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ABSTRACT

Ill-posed inverse problems arise in many branches of science and engineer-
ing. In the typical situation one is interested in recovering a whole function
given a finite number of noisy measurements on functionals. Performance
characteristics of an inversion algorithm are studied via the mean square error
which is decomposed into bias and variability. Variability calculations are often
straightforward, but useful bias measures are more difficult to obtain. An
appropriate definition of what geophysicists call the Backus-Gilbert averaging
kernel leads to a natural way of measuring bias characteristics. Moreover, the
ideas give rise to some important experimental design criteria. It can be shown
that the optimal inversion algorithms are methods of regularization procedures,
but to completely specify these algorithms the signal to noise ratio must be sup-
plied. Statistical approaches to the empirical determination of the signal to noise
ratio are discussed; cross-validation and unbiased risk methods are reviewed and
some extensions, which seem particularly appropriate in the inverse problem con-
text, are indicated. Linear and non-linear examples from medicine, meteorology
and geophysics are used for illustration.
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1. Introduction

Inverse problems have got to do with situations where one is interested in making inferences
about a pheromenon from partial or incomplete information. Accordingly, statistical estimation
and model building are both inverse problems. In modern science there is an increasingly impor-
tant class of inverse problems which are not amenable to classical statistical estimation procedures
and such problems are termed ill-posed. The notion of ill-posedness is due to Tikhonov|22| and
an extended treatment of the concept appears in Tikhonov and Arsenin[23]. In an ill-posed
inverse problem, a classical least squares, minimum distance or maximum likelihood solution may
not be uniquely defined, moreover the sensitivity of such solutions to slight perturbations in the

data is often unacceptably large.

A typical example of an ill-posed inverse problem is described by Nychka et al.[19]. Here
one is interested in the estimation of a 3-dimensional tumor size distribution in liver tissue, from

measurements on cross-sectional slices. A schematic for the experiment is given in Figure 1.1.

Figure 1.1 ABOUT HERE
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Modeling tumors as spheres randomly distributed in the tissue an approximate integral relation-
ship between the 3-dimensional distribution of tumor radii and the 2-dimensional distribution of
radii observed in cross-sectional slices may be derived. Letting z, be the observed proportion of

2-dimensional slices with radii in the interval |2,,2, 41| one has that
2, = [K(z,,r)f fr)dr +¢ i=12,---,m,

where ¢, are measurement/modeling errors. [ g is the density of 3-dimensional tumor radii and

the kernels K (z,,r ) are given by

e<r<z,

0
K(z,r)= [V' -Z 5, €r<zp
VERVEL smSr<R

Physically, € is the smallest detectable tumor radius and R is the largest possible tumor radius in
the given section of tissue. Since e<=2,<23< * - - <Zq 4 <R, the estimation of f 4 must be
restricted to the interval [¢,R]. It is easy to to abpreciate the ill-posedness of this inverse prob-
lem. The kernels K (z,,') are smooth, and as a result relatively large perturbations in f 4 can give
rise to very slight perturbations in the data and conversely. It follows from this that least
squares, minimum X?, or maximum likelihood solutions will be very sensitive to slight changes in

the data.

Ill-posed inverse problems have become recurrent theme in modern science, see for example
Crystallography(23], Geophysics(2, 8, 25], Medical Electrocardiograms(19], Meteorology (486, 47|,
Microfluroimagery(35|, Radio Astronomy(24], Reservoir Engineering|27, 37|, and Tomogra-
phy|10, 55|. Corresponding to this broad spectrum of fields of application, there is a wide litera-
ture on different kinds of inversion algorithms, that is, techniques for solving the inverse problem.
The basic principle common to all such methods is as follows; seek a solution that is consistent
both with the observed data and prior notions about the physical behavior of the phenomenon
under study. Diflerent practical problems have led to unique strategies for implementatioa of this
principle, such as the Method of Regularization|53], Maximum Entropy|24] and Quasi-

Reversibility[28]. Understanding the performance characteristics of a given inversion method is
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an important issue: Firstly, such information has obvious intrinsic value and secondly, it can criti-
cally influence the choice of experimental design, see section 2.

The primary goal of this paper is to identify some tools for assessing the finite sample per-
formance characteristics of an inversion algorithm. These tools, most of which can be found scat-
tered throughout the diverse inverse problem literature, are considered in the context of the fol-

lowing generalized non-linear regression model: Measurements, z,, are of the form are of the form:
3 = 7](3, 10) + €, i=12-.m,

where 8 is in © ( the nominal parameter space), 5(z,,) are linear or non-linear functionals of 0,
and the ¢, are measurement errors assumed to have mean zero. In all that we discuss, there will
be an underlying assumption that the unknown true function, 4, is well approximated by a smooth
function. Though this assumption does not allow us talk about highly discontinuous functions,
such as those that arise in typical pattern recognition problems, the model is still quite general,
and includes for example linear and non-linear integral equations of the first kind. Examples used
later on include the temperature retrieval problem in satellite meteorology, and the system

identification problem of reservoir engineering.

1.1. Inversion Algorithms and the Method of Regularization

An inversion algorithm, §, is a mapping that takes data into parameter estimates.
=53

When S is linear then & can be written as a linear combination of smpulse response functions, s, ;

i(t) = S a(t)s

) m=)
where #, =Se,, and e, is the i 'th unit vector in R™. In statistical terms, an inversion algorithm
would be simply called an estimator, but here the terms estimator and inversion algorithm are

used interchangeably.
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One of the most useful techniques for generating inversion algorithms or estimators is the
Method of Regularization (MOR), see Titterington|54|. The MOR procedure is due to Tikho-
nov(52, 53]. There are various possible implementations of the method but they all amount to
choosing @ to be the minimizer of a weighted combination of two functionals: The first functional
measures lack of fit to the observed data and the second measures physical plausibility of the esti-

mate. For example, we might choose @ to be the minimizer of a criterion of the form

%f:[z, ~mz BT FNE) . A>0. (1.1)

The functional J is chosen so that highly irregular or physically implausible 8's have large values.
Statisticians will recognize this method as a version of Penalized Likelihood Estimation described
by Good and Gaskins[21]; the sum of squares is the likelihood part and the functional J the

penalty term. The method is equivalent to the Method of Sieves introduced by Grenander|22|.
Also, if J is chosen by some information principle such as entropy, J(8) = - f (¢ Jlogd(t )dt, then
the method of regularization yields a procedure equivalent to the Method of Maximum Entropy

pioneered by Jaynes, see Jaynes|24] and Chapter 4 of McLaughlin|34].

