean square error is the minimum information solution. Generali-

zations of these results have appeared in the statistics literature. Kimeldorf and Wahba[261 show

that the minimum-rms solution is sometimes interpretable a an optimal Bayesian procedure.

Minimum information solutions are also been termed minimax. Results on the minimaxity of the

MOR are given by Li[291, and also Speckman[481. In practice the signal-to-noise ratio is not

known so that the parameter X needs to be set empirically. Some statistical methods available for

doing this are given in section S.

Expwlmental Design

The MMSE and the AMSE are also functions of the the design points, z, i =1,2 * * * ,m,

and an optimal experimental design can be defined as the design making the MMSE or the AMSE

minimum. Since one may not be interested in performance at just a single point, l, an integrated

AMSE or MMSE over some region of interest is often more appropriate. Crosby and Weinrebl[Ol
have carried out a program of this kind in connection with the selection of spectral wavelengths

for satellite radiometers. Their criterion is reduced to a simple trace criterion, see eqn. (10) of

their paper. More recently, Wahba[581 has also discussed the design issue. She presents two

design criterion: one of which is akin to Weinreb and Crosby's criterion, see eqn. (13), and a

second which is termed the "degrees of freedom for signal" criterion. The use of integrated mean

square error as a design criterion is not new to statisticians. Box and Draperl9g proposed this as a

design criterion for model-robust response surface designs. Further discussion of this literature can

be found in section 5 of the recent paper by Steinberg and Hunter[60.
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3. Numerical Approximatlon of the Averaging Kernel with B-spilne

Exact computation of averaging kernels requires the manipulation of the representers of the

functionals q(z, ,) for i = 1,2, * * ,m. In reproducing kernel Hilbert spaces there are theoretical

formulas available for the evaluation of representers, see Nychka et al.[381 for example. However,

direct evaluation of averaging kernels by means of such formula is extremely inefficient, compu-

tationally, and other approaches are needed. Approximating the elements of 0 by simpler forms,

it is often possible to obtain highly efficient methods for evaluating the averaging kernels at a

negligible loss in accuracy. To illustrate this we consider one very popular MOR procedure for

estimating a one-dimensional real valued function, U defined on an interval [a ,b |: ° is the minim-

izer over the Sobolev space W2 [a ,b jIe of

[lZs .(I 0j)12 + Xf[(t)12ds X > .

W?2 [a,b I is an infinite dimensional Hilbert space with inner product

<0,> @=fe(e )0te )di + fe(s )O(t )dt 0,0 in W2 l[a b

Sobolev spaces are discussed at length in the book by Adams11l. It is well known that the ele-

ments of e can be approximated to arbitrarily high degree of accuracy by cubic B-splines and we

can make good advantage of this in the computation of the averaging kernels. Before describing

this we pause briefly to describe cubic B-splines. The standard reference on B-splines is the book

by de Boorlf161. Throughout this section we continue to assume that the functionals 11(Z,) are

linear.

3.1. Bmspfles

Consider a set of distinct knot points [t1<t2<....<tK441 with t3<a and b <tz4. (Multi-

ple knots are also allowed, see de Boor[161 for more details). A cubic spline on a ,b I is a cubic

polynomial between successive knot points joined up at the knots so as to have continuous second

derivative over the interval la ,b 1. By increasing the knot density in [a ,b 1, functions in

W22 [a,b I can be very closely approximated by cubic splines. Cubic splines can be expremed as a
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K
linear combination of basis elements (Bk )k-. The elements, Bk, of the basis are called B-splines

(B stands for basis) and the entire basis is called the B-spline basis. Each element of the basis is

non-negative and has very local support: in fact Bk is zero outside of the interval [tktwkk+4J Over

[tk,tk+41. Bk is proportional to the probability density for the sum or four independent uniform

random variables, U, , i -1,2,3,4, where U, is defined on [tk+-a,l-k..I. The local support pro-

perty or B-splines can be used to great advantage in computations. de Boor[|lB has developed a

set of Fortran prograns for manipulating B-splines and these are now available in most modern

mathematical software libraries.

