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ABSTRACT

A general approach to the analysis of penalized likelihood estimators is
described. Focusing on the asymptotics, our main result uses a well known
fixed-point theorem to develop an asymptotically valid linear approximation to
the roots of penalized likelihood equations. The behavior of the linearized esti-
mators can be conveniently studied in a Hilbert space setting, where there is a
rich spectral theory at one's disposal. The theory is well illustrated in the con-
text of generalized smoothing in Sobolev spaces, and here the rates of conver-
gence of some interesting classes of estimators are worked out in detail. The
results apply to a broad range of important practical problems including hazard
function estimation, density estimation, and the smoothing of regression functions
in generalized linear models.
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1. Introduction

1.1. Motivatlon

Suppose T is an operator defined on a space of probability measures P. To estimate T(P)

using data from an unknown element P of P, one can sometimes replace P by an empirical

measure P(") and compute T(P(")). However, this straightforward approach is frequently inap-

plicable as T may not be defined on the possible empirical probability measures. Furthermore,

T may not be continuous in any topology in which the empirical P(") converges to P, so that

the small departure of P(") from P translates into a large departure of T(P(R)) from T(P). A

classical example of the former difficulty is density estimation: the empirical distribution does not

1 Research partially supported by the National Science Foundation under Grant No. MCS-820-2560.
2 Research supported by the National Science Foundation under Grant No. MCS-840-3239.



possess a (Lebesgue) density. Nonparametric regression exemplifies both problems. Suppose

(X,Y) have a jointly continuous distribution, and we wish to estimate ElY X = oI The

corresponding empirical quantity is not even defined unless z. is an observed value of X (which

occurs with probability zero), and even if x0 is observed, the corresponding estimate is not con-

sistent. In many scientific problems, the quantity of interest is only indirectly related to the data,

and this can compound matters further. For instance, in retrieval of temperature profiles from

satellite data (see O'Sullivan and Wahba[201) one is interested in solving an integral equation

R (z ) = fk (z ,ir,e(7r))d fr
where R (z ) is upwelling radiation at frequency z, 6(r) is the temperature at pressure level ir, and

k is a nonlinear function. There are available only "discrete noisy data" (z It Y) ,(XR, ,Y,)

where

R()=El Y, t x= I <i <n

Even under the best of conditions of perfect observations, this problem is difficult to solve because

of instabilities that result from numerical errors. The addition of discretization and random noise

makes matters even worse.

This lack of stability in the evaluation of T is a form of "ill-posedness", a notion introduced

by Tikhonov[271. Over the last fifty years applied mathematicians have come to appreciate that

a vast collection of the problems encountered by engineers and scientists in such areas as Geophy-

sics[2, 6, 7, 41, Meteorology[25, 24, 30J and Tomography[5, 291 are ill-posed in this sense. Given

the fact that real data are nearly always subject to random variation (not just rounding error) it

seems natural that statisticians should play a more active role in these problems.

An early technique for obtaining approximate solutions to "ill-posed" problems of the above

type was proposed by Tikhonov[261. Let 0 be the parameter of interest. Tikhonov's method,

which is known as regularization, has two components: a functional I which measures how well B

predicts (matches) the observed data and a functional J which assesses the physical plausibility of

0. These functionals are set up so that smaller values generally correspond to more desirable
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values for 6. G.ven these functionals the method of regularization (MOR) chooses a parameter

value 6 which minimizes an aggregate

I (O I data) + XJ(8) X > 0.

Good and Gaskins|13| introduced the method of regularization to statisticians under the

name of "penalized likelihood estimation". The functional I which measures quality of predic-

tions is the "likelihood" term and J is the prior penalty or roughness component. Such estima-

tors have also been proposed in a Bayesian context by Leonard[15, 161.

The purpose of this paper is to provide a framework in which it will be possible to under-

stand the asymptotic behavior of penalized likelihood or method of regularization estimators from

a statistical point of view. Our theory is in the tradition of Cramer's analysis of the method of

maximum likelihood. This theory is illustrated in the context of generalized smoothing. We

begin by giving a more precise mathematical specification of the penalized likelihood method.