When the functionals, n(z,,"), are linear in 6, and J is quadratic with J(8) 2 0 ( =0 for
6 = 0 ) then the solution to (1.1) is linear in the observed data. Moreover, in this case the MOR
has an interesting Bayesian interpretation. To see this, first suppose that © is finite dimensional,

i.e. 8= Jpen {#:} with ¢, linearly independent. The elements of © can be written as

S8 0s for B=(B1.By - - .Bx) in RX, so that © can be identified with RX . Since J is
E

quadratic and J(0) = 0, J(6) can be expressed as a quadratic form in 8, J(8) = # Qp, for some

positive semi-definite matrix 2. It follows that the MOR estimator is zﬁ. ¢: where B minimizes
¥

LSl -x' s+ 08
mx-l

Here X is a design matrix, X;; = n(z,,0:). Thus B is given by

p=Ss where S =[X'X +m\'X’



-5-

Obviously, the MOR estimator is linear in the observed data. A Bayesian interpretation for Bis
obtained by specifying a Gaussian prior with mean zero and covariance matrix proportional to

1. Then, if the ¢,’'s are independent and identically distributed Gaussian random variables with

mean zero, the MOR estimator, B, is the posterior mean of 8 given the data.

The foregoing statements carry through to more general settings. If © is a Hilbert space
with inner product <-,->, the 5(z,,-) are bounded linear functionals and J is quadratic,
J(6) = <6,Wd>, where W is positive semi-definite, then it can be shown, see Cox|13] for exam-

ple, that the MOR estimators have the form
4, =Ss where S =[X'X +mi\W|X'

where the design matriz, X, is an operator derived from the the functionals n{z,,-). Thus S is a
linear operator from the data space into ©. General Bayesian interpretations for the method are
also available, these are discussed by Kimeldorf and Wahba|26]. Further results on the optimality

of the MOR are described in section 2.

1.3. Outline

Performance characteristics of an inversion algorithm are studied via the mean square error
which can be split into bias and variability components. Bias measures the systematic error while
variability measures the random error. In section 2 we consider linear inversion algorithms and
describe some ways of measuring bias and variability. Variability is calculated in a direct
manner. For bias it is convenient to introduce a generalized version of what geophysicists call the
Backus-Gilbert averaging kernel, see Backus and Gilbert(6, 7. The generalized notion of the
averaging kernel allows one compute the maximum or average expected bias and also leads to
some natural design criteria. These are described and illustrated in section 2.4. Optimal inver-
sion algorithms can be found and these turn out to be MOR procedures. The use of B-splines for
obtaining numerically convenient and accurate approximations to the averaging kernel and bias is
described in section 3. Though the theory of linear inverse problems is fairly well established, the

field of non-linear inverse problems is in its infancy. There are many exciting and challenging
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problems that need to be tackled in this area. The performance of MOR estimators when applied
to two interesting non-linear inverse problems is discussed in section 4. One of these problems
arises in satellite meteorology and is concerned with the estimation of atmospheric characteristics
such as temperature form upwelling radiince measurements. The second problem is of major
interest in reservoir engineering. It concerns the estimation of reservoir chuicteﬁstics, such as
the easy of flow of fluid in the reservoir, from pressure-history data measured at distributed well
sites. As described in section 2, optimal inversion algorithms though MOR procedures are not
fully specified without supplying the signal-to-noise ratio. For a given problem this will not be
known and so has to be empirically determined. The final section of the paper deals with this
issue; the methods of cross validation and unbiased risk are described and some relevant exten-

sions to ill-posed inverse problems are developed.
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3. Finite Sample Performance of an Inversion Algorithm

The quality of an inversion algorithm at some point, ¢, is measured by comparing the esti-

mate, 6(¢), to the true value, 6(¢). This difference can be decomposed into systematic and ran-

dom components as
6(¢) - 6(¢) = 6(t)-EB(t) + Ed(t)-4(t) ,

where the expectation is over the distribution of possible errors. The average performance of the

inversion at ¢ is measured by the mean square error (MSE).

MSE(t) = E[6(t) - 8(¢)]2 = [6(¢) - E(¢)[* + E[b(¢) - EB(1)]?

= biss%t,0) + var(t,0)

The mean square error depends both on & and the assumed error distribution. It is sum of the
squared bias, bias4t,8), and the variance, var (¢,6). If the inversion algorithm is designed solely
to minimize bias then the variance dominates the hean square error and vice-versa. Thus a good
inversion algorithm must balance bias and variability, i.e. unbiasness may be a desirable property

in classical statistical estimation, but in the context of ill-posed inverse problems it is not.

Mean square error performance of an inversion algorithm can, in principle, be found by
Monte-Carlo simulation. Modern computing resources are making this a very viable and practical
approach. For linear problems one can avoid direct Monte-Carlo simulation and in the process

obtain some useful insights which can be applied to more complex situations.

2.1. Linear Problems

By a linear problem we shall mean that both the functionals, n(z, ,), are linear in 6, and the

inversion algorithm, §, is linear in the data.

1.1.1. Varlability

Variability computations for a linear inversion algorithms are very straightforward. Here,

variability does not depend on 8 and
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var(t 6) = var(t) = var [ 32 &,(t)e,|

s am]

where », is the impulse response function. Thus if the errors, ¢,, have covariance £, then
var(t) =s(t)y L s(t)

where 8(t) = (#,(¢).82t), - - - ,2m (¢)) . In particular, if the errors are independent with con-

stant variance o2, then the variability is simply

var(t) = o s(t Y oft) .

2.1.3. Blas

Bias properties are best understood by introducing the notion of the Averaging Kernel. In

certain circumstances the averaging kernel yields a representation of the form
Eb(t)= [A(t,0)8(a)ds |, (2.1)

for the systematic part of the estimate. The function A (¢,-) is known as the averaging kernel at
t and A (¢,") determines the nature of the bias incurred at ¢. The averaging kernel is related to
what engineers and astronomers call the polntﬁprud function. The point-spread function at ¢
is defined to be the solution obtained by the inversion algorithm when the true function is a Dirac
&function at ¢t and there is no measurement error. Thus from (2.1) if the averaging kernel at ¢ is

A (t,’) then the point-spread at ¢ is the function A (-,¢).

The representation in (2.1) is an L, representation for the averaging kernel. In the Geophy-
sics literature this representation is known as the Backus-Gilbert averaging kernel, after two geo-
physicists Backus and Gilbert[6, 7|. Alternative representations for the averaging kernel are also
possible and these alternative representations are more useful when it comes to computing bias.

The averaging kernel and its generalizations are described next.