3.2. ComputatIon of the Averaging Kernel In a B-splln basis

Let 0K = ( Bk )f.... The MOR estimate ON is approximated as 09 #m t Bk where
k

,& IX' X + mX021-'X' s (3.1)

b

and X,k =- (:, ,B ) and 2(j, k)f )B, (s)Bk(t )dt:.

K K
Three inner product, on 0K will be defined. For 9 = °t Bk, and E- tk Bt in 0,

we have

Eucildean Inner Products

K

<84>5 rVO*kk = V where *=(Ul,°2,** - KY and t ,4'KY

L 2 Inner Products

<4>2 Ĵ =fe(t)O(t)ds = e 00* where Ila(j,k) = fB,(t)Bk(t)dt,

Sobol.v Inner Product:

<eO>s = fe(t)O(t)di + fe(t)-()dt = [no+ n2J1
Corresponding to each inner product there is an approximate representation for the averag-

ing kernel at t . Let these be denoted A,(i ), A (t ), and As(t ),



E6) (t)<A,(t),@> r-<A2(t),9>2= <As(t),O>s

AE(t1) is most easily computed; from (3.1), its B-spline coefficients are given by

a,(t)=X' X[XI X + mXf2I-1S(t)

where .(t) = (B1(t),B4A 1), ,Bx(t )) are the B-spline coeficients of the representer of

evaluation at t ( with respect to the Euclidean inner product). The B-spline coefficients, a2(t)

and a, (t ), of A 2(t ) and As (t ) are directly obtained from the a, (t ).

A40) =o',(&#) ; as (t)[flO +o l[1a(t )

A word of caution: The matrices 0O and |l0O + 021 are poorly conditioned for K large. As a

result a very stable method such as a singularvalue decomposition, see Dongarra et al.[171, should

be used to compute the inverses. From the L2 representation, we have that the Backus-Gilbert

averaging kernel at t is approximately given by

K

The Sobolev representation for the averaging kernel is

K
A, (t, ast(I)Bk(k

Bia Computations

The average and maximum bias can be approximated directly in terms of the Euclidean

K
representation for the averaging kernel in (Bk )k.. For example, the maximum bias in a ball

of radius s in 0e W2 [a ,b I is M2b2(I) where

b2(t ) [.(t -a&, (t )j' [o + n2l-ll'e( ) . (t )I
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4. AppilcatIon to Non-Linear Invere Problems

We shall now apply the techniques described in section 2 and 3 to the study of two non-

linear ill-posed inverse problerm taken from satellite meteorology and reservoir engineering. In

both cases the function, O, of interest is restricted to be one-dimensional and we consider the fol-

lowing MOR procedure: O is the minimizer in W2 [ b of

Z - q(z 90)12 + XfI(- )12 X >0°

In order to study performance characteristics, we linearize the tunctionals q(;,,) about some

value OO

(s.,G)A mg((sg o) + v77(z:,° oXU-°o) ,

and consider the properties Of a modified MOR procedure: O is the minimizer of

1 [z'. - Vi,X(Z, 'go) j12 + lf[(t)2d X>

where z z= - v1(z ,fo) + v'(z ,0o)0o. The averaging kernel calculus can be applied to the

modified MOR procedure and the results of this linearized analysis are presented below. A

rigorous justification for the linearization is not attempted. (This is a very challenging problem

and even an asymptotic analysis seems to be quite difficult. The theory presented in Cox and

O'Sullivan[141 may provide a starting point for further investigation of this topic). It is asumed

that the analysis will give reliable results whenever the degree of non-linearity in the functionals v

is low.

To compute averaging kernels, bias and variability for the linearized problem, we use a B-

spline basis and rollow the development in section 3. The number of basis elements is chosen so

that any plots of averaging kernels, and bia and variability characteristics, are Visually

unchanged by the addition of extra basis elements. The design matrix, X, has the form

X.k = vl(z.,,o)Bt i=1,2,...M

where Bt is the k'th element of the B-spline basis. Two sets of system libraries were employed:
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computations for the satellite meteorology example were carried out on a DEC VAX 11/750

machine using the Bspline and Linpack routines which are part of the publicly available CMLIB;

computations for the reservoir engineering example, required repeated numerical solutions Of a

diffusion equation, and these were carried out on a Boeing Computer Serices Cray 1 machine

using routines available in the BCSLIB.