2.3. Averaging Kernel

3.2.1. Backus-Gllbert Formulation

Backus and Gilbert worked in an integral equation context.
n(z,.0) = [K,(s)8(s)ds i=12---m

and the kernels K, (-) are known smooth functions. For a linear inversion algorithm the E(¢ ) can

be written as
Ei(t) = Y u(t) [K.(e)6(s)do .

So, taking the summation inside the integral sign, we have
Ed(t) = JA(t,0)8(s)de
where
L]

A(ta)= Y a(t)K (2)

 =m]

The function A (¢,) is the Backus-Gilbert averaging kernel for the inversion algorithm S at ¢.
For illustration, an averaging kernel corresponding to a method of regularization procedure

applied to the tumor size distribution problem, described in section 1, is given in Figure 2.1.
Figure 2.1 ABOUT HERE

One can see that the kernel is well centered about the point of interest, r =.4. Moreover the ker-
nel seems [airly symmetric so that if the 3-dimensional tumor radius density were locally linear in
the neighborhood of this point then the inversion algorithm would be locally unbiased. Properties
of the averaging kernel can be varied by changing the regularization parameter, X - large values
of X cause the averaging kernel to be more spread out. Techniques for empirically selecting this

parameter are discussed in section 5.
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The center, spread and skewness of the averaging kernel give a rough appreciation for its
behavior. Assuming they exist, these are defined to be the first, second and third moment of the

absolute value of the averaging kernel when suitably normalized. Letting

= AX(‘ '.) the
J1A(t,0)] ds’

ZX(‘ v')

Characteristics of the Averaging Kernel

center: c(t)= [1A\(t,9)]2ds
spread: sp(t)= \/f | A\(t,0) | (2-c(t))*de
skewness: k(8) = [ A\(t,0)] [L’T;%i)lll'a.

The skewness is dimensionless while the center and spread are in {-units. Skewness is important -

since a symmetric averaging kerne! ( sk (¢ )=0.) will exactly pass a linear trend.

Intuitively, the bias at a point, ¢, is determined by the how close the averaging kernel is to
a Dirac &function at ¢. Backus and Gilbert tried to develop some direct measures of the nearness
of the averaging kernel to a Dirac &function - "5-ness of the averaging kernel”. By choosing the
inversion algorithm, so that the averaging kernel is as &like as possible, subject to some upper
bound on the size of the standard error, one obtains so called Backus-Gilbert inversion algorithms.
The idea seems perfectly reasonable, however, there is some degree of arbitrariness in the 5-ness
criteria defined by Backus and Gilbert, moreover in general it is not true that the function max-
imizing a &ness criterion will necessarily be the Dirac &function. Problems with the Sness cri-
teria really arise because the Backus-Gilbert calculus takes place in an L, setting where evalua-
tion is not a continuous linear functional. If we work in a space where evaluation is continuous,
we can derive a more refined formulation of the averaging kernel and use a straightforward cal-

culus to assess é-ness. The refined definition of the averaging kernel also allows one deal with
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more general linear functionals n(z, ,6).
3.3.3. Refined Formulation of the Averaging Kernel

Preliminaries: Linear Functionals and Representers

We shall need the notion of a representer of a continuous linear functional. To motivate

this concept, consider first the case where © = \ :p&n"{h} and the ¢, are linearly independent.

Here, elements of © are identified by a K -vector of coefficients, # in RX. Moreover the usual

inner product on RX determines an inner product on © by

<60,6,> = B B,
X X
where 9, = ¥ Aiié:,and 0= Y Bosds. If n{z,,) is linear then for any @ in ©
b =1
nz,.0)=X'p (2.2)
K
where § = ¥ 8, ¢, and X, = (n(z,,00).m(2,.02), - - - (2,,6x)f . X, determines an element,
b
K
£, = Y X.: 44, in © with the property that for 2ll § in ©
=

"(3| na) = <£:, 0>
In functional analysis terms, §; is the representer of the linear functional 7(z,,). An important
linear functional is evaluation at point. The representer in © of evaluation at ¢ is given by

X
ee = Y 6u(t)o
Py

One can easily verified that
t)=<e,0> , forall & in ©.
The notion of a representer can be extended to more elaborate function spaces. The level of

functional analysis needed to understand this is very elementary and the interested reader might

consult Rudin[45]. It is important to realize that, in general, the form of the representer depends
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on which inner product is used. Let © be a real Hilbert space with inner product <:,-> and

norm ||'||. A linear functional ! is continuous if there is a constant M such that
[1(8)] S M||g)] forall 8 in © .

Corresponding to any continuous linear functional, /, there exists a representer £ in © such that
1(0) = <&6> forall 8 in © .

This is known as the Riesz representation theorem, Rudin[45]. A Hilbert space of real valued
functions in which evaluation is continuous is known as Reproducing Kernel Hilbert Space
(RKHS). Reproducing kernel Hilbert spaces play an important role in applied mathematics. The
importance of RKHS in the study of ill-posed inverse problems has long been emphasised by Pro-
fessor Wahba, see Wahba|59] and the references cited therein. Evaluation is not continuous in

L 5, but is continuous in the space of functions whose first derivatives are square integrable.

Representer of the Averaging Kernel
Given the notion of a representer, the generalization of the averaging kernel is very simple.
Let © be a real Hilbert space with inner product <-,-> and suppose that the functionals #(z, ,°)

are continuous with representers §, . Since

Ei(t)= Y o (t)n(z.0) ,

-]

the representer of the averaging kernel, A (t), is given by

At)= Z’n(‘)fs, .

1 =i

Thus the averaging kernel is a linear combination of the representers of the functional n(z,,").
The linear combination is determined by the impulse response functions of the inversion algo-

rithm.
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2.3. Blas Measures and Some Design Criterla

The more general formulation of the averaging kernel leads to natural ways of measuring
bias and this in turn motivates some useful design criteria. Let © be such that evaluation at ¢ is
continuous and let e; denote the corresponding representer. From the averaging kernel, the bias

at ¢ may be written as

0t)-8(t) = <e-A(t)0>

Average Blas

The representation, <e;-A(¢),8>, can be used to compute the expected squared bias with

respect to a prior distribution on possible # values. Thus, if © = . ztnx{m} and a prior mean

and covariance for @ is be specified by means of the coefficients of the ¢, 's, 8,

Eslfl =B , Vargfl==%, |,

then the average expected bias is

b,"(l )= E,[G(t )—Eé(l )]2 =E <e;-A (f ),0)2 = ¢;' Lge; + <e-A (‘ ),00>2

K
where e, = (<e; - A(t),0,>,<e; - A(t),0>,.....<e; - A(t),¢x >) and 8, = Y Bos 0.
b

Maximum Blas
A less sophisticated measure of bias is the maximum bias over all functions in © whose
norm is less than some specified value, 4. From the averaging kernel representation for bias and

the Cauchy-Schwartz inequality, this is given by

sup [6(t }-Eb(t = sup <e-A(t)9>%= llee-A (¢))]%u?
(1#i3<u? LI

Thus letting by (¢) = |le;-A (¢ )], 8)F(¢) is proportional to the maximum bias over any ball in ©.

Figure 2.2 plots the maximum bias, 3y (¢ ), and standard error, square root of variability, for
a MOR inversion applied to the tumor size distribution problem. Both the bias and standard

error have poor behavior for small radii, suggesting that there is difficulty in getting reliable
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estimates of the size distribution for small radii. This is largely a consequence of the fact that
small tumors are hard to detect, see Nychka et al.[38] for more discussion. The ripples in the plot
are due to the finite sample size, m =50, in this illustration. The vertical scales on the bias and
variability plots are left unspecified. If particular values for the u and o are assigned then an

appropriate scaling can be setup.

Figure 2.2 ABOUT HERE

Design Criteria

Combining bias with variability gives an overall assessment of the performance of the inver-
sion algorithm which can be used for design purposes. The average bias measure gives rise to a

an Average Mean Square Error design criterion (AMSE):
AMSE (t) = B%(t) + var (¢)

Also, from the maximum bias measure, we obtain the Maximum Mean Square Error design cri-

terion (MMSE):

MMSE (t) = p2b,3(t) + var (t)

2.4. Optimal Inversion Algorithms and Experimental Design

Since both the average and maximum mean square errors depend on the inversion algo-
rithm, we can select the aigorithm which performs best with respect to either of these criteria.
Interestingly, the solution one obtains in each case is a MOR procedure. This analysis can be car-
ried out in a very general setting, however the structure of these results becomes most clear when
O is finite dimensional and the measurement errors are mean zero uncorrelated with constant

variance 2.
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Mlnimizing the Average Mean Square Error
Let o(t) = (2,(t),8(t), - - - ,ax(t)). For simplicity suppose that the prior for A has zero
mean and covariance 72 L, The average mean square error can be written as
AMSE(t) = A(X,-Xs(t)) Ty (X,-Xo{t)) + oSt} ot) ,

where X; = (¢,(¢),04¢), - - - ,6x(t)) and the i’th row of X is given in equation (2.2). Minim-

izing with respect to s(¢ ) we have
' a '
(X 2,X+—13—I]l(l)=x X .

This holds for any ¢. If L, is invertible, then, by straightforward algebra, the optimal inversion

algorithm can be expressed as

P

S=[X"X+ ?zfrw'

Comparing this with the forms given in section 1.1, it can be seen that the optimal algorithm
corresponds to a MOR estimator with A\ = —d% and J(0) = PE;'P. 2! is interpreted as the -
m

signal-to-noise ratio.

Minimising the Maximum Mean Square Error

The maximum mean square error in a ball of radius u is given by

MMSE(4) = u?lX; - B a()X] (X - Lo (¢)X] + Pa(t) oft)

» »n
1 ==} 1 ==
Minimizing with respect to s(t ), we get that the optimal vector satisfies

[ 4 03 [
(X' X + Tz’”i(‘)= X' X,

Thus the optimal inversion algorithm is given by

S=[X'X+ 7;‘-:-ux'

Again, this is a MOR inversion a]go:ithm with \ = —oiz- and J(8) = ||6||> X! is again
my
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interpreted as a signal-to-noise ratio.

Versions of the above results have appeared at several times in the literature. Weinreb and
Crosby|60] credit Foster|18), see also Strand and Westwater|51]. The optimal inversion algorithm
from the point of view of average mean square error is called the minimum-rms solution while the
optimal solution for maximum mean square error is the minimum information solution. Generali-
zations of these results have appeared in the statistics literature. Kimeldorf and Wahba|26] show
that the minimum-rms solution is sometimes interpretable as an optimal Bayesian procedure,
Minimum information solutions are also been termed minimax. Results on the minimaxity of the
MOR are given by Li[29], and also Speckman|[48]. In practice the signal-to-noise ratio is not
known so that the parameter X needs to be set empirically. Some statistical methods available for

doing this are given in section 5.

Experimental Design

The MMSE and the AMSE are also functions of the the design points, z, i=1,2--- m,
and an optimal experimental design can be defined as the design making the MMSE or the AMSE
minimum. Since one may not be interested in performance at just a single point, ¢, an integrated
AMSE or MMSE over some region of interest is often more appropriate. Crosby and Weinreb |60
have carried out a program of this kind in connection with the selection of spectral wavelengths
for satellite radiometers. Their criterion is reduced to a simple trace criterion, see eqn. (10) of
their paper. More recently, Wahba[58| has also discussed the design issue. She presents two
design criterion: one of which is akin to Weinreb and Crosby’s criterion, see eqn. (13), and a
second which is termed the "degrees of freedom for signal™ criterion. The use of integrated mean
square error as a design criterion is not new to statisticians. Box and Draper(9] proposed this as a
design criterion for model-robust response surface designs. Further discussion of this literature can

be found in section 5 of the recent paper by Steinberg and Hunter|50].
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3. Numerleal Approximation of the Averaging Kernel with B-splines

Exact computation of averaging kernels requires the manipulation of the representers of the
functionals n(z,,") for §=1,2, - - - ,m. In reproducing kernel Hilbert spaces there are theoretical
formulas available for the evaluation of representers, see Nychka et al.[38] for e_xample. However,
direct evaluation of averaging kernels by means of such formulas is extremely ineflicient, compu-
tationally, and other approaches are needed. Approximating the elements of © by simpler forms,
it is often possible to obtain highly eflicient methods for evaluating the averaging kernels at a
negligible loss in accuracy. To illustrate this we consider one very popular MOR procedure for
estimating a one-dimensional real valued function, 8 defined on an interval [a,b|: & is the minim-

izer over the Sobolev space W#[a,b] = © of
1 L] ) .
—Y(z -n(z 0P + 2 fl&(t)2d X>0.
m, -t ]

W#{a,b]| is an infinite dimensional Hilbert space with inner product

<6,6> = [o(t)e(t)dt + [0(¢)o(t)dt 0,6 in W3 (a,b]

Sobolev spaces are discussed at length in the book by Adams|l]. It is well known that the ele-
ments of © can be approximated to arbitrarily high degree of accuracy by cubic B-splines and we
can make good advantage of this in the computation of the averaging kernels. Before describing
this we pause briefly to describe cubic B-splines. The standard reference on B-splines is the book
by de Boor{16|. Throughout this section we continue to assume that the functionals n(z,,") are

linear.