4.1. Temperature Retrevalfrom Stlolte Radiance Data

Intensities of radiation measured by modern meteorological satellites provide information

about atmospheric characteristics such u temperature and moisture. This new database is

becoming an increasingly important tool in the proces of nowcauting, i.e. specifying the current

state of the atmosphere, and forecasting, i.e. describing the future states of the atmosphere.

Smith ct at 1471 and SmithI461 describe the basic features of these measurement systems. A typi-

cal climatological temperature profile is given in Figure 4.1. The vertical axis is decreasing in

pressure while the horizontal axis gives temperature. It is standard practice for meteorologists to

plot things in this way because moving up the vertical axis then corresponds to going higher up in

the atmosphere. The plot shows a temperature inversion near 20 mb, the temperature is generally

increaing as one moves away from this point. Inversions are a characteristic feature of atmos-

pheric temperature profiles. The location of this upper atmosphere temperature inversion is

known as the tropopause height.

Figure 4.1 ABOUT HERE

The processing of radiance data to get temperature estimates involves the solution of an

interesting inverse problem. The radiative transfer equations, LiouI311, are used to model how the

intensity of radiation, z,, at frequency v,a, depends on the temperature profile T, temperature as

a function of premure, in the column beneath the satellite;



where

R,(T) = BV(T(xs))r(. ) - fB,1T(x))IT,(*)dz
So

and : is some monotone transformation of pressure p; 2, corresponds to the surface and zo

corresponds to the top of the atmosphere. Meteorologists usually work in kappa -units, i.e.

z (p ) - p 6/, because atmospheric variations are believed to be slowly varying in this scale. rT(z)
is the transmittance of the atmosphere above : at wavenumber v, and B, is Planck's function

given by:

B,(T = c 1a/[ezp (c2v/TT)-II
where

C i.g9o6XlO4erg -cm2-sec1
and

C 2 1.43868cm -dec (K).

The measurement errors, c,, are roughly mean zero and uncorrelated, however, different channels

have different noise levels so by dividing through by relative noise levels in channels we obtain a

generalized non-linear regression model as in section 1. The TIROS-N system, see Smith ct

at 1471, has fifteen channels (m =15). Linearizing the RV, (T) about the climatological profile,

TO, given in Figure 4.1, we get

s.

vrR,,(T4T = k. (v. )T(z,)+ fk(v,,z)T(z)dz

where k, (v) = B,[ T. (:, )1rV(z ) and k (V,S) = - BV| T, (z )]j*s ). Since the linearized functionals

have an explicit form, the linearized design matrix is very easy to compute by numerical integra-

tion.

X,k TvR,(T. )Bk = k(v.)Bk(;) + fk(v. ,2 )Bt(z )dz
I'
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where Bk is the k'th element of the B-spline basis.

An averaging kernel at 700 millibars for the MOR inversion is given in Figure 4.2. The

corresponding bias and variability characteristics are given in Figure 4.3. Again these plots

correspond to a particular value for the regularization parameter X. Larger values for the smooth-

ing result in broader averaging kernels, more bias and less variance.

Figure 4.2 ABOUT HERE

Figure 4.3 ABOUT HERE

Notice that the averaging kernel has sharp behavior near the surface. This is attributable to the

microwave channels. The data obtained from these are nearly direct measurements of the surface

okin temperature, T (z, ). As a result the L 2 representers of the functionals corresponding to

these channels are very spiked at the surface and since the averaging kernel is a linear combina-

tion of these representers, the behavior at the surface is to be expected. The effect of the

microwave channels on the bias is is also quite dramatic. The variability profile indicates regions

near 600mb and 200 mb where sampling density might be improved. However, there are physical

constraints on selection of spectral wavelengths which make it difficult to get good coverage

throughout the atmosphere, see pp 250 ff of Liou[311. The operating characteristics given in Fig-

ure 4.3 relate to maximum bias. In a meteorological setting, where there is a huge database of

prior information on atmospheric variation, an average bias measure with respect to a climatologi-

cal prior would be more appropriate. In spite of the fact that there is a dependence on the initial

climatology, T,, the retrieval characteristics predicted by the averaging kernel calculus is largely

in agreement with those found by Monte-Carlo simulation in O'Sullivan and Wahba[391.
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4.2. The History Matching Problem of Reervolr Englneerng