3.1. B-splines

Consider a set of distinct knot points [¢;<¢3<....<lx 44| With 13<s and b <lx o (Multi-
ple knots are also allowed, see de Boor[16] for more details). A cubic spline on [a,b] is a cubic
polynomial between successive knot points joined up at the knots so as to have continuous second
derivative over the interval {¢,b]. By increasing the knot density in [a,b|, functions in

W3 [a,b] can be very closely approximated by cubic splines. Cubic splines can be expressed as a
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linear combination of basis elements {B, }:., The elements, By, of the basis are called B-splines
(B stands for basis) and the entire basis is called the B-spline basis. Each element of the basis is
non-negative and has very local support: in fact By is zero outside of the interval [t,,¢; .,]. Over
[t ,8c44l- Bi is proportional to the probability density for the sum of four independent uniform
random variables, U, , §=1,2,3,4, where U, is defined on [t 4, 1,6; 4. ]. The local support pro-
perty of B-splines can be used to great advantage in computations. de Boor|[16] has developed a
set of Fortran programs for manipulating B-splines and these are now available in most modern

mathematical software libraries.

3.3. Computation of the Averaging Kernel in a B-spline basis

- -~ K -
Let ©x = { B; },5.;. The MOR estimate 8, is approximated as 8, = Y. B: B: where
kg

B=[X'X +m\a'X' s (3.1)

[
and X, = n(z,,B;) and Qs ,k) = [B,(£)B,(4)dt.

K K
Three inner products on O will be defined. For ¢ = 2 0, B,, and ¢ = 2 é:B; in ©,
b ==l kol

we have

Euclldean Inner Product:

K
<0,¢>5 = S 91- ¢g = ' ‘ where = (01,02, t et ,o’()’ and ‘ = (¢1,¢2, R ,¢KY ,
-}

L

L, Inner Product:
<6,>;= [6(t)p(t)dt = ¢ Q¢ where Qj,k)= [B,(t)B,(t)dt,
Sobolev Inner Product:
<8,6>5 = [o(t)p(t)dt + [6(t)p(t)dt = ¢ [0y + Qe

Corresponding to each inner product there is an approximate representation for the averag-

ing kernel at ¢. Let these be denoted Ag(¢), A{¢t), and Ag(¢),
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Eb(t) = <Ag(t)0>p = <AAt)8>;3= <As(t)8>5
Ag(t) is most easily computed; from (3.1), its B-spline coeflicients are given by
a.(t)= X" X|X' X + ma\2te(t)

where o(t) = (By(¢),BLt), - - - ,Bx(t)y are the B-spline coeflicients of the representer of
evaluation at ¢ ( with respect to the Euclidean inner product). The B-spline coeflicients, ay(¢)

and a, (), of A (t) and Ag(¢t) are directly obtained from the a, (t).
art) = 0¢'a,(t) ; a,(t) = [0 + O 'a, (¢)

A word of caution: The matrices {2y and [Qg + Qg are poorly conditioned for K large. As a
result a very stable method such as a singular value decomposition, see Dongarra et al.[17], should
be used to compute the inverses. From the L, representation, we have that the Backus-Gilbert

averaging kernel at ¢ is approximately given by
K
Aft, o)== Y a5 (t)By(e)
=
The Sobolev representation for the averaging kernel is

Adt,0)™ 3 0 ()Be(s)
tm)

Blas Computations

The average and maximum bias can be approximated directly in terms of the Euclidean

K
representation for the averaging kernel in {B; };=q. For example, the maximum blas in a ball

of radius pin ©® = W3 [a,b]|is p28,3(t) where

bad(t) = [e(t)}-a,(¢)] (Do + Dal(e(t)-m,(t)]
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4. Application to Non-Linear Inverse Problems

We shall now apply the techniques described in section 2 and 3 to the study of two non-
linear ill-posed inverse problems taken from satellite meteorology and reservoir engineering. In
both cases the function, 8, of interest is restricted to be one-dimensional and we coasider the fol-
lowing MOR procedure: § is the minimizer in Wila,b]of

» ) oo
L% (o - im0 + 2 [l#(e)2e x>0

1um) [}

In order to study performance characteristics, we linearize the functionals 5(z,,’) about some

value 4,
’1(& ,0) =~ "(3! )00) + v"’(zl 100)(0-00) »

and consider the properties of 3 modified MOR procedure: ¢ is the minimizer of

1 &y, 2 fa 2

Tn-,z_:.[z . = V(2 ,0) 6 + )\_{[0(!)] dt A>0
where z°, = 2z, - n(z,,0,) + Un(z,,00)0,. The averaging kernel calculus can be applied to the |
modified MOR procedure and the results of this Ilinearized analysis are presented below. A
rigorous justification for the linearization is not attempted. (This is a very challenging problem
and even an asymptotic analysis seems to be quite difficult. The theory presented in Cox and
O'Sullivan{14] may provide a starting point for further investigation of this topic). It is assumed
that the analysis will give reliable results whenever the degree of non-linearity in the functionals n

is low.

To compute averaging kernels, bias and variability for the linearized problem, we use a B-
spline basis and follow the development in section 3. The number of basis elements is chosen so
that any plots of averaging kernels, and bias and variability characteristics, are visually

unchanged by the addition of extra basis elements. The design matrix, X, has the form
Xi = om(z,.0)B: i=12 - -,m,

where B, is the k'th element of the B-spline basis. Two sets of system libraries were employed:
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computations for the satellite meteorology example were carried out on a DEC VAX 11/750
machine using the Bspline and Linpack routines which are part of the publicly available CMLIB;
computations for the reservoir engineering example, required repeated numerical solutions of a
diffusion equation, and these were carried out on & Boeing Computer Services Cray 1 machine

using routines available in the BCSLIB.

4.1. Temperature Retrieval from Satellite Radlance Data

Intensities of radiation measured by modern meteorological satellites provide information
about atmospheric characteristics such as temperature and moisture. This new database is
becoming an increasingly important tool in the process of nowcasting, i.e. specifying the current
state of the atmosphere, and forecasting, i.e. describing the future states of the atmosphere.
Smith et ol [47) and Smith{46] describe the basic features of these measurement systems. A typi-
cal climatological temperature profile is given in Figure 4.1. The vertical axis is decreasing in
pressure while the horizontal axis gives temperature. It is standard practice for meteorologists to
plot things in this way because moving up the vertical axis then corresponds to going higher up in
the atmosphere. The plot shows a temperature inversion near 20 mb, the temperature is generally
increasing as one moves away from this point. Inversions are a characteristic feature of atmos-
pheric temperature profiles. The location of this upper atmosphere temperature inversion is

known as the tropopause height.

Figure 4.1 ABOUT HERE

The processing of radiance data to get temperature estimates involves the solution of an
interesting inverse problem. The radiative transfer equations, Liou|31], are used to model how the
intensity of radiation, z,, at frequency v,, depends on the temperature profile T, temperature as

a function of pressure, in the column beneath the satellite;
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z.=R,,,(T)+€. i=l!'..vm
where

4

RAT)=B/T(2,))rd2) - [BT(2)i,(z)dz

and z is some monotone transformation of pressure p; 2, corresponds to the surface and z,
corresponds to the top of the atmosphere. Meteorologists usually work in kappa -units, i.e.
2(p) = p®/® because atmospheric variations are believed to be slowly varying in this scale. rz)

is the transmittance of the atmosphere sbove z at wavenumber v, and B, is Planck's function

given by:
B,|T| = c*/|ezp (cav/ T )]
where
¢y = 1.1906 X 10~%erg -cm3-sec!
and

¢, = 1.43868¢cm -deg (K ).

The measurement errors, ¢,, are roughly mean zero and uncorrelated, however, different channels
have different noise levels so by dividing through by relative noise levels in channels we obtain a
generalized non-linear regression model as in section 1. The TIROS-N system, see Smith et

ol [47], has fifteen channels (m =15). Linearizing the R, (T) about the climatological profile,

T,, given in Figure 4.1, we get

%,

vrR, (T,)T = k,(v,)T(2,) + kv, ,2)T(2)dz

5

where k, (v) = B,|T, (2, )]r{2,) and k(v,z) = - B,|T, (z)}7{z). Since the linearized functionals
have an explicit form, the linearized design matrix is very easy to compute by numerical integra-
tion.

8,

Xu = VTRM,(Ta )By = k,(v,)Byi(z,) + jk("l 2)By(z)dz



.93.

where B, is the k'th element of the B-spline basis.

An averaging kernel at 700 millibars for the MOR inversion is given in Figure 4.2. The
corresponding bias and variability characteristics are given in Figure 4.3. Again these plots
correspond to a particular value for the regularization parameter . Larger'va.lues for the smooth-

ing result in broader averaging kernels, more bias and less variance.

Figure 42  ABOUT HERE

Figure 4.3 ABOUT HERE

Notice that the averaging kernel has sharp behavior near the surface. This is attributable to the
microwave channels. The data obtained from these are nearly direct measurements of the surface
skin temperature, T(z,). As a result the L, representers of the functionals corresponding to
these channels are very spiked at the surface and since the averaging kernel is a linear combina-
tion of these representers, the behavior at the surface is to be expected. The eflect of the
microwave channels on the bias is is also quite dramatic. The variability profile indicates regions
near 600mb and 200 md where sampling density might be improved. However, there are physical
constraints on selection of spectral wavelengths which make it difficult to get good coverage
throughout the atmosphere, see pp 250 ff of Liou[31]. The operating characteristics given in Fig-
ure 4.3 relate to maximum bias. In a meteorological setting, where there is a huge database of
prior information on atmospheric variation, an average bias measure with respect to a climatologi-
cal prior would be more appropriate. In spite of the fact that there is a dependence on the initial
climatology, T,, the retrieval characteristics predicted by the averaging kernel calculus is largely

in agreement with those found by Monte-Carlo simulation in O’Sullivan and Wahba[39)].
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4.3. The History Matching Problem of Reservolr Engineering
The dynamic flow of fluid through a porous medium is usually modeled by a diffusion equa-

tion

M-‘—"--l—-—‘,;-{a(x)u(x,t)} =¢q(xt) xin Q ,t in [0,T|
o ox

subject to prescribed initial and boundary conditions. Here u is pressure, ¢ accounts for the
withdrawal or injection of fluid into the region (3, and 4 is the transmissivity or conductance

which determines the ease with which fluid flows through the medium. The initial condition is

u(x,0) = u,(x) and a typical boundary condition is no fluid flow across the boundary of the

region, i.e. % = 0, where w represents the direction normal to the boundary. The history

matching problem arises as one tries to use scattered well data on u(x,,t,) and ¢(x,,t,),
i=12,---,m, j=12,---,l, to infer the diffusion parameter, s, see Cooley|11, 12|, Kravaris
and Seinfeld{27] and Neuman and Yakowitz[37]. This problem is an example of a broad class of
inverse problems which arise in connection with partial differential equations. These problems
have attracted an amount of pure mathematical interest. See Anger(4|, Lions|{30|, McLaugh-
lin|34], and especially Payne([41].

For a simplified version of the history matching problem let @ = [0,1} and T =1. Assume
there is no injection or withdrawal of fluid and that there is no flow across the boundary. Sup-
pose that we have 10 measurement sites at z, = (5§-3)/49 , §=1,2, - - - |10, and readings on u

are made for ¢, = 0.0(.007)0.5. These data are modeled by a non-linear regression
2, =u(z,,t:8)+¢
where the errors are mean zero with constant variance.

The dependence of u(z,,¢,;a) on & is again non-linear. By linearizing u(z,,¢,;6) about a
plausible transmissivity profile, s, such as the one given in Figure 4.4, we can compute averaging
kernels, etc. The true pressure history plays a significant role in determining the information

recovered about transmissivity. Roughly speaking, gradients in the pressure history generate
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information about the transmissivity. A pressure history corresponding to the transmissivity
profile in Figure 4.4 is given in Figure 4.5. This pressure history is driven by an initial pressure

distribution which ranges from 10 at z =0. to 100 at z =1.

Figure 4.4 ABOUT HERE

Figure 4.5 ABOUT HERE

Computation of the Linearized Design Matrix

Unlike the temperature retrieval problem, we do not have an explicit analytical representa-
tion for the observed functionals, and this makes the computation of the design matrix a bit more

complicated.

Xy = Ve u(2,t,,80)B; = -a‘—?;-(z. 8, :80)

K
where the gradient is taken in the direction of functions of the form a(z) = Y a; B;(z) and i
=

is the solution to

- 2 (o) = a(24) with (2.4) in [0.1]x[0,5] ,

u(2,0)=u,(2)

subject to
-‘M;z—"l =0 for z =01

Let D(a): U = @ XU, XByX B, denote the mapping

d

Die)y =5~ a_z“(‘)%}'“('ﬂ)' 2u(0,) du(l;)

9z ' 9dz
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Under regularity, by applying the implicit function theorem, the inverse of D (a ), denoted G(a),

exists and is differentiable in a neighborhood of so.
G (s )l g4, ,0,0] =id(,:8) .