The dynamic flow of fluid through a porous medium is usually modeled by a diffusion equa-

tion

au(X,t) - d (x)u(x,I)) = q(x,t) x in n ,
p

in [O,TI

subject to prescribed initial and boundary conditions. Here u is pressure, q accounts for the

withdrawal or injection of fluid into the region 0, and a is the transmiivity or conductance

which determines the ease with which fluid flows through the medium. The initial condition is

u (x,O) = v. (x) and a typical boundary condition is no fluid flow acros the boundary of the

region, i.e. -df = 0, where w represents the direction normal to the boundary. The history

matching problem arises as one tries to use scattered well data on (x, ,t,) and q (xs,),

i-1,2, * ,m, j-1,2, * ,x, to infer the diffusion parameter, a, see Cooley[11, 121, Kravaris

and Seinfeld[271 and Neuman and Yakowitz[371. This problem is an example of a broad clas of

inverse problems which arise in connection with partial differential equations. These problems

have attracted an amount of pure mathematical interest. See Anger[41, Lionsl301, McLaugh-

lin[341, and especially Payne[411.

For a simplified version of the history matching problem let n-10,11 and T =1. Assume

there is no injection or withdrawal of fluid and that there is no flow across the boundary. Sup-

pose that we have 10 measurement sites at; = (Si 3)/49 , i 1,2, * - ,10, and readings on v

are made for t, - 0.0(.007)0.5. These data are modeled by a non-linear regression

Z,) = va(Z.,t,;e)+a E

where the errors are mean zero with constant variance.

The dependence of u (z, ,t, ;a ) on a is again non-linear. By linearizing u (z, ,t, ;a ) about a

plausible transmissivity profile, ao, such as the one given in Figure 4.4, we can compute averaging

kernels, etc. The true pressure history plays a significant role in determining the information

recovered about transmissivity. Roughly speaking, gradients in the pressure history generate
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information about the transmissivity. A pressure history corresponding to the transmissivity

profile in Figure 4.4 is given in Figure 4.5. This pressure history is driven by an initial pressure

distribution which ranges from 10 at =0. to 100 at =1.

Figure 4.4 ABOUT HERE

Figure 4.5 ABOUT HERE

Computatlon of the LLnearlzed Desin Matrix

Unlike the temperature retrieval problem, we do not have an explicit analytical representa-

tion for the observed functionals, and this makes the computation of the design matrix a bit more

complicated.

x =]t=VV(z'st,u o)B = ,aa(tU;.o)Olak

K
where the gradient is taken in the direction of functions of the form a () =- ak Bt (x) and u

is the solution to

d9u a (=z)au (z,t) with (z,t) in I0,1IX[l,.51

subject to for z _ Oil

Let D (a): U- Q X U.xBOxBI denote the mapping

D(a)t. =[I ag-a daaa)u )au(0) au(1,)D (av7s (-ox, ' I
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Under regularity, by applying the implicit function theorem, the inverse of D (a), denoted G (a),

exists and is differentiable in a neighborhood of Go.

G (a ) f ,u. ,O,O I (-,-;)

The relation G (a )D (a) = I may be used to obtain - (z, ,t, ;.0). Differentiating, we have

a0( (a )D(. OG(a)
clak a~~~akas

Thus

G(a - _G(a aD(a)Ga
OcGak ask

which implies

OD _ - (G) _ u Os

But OaD ( -8 )Bk (X )L9-.) 000,O J, and the expression simplifies to

Clak ____ ____ 0 O

au = G(ao) [ - (Bk()-)a ,OO,Oj

Hence X,,k can be round by solving the original diffusion equation with the forcing term, q,

replaced by O-{Bk (z ) @u!) and the initial pressure distribution, u,, replaced by the constant 0.

By this method, the computation of the entire linearized design matrix requires K separate

numerical solutions of the diffusion equation (K being the number of basis elements). Although

this is a generally applicable technique, it is rather inelegant. Since the solution corresponding to

Bk is likely to be "near" the solution corresponding to Bk+ it may be possible to improve com-

putational efficiency by using some form of relaxation. This is currently being investigated. For

the time invariant problem, Neuman and Yakowitz[371 use properties of a particular finite

difference scheme to develop a fast method for computing the analogue of the design matrix. A

further approach to this problem, relying on an optimal control formulation, is employed by Kra-

varis and Seinfeld[271.
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Llnearised Averaging Kerneb and Retrieval Characteritis

Figures 4.6 and 4.7 give linearized averaging kernels and retrieval characteristics.

Figure 4.6 ABOUT HERE

Figure 4.7 ABOUT HERE

One would suspect that information about a should depend critically on the true presure history.

If the initial pressure were constant, then, since there would be no presure gradients, there would

be no lateral flow. However, the functional parameter is a transmisivity and information about

transmisivity can only be generated by lateral flow. The averaging kernel and the bias and vari-

ability characteristics show that for the given pressure history, the greatest detail on transmis-

sivity is recovered near the middle of the z-range. Changing the presure history results in

different retrieval properties - the bias and variability calculus seems to make very good physical

sense.
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5. Empirical Selection of Smoothing Parameters

Nearly all inversion algorithms, and in particular the MOR, have explicit or implicit

smoothing/tuning parameters, corresponding to the signal-to-noise ratio which, in a practical set-

ting, have to be selected by the user. Two of the more popular techniques to emerge from the

statistical literature on this problem are the methods of crow-validation and unbiased risk estima-

tion. Typically, these techniques try to find that value of the smoothing parameter which minim-

izes the predictive mean square error (PMSE).

PMSE(X) = 2.. [, ,0) -i(; ,a)j2m,

where 0 and Ox are the true and estimated functions. (Throughout this section we will use X to

denote the smoothing/tuning parameters of the inversion algorithm). The predictive mean square

(PMSE) is a convenient criterion but not necessarily a criterion of real intrinsic interest. Inverse

problens are focused on a particular function, so it seenm more appropriate to phrase a loss

directly in terms of that function. Thus it might be of interest to consider a loss of the form

L (X) _ E l°(t, )_jx(t, )12

where the t,'s are some points of direct interest to the investigator. For certain loss functions,

which are cstimable in the sense described below, it is ponsible to develop refined versions of the

cross-validation and unbiased risk assessments. It should be pointed out that the PMSE has a

certain robustness property; it is often the case that the best choice of the smoothing parameter,

from the point of view of PMSE loss, is very nearly optimal from the point of view of other loss

functions also, see Cox [131, Lukas[321, Ragozin[421 and WahbaI571. Thus the practical need for

refined procedures will only arise in situations where the PMEE and the loss function of interest

have very different minimizers.

We assume throughout that we are dealing with linear inversion algorithms and that the

functionals p(z,,0) are themselves linear in 0. For some extensions to non-linear inversion algo-

rithms, see O'Sullivan and Wahba[391, O'Sullivan et al.1401, Villalobos and WahbaISBI and
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Wahbaj5gj. A brief review of crosrvalidation and unbiased risk in the standard predictive mean

square error context is given next. For a more detailed discusson of these methods see the recent

review of Titterington[541.

5.1. Empirlcal Assesment of PMSE

The Hat-matri, H(X), is defined to be the matrix that maps data s into predictions l,

-= H(\)s

For a linear inversion algorithm the Hat-matrix is obtained from the impulse response functions,

*I(k), via

H,, (X) -o- t(z, v*,(N))

Here the dependence of the inversion on the smoothing/tuning parameters X is highlighted- the

impulse response functions are functions of X. The trace of the Hat-matrix occurs in both the

crosvalidation and unbiased risk assessments of the PMSE. We begin with the unbiased risk

method, which is easier to describe.