The relation G(a)D (a) = I may be used to obtain -aa.—"(z, 4, ;80). Differentiating, we have
3

(G0 =2 pie) + () 22L) —0

Thus

250) —-6(e) Bllaq),

80,

which implies

i aD N
= =-ae) (2l .

But Mu = | _—a—{B,(z )ﬂ) ,0,0,0 |, and the expression simplifies to
da, oz dz

9i(z, o4 ;80)

e = Gleo) | 55 (Bu(z)g3) 000

Hence X, can be found by solving the original diffusion equation with the forcing term, ¢,

replaced by %{B.(z )%} and the initial pressure distribution, u,, replaced by the constant 0.

By this method, the computation of the entire linearized design matrix requires K separate
numerical solutions of the diffusion equation (K being the number of basis elements). Although
this is a generally applicable technique, it is rather inelegant. Since the solution corresponding to
B,; is likely to be "near” the solution corresponding to B, ., it may be possible to improve com-
putational efficiency by using some form of relaxation. This is currently being investigated. For
the time invariant problem, Neuman and Yakowitz[37] use properties of a particular finite
difference scheme to develop a fast method for computing the analogue of the design matrix. A
further approach to this problem, relying on an optimal control formulation, is employed by Kra-

varis and Seinfeld{27].
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Linearizsed Averaging Kernels and Retrieval Characteristics

Figures 4.6 and 4.7 give linearized averaging kernels and retrieval characteristics.

Figure 46 ABOUT HERE

Figure 47 ABOUT HERE

One would suspect that information about 6 s.hould depend critically on the true pressure history.
If the initial pressure were constant, then, since there would be no pressure gradients, there would
be no lateral flow. However, the functional parameter is a transmissivity and information about
transmissivity can only be generated by lateral flow. The averaging kernel and the bias and vari-
ability characteristics show that for the given pressure history, the greatest detail on transmis-
sivity is recovered near the middle of the z-range. Changing the pressure history results in
different retrieval properties - the bias and variability calculus seems to make very good physical

sense.
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§. Empfirical Selection of Smoothing Parameters

Nearly all inversion algorithms, and in particular the MOR, have explicit or implicit
smoothing/tuning parameters, corresponding to the signal-to-noise ratio which, in a practical set-
ting, have to be selected by the user. Two of the more popular techniques to emerge from the
statistical literature on this problem are the methods of cross-validation and unﬁiased risk estima-
tion. Typically, these techniques try to find that value of the smoothing parameter which minim-

izes the predictive mean square error (PMSE).
1 & 2 g
PMSE(X) = —2 l"(zl ,0) - ﬂ(’l :ox)]
m +ad

where # and 5; are the true and estimated functions. (Throughout this section we will use )\ to
denote the smoothing/tuning parameters of the inversion algorithm). The predictive mean square
(PMSE) is a convenient criterion but not necessarily a criterion of real intrinsic interest. Inverse
problems are focused on a particular function, so it seems more appropriate to phrase a loss

directly in terms of that function. Thus it might be of interest to consider a loss of the form
l T 2 2
L (X) = ?E lo(‘l Hx(‘: )l
s ond

where the ¢ 's are some points of direct interest to the investigator. For certain loss functions,
which are estimable in the sense described below, it is possible to develop refined versions of the
cross-validation and unbiased risk assessments. It should be pointed out that the PMSE has a
certain robustness property; it is often the case that the best choice of the smoothing parameter,
from the point of view of PMSE loss, is very nearly optimal from the point of view of other loss
functions also, see Cox (13|, Lukas|32|, Ragozin[42] and Wahba[57). Thus the practical need for
refined procedures will only arise in situations where the PMSE and the loss function of interest
have very different minimizers.

We assume throughout that we are dealing with linear inversion algorithms and that the

functionals n(z, ,8) are themselves linear in 8. For some extensions to non-linear inversion algo-

rithms, see O'Sullivan and Wahba{39], O'Sullivan et al.[40], Villalobos and Wahba|$6] and
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Wahba[59|. A brief review of cross-validation and unbiased risk in the standard predictive mean

square error context is given next. For a more detailed discussion of these methods see the recent

review of Titterington|54|.

5.1. Empirical Assessment of PMSE
The Hat-matriz, H()\), is defined to be the matrix that maps data s into predictions 8,
i=H(\)s
For a linear inversion algorithm the Hat-matrix is obtained from the impulse response functions,
5,®) via
H, () = n(z, "Jm) .

Here the dependence of the inversion on the smoothing/tusing parameters A is highlighted- the
impulse response functions are functions of . The trace of the Hat-matrix occurs in both the

cross-validation and unbiased risk assessments of the PMSE. We begin with the unbiased risk

method, which is easier to describe.

Unblased Risk

This procedure assumes that one has a reliable estimate of the noise level 0. Given o, the
procedure uses the residual sum of squares (RSS) to construct an unbiased estimate of the PMSE

risk. The basic steps are as follows:
1 & s 12 om A2
PMSE(\) = — 3 [n(a, 04 = —{in(@)}n@)l13
1mm)

i.e. 9(*) = (n(21,)mMz2°), - - - M(zm,’)) . By linearity, the expected value of the predictive mean

square error is

mE{PMSE(\)} = ll[I-H(\)n(O)ll2 + o*tr [H(\Y H(N)|

= BIAS?(\) + o®te [H(\Y H(M))

Meanwhile,
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RSS(\) = 3° [z, -7, |2 = [|[/-H (\)]sl] 2

1 m=d
So the expected value is

E{(RSS(N)} = ||[I-H(Mln(o)I2 + ot [[I-HO)]" [I-H())]

= BIAS?(\) + o%tr |[I-H(\)]' [I-H(\))]

Combining these formulae we have that
PMSE(\) = S-RSS() - o* + wlLt’nml

is an unbiased estimate of the predictive mean square error. In the standard regression context

H = X(X' X)'X' , and PMSE reduces to Mallows’ C, statistic, see[33].