Unblased Rlsk

This procedure assumes that one has a reliable estimate of the noise level a. Given a, the

procedure uses the residual sum of squares (RSS) to construct an unbiased estimate of the PMSE

risk. The basic steps are as follows:

PMSE(X)= 1 1 ,

i.e. =( (vq(zj,,vi(z2,j), 4)(z')r . By linearity, the expected value of the predictive mean

square error is

mE(PMSE(X)) = 111-H(X)! (I)II2 + etrIH(X\ H(A)I

BL4S2(X) + o2tr H(Xf H(X)I

Meanwhile,
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RSS(A)-, IZ_z i, 12 [|I _H-] (X)ISII 2RSS(X\) = az- 2nII-()5I

So the expected value is

E(RSS (X)) = II' -H (X)I;(O)II 2 + Ml,r IjI-H ()1'II-H(X)IJ

BIAS X) + 2tr [[I-H(X)j' [I-H(X)jJ

Combining these formulae we have that

PMSE(X) =-RSS(X) - o + 2a2 tr jH(,)I
m m

is an unbiased estimate of the predictive mean square error. In the standard regression context

H = X(X' X)-'X' , and PMSE reduces to Mallows' C, statistic, see[331.

Croin-Vaildatlon

In cross-validation one considers, I., which is defined to be the prediction of "(:, ,) from

an estimator constructed from data with the i'th data point, z,, omitted. The idea being that if

the prediction rule is really good, that is, X well chosen, then i, should be reasonably close to z,

on average. Ordinary cross-validation or Allen's predictive sum of squares (PRESS), see Allenj31,
is defined to be

vo(A FSIZ,-z 1

For the MOR estimators in section 1.1, where H(X) X[X' X+mXW[1'X' , a rank one

update formula, can be used to show that

(z,-i, )

(1-,, (X))

where h,, (X) is the i'th diagonal element of the Hat-matrix, also known as the i'th leverage

value. It follows that the ordinary cross-validation assessment is a weighted residual sum of

squares

I n
2

Zs -ZsVs (x) = -E 0

m I ad I-As$ (x)
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If instead of dividing residuals by 1-h,, (X) we divide by the mean value, 1-h,, (X), then we obtain

the Generalized Cross Validation (GCV) of Craven and Wahba[ISI. The GCV score is usually

written as

[Zs 4'J
r,1

I,i2

1-- trH (X)12m

We point out that, since

V(X) - RSS(X)
m [I--L trH(X)j2m

in a regreuion context, where H = X(X' X)"X' , the GCV score is proportional to the resi-

dual mean square divided by the degrees of freedom for error. So in this context, the GCV score

reduces to a model selection statistic proposed by Anscombe[SJ and simplified by Tukey, see pp.

388 ff Mosteller and Tukey[361.

A great deal is known about the asymptotic behavior of the above empirical asessments

methods. The typical result says that the minimizer of the empirical assessment tends to minim-

ize the PMSE, in large samples; Monte carlo simulation results show that a similar property tends

to hold in finite samples, see for example Craven and Wahba[1S], Golub Heath and Wahba[201,

Nychka et a&1381, RiceI431, and Speckman[491.

5.2. Emplilcal Assessment of Estimable Looe

Borrowing from the terminology of the standard linear model we can characterize an estim-

able functional as follows

Definition: A continuout linear functional < , > iu estimable if there ezists c in RI such that

Ec s= < ,C> forall 9 in 0 .

Clearly, since q(z,, ) are continuous linear functionals, <f, > is estimable iff c in R such

that
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where C, are representers of v(:, ,) in e. With this we say that a loss function is eutimablC if it

defined in terms of eutimable functionals.

To illustrate how to empirically asses estimable loses we consider a particular estimable

los of the form

r
L (X) 2<C,9->2

where C, are all estimable. Let ec be such that

r
C, = SCJC,1. j=1, ,T .

A simple modification of the crosvalidation and unbiaed risks techniques can be formulated to

directly asess the loss L (X).

Unbised RIsk Asseoment of L (X)

By a development similar to that used in RiceI44l, the expected value of L (X) as

E[L(X)l = <C, ,-EO9,>2+ v2Se,' [I-H(X)' I1I-H(X)Ie,
1 )~~~~-

= BIAS2(X) + a2 I-H(Xy I[I-H(X)Ic

The sum of squares

SS= e[C] s - C]' U12
has expected value

E[SSI = BIAS2(X) + av2,'H(efH(H)c,

Thus

r (
L (A) =SS - o,2 e/ elc + 2o2E C] ' (xr el

,_=,_M
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is an unbiased estimate of L (X). Again note that a reliable estimate of a is necessary in order to

be able to use this assessment.

CrosValidatlon ment of L (X)

The cros-validation procedure is sligbtly more complicated to derive. Instead of leaving

out one data point, we now omit the c, 'th component of the data and use the remaining data to

develop a prediction, cs.,, of <., 9>. The cros-validation asessment then compares c, ' s to

es-,, i.e.

r
vs (X) E ICe,' s - cu_,l

In the context of MOR estimators the situation becomes clearer. To make the notation less com-

plicated, suppose the e are normalized so that c} ce = 1 for j =1,2, ... , T. Let

Pi =I--e,,

PI is a projection onto the space orthogonal to el. The estimator obtained by removing the

c,'th component minimizes

I [ip (s-0())1' P:-IP% (a-(9))j + X< o,WG>

where P,_ is the generalized inverse of P, . Since P, P,-P, = P, , it follows that

cis_. = cl IX[' P,X + mxW['X' P,s .

Again, using a rank one update formula and some algebra we have that

c I-t IlewH(scwlI

where H(X) =XXX' X + m XW j-'X' . Thus the ordinary cross-validation score is

r 2

C,iI-Cl'H £ 12

and the GCV extension is
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I 1 1I] s - elj
V(A)-~ ~~~(,)e

where

r
e,' H(X)c, T Eel' H(,\),

j =I

The advantage of the cros-validation assemment over the unbiased risk assessment is that the

cross-validation method does not require knowledge of a.
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Figure Legends

Figure 1.1: Reconstruction of the Tumor Size Distribution from data on cross

sectional slices

Figure 2.1 Sample Averaging Kernel for a MOR procedure applied to the Tumor

Problem

Figure 2.2 Maximum Bias and Standard Error for a MOR procedure applied to the

Tumor Problem. The ripples are due to the finite sampling (m =50).

Figure 4.1: Typical climatological profile, T.. Vertical axis is pre3ure in kappa scale.

Horizontal aXis is in degrees Kelvin. Note the temperature inversion high up in the

atmosphere.

Figure 4.2: Averaging Kernel at 700mb for the Temperature Retrieval Problem.

Vertical axis is pressure in kappa scale. Horizontal axis is in degrees Kelvin. The

sharp behavior near the surface is attributable to the microwave channels.

Figure 4.3 : Inversion Characteristics of a MOR procedure applied to the Temperature

Retrieval Problem

Figure 4.4: A Transmissivity Distribution, a0, for the History Miatching Problem

Figure 4.5: True Presure History.



Figure 4.8: Sample Avenging Kernels for a MOR procedure applied to the History

Matching Problem.

Figure 4.7: Inversion Characteristics of a MOR procedure applied to the History

Miatching Problem. Retrieval properties are best near the middle of the z range.
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Averaging Kernel at r = .4 (Figure 2. 1)
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Inversion Characteristics (Figure 2.2)
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Climatological Temperature Profile (Figure 4.1)
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Averaging Kernel at 700 millibars (Figure 4.2)

'I

I
i

/

. ._. _ . _ . _ .-~~~



Inversion Characteristics (Figure 4.3)
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Transmissivity Profile (Figure 4.4)
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True Pressure History (Figure 4.5)
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Sample Averaging Kernels (Figure 4.6)
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Inversion Characteristics (Figure 4.7)
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