Cross-Validation

In cross-validation one considers, Z_,, which is defined to be the prediction of n(z, ,6) from
an estimator constructed from data with the i 'th data point, z,, omitted. The idea being that if
the prediction rule is really good, that is, A\ well chosen, then Z_, should be reasonably close to z,
on average. Ordinary cross-validation or Allen’s predictive sum of squares (PRESS), see Allen|3],

is defined to be
Vo (X) = li [zl "2-: Iz
m s g

For the MOR estimators in section 1.1, where H(\) = X[X' X+mAW]|X' , a rank one

update formula, can be used to show that

s _ (zl 'in )
HTRTOADY

where A, (\) is the i'th diagonal element of the Hat-matrix, also known as the i'th leverage
value. It follows that the ordinary cross-validation assessment is a weighted residual sum of
squares

v =8 | Tty
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If instead of dividing residuals by 1-4, (\) we divide by the mean value, 1-A, (1), then we obtain

the Generalized Cross Validation (GCV) of Craven and Wahba{15]. The GCV score is usually

written as

"% i lzl -il IZ

V(X) —_ x|
- el V)P
m
We point out that, since
V(\) - RSS (M)
m ’

[x-ﬁcm O

in a regression context, where H = X (X’ X)X’ , the GCV score is proportional to the resi-
dual mean square divided by the degrees of freedom for error. So in this context, the GCV score
reduces to a model selection statistic proposed by Anscombe([5] and simplified by Tukey, see pp.
386 ff Mosteller and Tukey|[36].

A great deal is known about the asymptotic behavior of the above empirical assessments
methods. The typical result says that the minimizer of the empirical assessment tends to minim-
ize the PMSE, in large samples; Monte carlo simulation results show that a similar property tends
to hold in finite samples, see for example Craven and Wahba[15], Golub Heath and Wahba|20),

Nychka et al[38], Rice|43|, and Speckman|49)|.

5.2. Emplirical Assessment of Estimable Losses
Borrowing from the terminology of the standard linear model we can characterize an estim-
able functional as follows

Definition: A continuous linear functional <§&,-> i estimable if there ezisteae in R™ such that

Ee' 8= <§6> forall 4 in © .

Clearly, since n(z, ,") are continuous linear functionals, <§,-> is estimable iff Se in R™ such

that
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£= chfs,

1um)
where §; are representers of n(z,,’) in ©. With this we say that a loss function is estimable if it

defined in terms of estimable functionals.
To illustrate how to empirically assess estimable losses we consider a particular estimable

loss of the form

r -
L) = Y <¢,,0-0,>%
)=l
where £, are all estimable. Let ¢, be such that
r -
Ey=8cp€t.. j=1,---,T .
=g

A simple modification of the cross-validation and unbiased risks techniques can be formulated to

directly assess the loss L (\).

Unblased Risk Assessment of L ()\)

By a development similar to that used in Rice[44], the expected value of L ()\) as

T N T
E[L(\) = L; <€, 6-Eb,>% + a‘% e,! I-HOY J[I-H (e,
’ 3

= BIAS*\) + a‘i‘ e, [I-H(\Y |I-H (e,
J==d

The sum of squares

r
5§ = Y e, s-¢,’ 8?
7=l

has expected value

E[SS| = BIAS*(\) + &* 2’ e, HON\Y H(\e,
5z}

Thus

) T
L(\)=S5S-0Y ¢, ¢, +2¢’Zrc,’ H(\Y e,
=t =t
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is an unbiased estimate of L (\). Again note that a reliable estimate of o is necessary in order to

be able to use this assessment.

Cross-Valldation Assessment of L ()\)

The cross-validation procedure is slightly more complicated to derive. Instead of leaving
out one data point, we now omit the e, 'th component of the data and use the remaining data to

develop a prediction, €s_,, of <§,,0>. The cross-validation assessment then compares e,’ s to
cs_,,i.e.

V,(\) = Er[e,' s-c |2
=l

In the context of MOR estimators the situation becomes clearer. To make the notation less com-

plicated, suppose the ¢, are normalized so thate,’ ¢, = 1for j=1,2,---,T. Let
P, =1I-=<e,’'.

P, is a projection onto the space orthogonal to e,. The estimator obtained by removing the

¢, 'th component minimizes
1 -
;[PJ (s-n(0)))' P, (P, (s-n(0))] + \<8,W &>

where P, is the generalized inverse of P,. Since P,P"P, = P,, it follows that
és., =¢,' X' P,X +m\W['X'P,s .
Again, using a rank one update formula and some algebra we have that

c,’s-¢'8
- (1<, T HB)e,]

s, =¢,'s
where H()\) = X|X’' X + mAW|X' . Thus the ordinary cross-validation score is
]
T le's-¢'s
V,(\) = _ ,
( E.[H,' A%, ]

and the GCV extension is



-34-

T
Yle, s-¢' &
J -t

(1-e,” H IXEJ y

~|~

V(A =

where
1 4
e, ”iXE, = 72-:‘:,' ”(Xk,
1

The advantage of the cross-validation assessment over the unbiased risk assessment is that the

cross-validation method does not require knowledge of 0.
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Figure Legends
Figure 1.1 : Reconstruction of the Tumor Size Distribution from data on cross-

sectional slices

Figure 2.1 : Sample Averaging Kernel for a MOR procedure applied to the Tumor

Problem

Figure 2.2 : Maximum Bias and Standard Error for a8 MOR procedure applied to the

Tumor Problem. The ripples are due to the finite sampling (m =50).

Figure 4.1 : Typical climatological profile, T,. Vertical axis is pressure in kappa scale.
Horizontal axis is in degrees Kelvin. Note the temperature inversion high up in the

atmosphere.

Figure 4.2 : Averaging Kernel at 700mbd for the Temperature Retrieval Problem.
Vertical axis is pressure in kappa scale. Horizontal axis is in degrees Kelvin. The

sharp behavior near the surface is attributable to the microwave channels.

Figure 4.3 : Inversion Characteristics of a MOR procedure applied to the Temperature

Retrieval Problem

Figure 4.4 : A Transmissivity Distribution, a4, for the History Matching Problem

Figure 4.5 : True Pressure History.



Figure 4.6 : Sample Averaging Kernels for a MOR procedure applied to the History

Matching Problem.

Figure 4.7 : Inversion Characteristics of a MOR procedure applied to the History

Matching Problem. Retrieval properties are best near the middle of the 2 range.
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Averaging Kernel at r = .4 (Figure 2.1)




Inversion Characteristics (Figure 2.2)
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Climatological Temperature Profile (Figure 4.1)




Averaging Kernel at 700 millibars (Figure 4.2)




Inversion Characteristics (Figure 4.3)
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Transmissivity Profile (Figure 4.4)




True Pressure History (Figure 4.5)




Sample Averaging Kernels (Figure 4.6)
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Inversion Characteristics (Figure 4.7)
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