1.2. The Penalized Likelihood Method

Estimation Methodology

We consider three types of measurement models corresponding to density, hazard, and

regression function estimation. In each case, the model is at least partially parameterized by the

corresponding function, which is taken to be an unknown element of a Banach space 0 with norm

1111. Fix the unknown true parameter 80 and suppose (Z,,: n =1,2, * - - ) denotes the observa-

tions in a sequence of statistical experiments. Then a penalized likelihood type estimator is

obtained by minimization over e of

i,)() =in (Zs ,O) + xi (6)

Here, ,, (Z. ,6) is referred to as the likelihood term. This could be a negative log likelihood, in

general the only requirement is that smaller values of ,, (0) correspond to "models", 0, which

better fit the observed Z,. 1(9) is called the penalty functional ( J: e0-.R+ ), and smaller

values of J correspond to more plausible values of 0, or, to a Bayesian, values of 9 with higher
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prior likelihood. The smoothing parameter X controls the tradeoff of sample versus prior informa-

tion.

We next consider the specification of the likelihood term for three types of observational

models, and afterwards give examples of the penalty functionals.

Measurement Model and Llkhoods

(a) Denslty Estlmatlon

We observe a random sample X1,X2, ,X, from a density f , where f = log 60. Fol-

lowing Silverman[1il, the 'likelihood' component of the penalized likelihood is

f I& - fI(z )PI" ) d

where PI") is the empirical distribution of X1,X2, * ,X,. It is necessary to assume 1(6) = 0

whenever 6 is a constant function (Theorem 3.1,1191).

(b) Hazard Estimatlon

Assume X1,X2, * . X. are positive random variables and we observe min(XJ,1), the minimum of

X, and 1. This corresponds to a survival experiment with a set time on the length of the experi-

ment. The target parameter is 00 = logX where X = is the hazard function and F is the

cumulative distribution function. Partially following Anderson and Senthilselvan[31, the "likeli-

hood" component of the penalized likelihood Ls given by

feC')S (z)dz - fO(z)PP'(d:)

where S. is the empirical survival function (1-F.). The limiting survival function is denoted

S =1-F.

(c) Regreslon Models

One observes a sample of n random pairs (X,1,Y*1),(XS2,Y,*2), ... ,(X,,,,,Y,.) where the

X,, 's are thought of as covariates and the Y,. 's as responses. The conditional distribution of Y

given X =z is denoted
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Law(Y I X x) Pyjx(I)

The covariates X.1, ,X",, need not be truly random, i.e. they may be degenerate random ele-

ments. In fact, we shall treat them as non-random for the regression model and write zX, for the

observed value of X,,, . Inferences will proceed conditionally on the observed values of the X., . If

they were random, say i.i.d, then since the distribution of X,,

Law (X.,) Px

is not of interest (i.e. is a nuisance parameter), such conditional inference is reasonable and is

justified by the principle of ancillarity, as indicated on pp.33-35 of Cox and HinkleyflOj.

Let PAj) denote the joint empirical measure of the (Z,,, ,Y,,, ), i.e.

PI )(BXA) =nEA(Y )IBZI) , A C Y B C X

where IA denotes the indicator function of the set A, and Y ( X ) denotes the range of Y,, (

X,, ). Similarly let

pMn )(B) EI1(fs(. , B C X

denote the marginal empirical of the 2,, 's. We will assume PP) approaches a fixed limiting

design measure, Px. Then there is a joint measure Pxy with marginal Px and conditional

PY x. When (X. 1, Y., 1), * (X""n , Ye, ) are i.i. d. random pairs from Pxy, we shall refer to the

random design model (RDM). However, the asymptotic theory works better if the Z,,, are more

uniformly distributed than would be obtained from the RDM.

Suppose that the conditional distribution Py I x( I z ) is "partially" specified by a q-

dimensional vector e(z ), and e is a space of q-dimensional functions in X. The likelihood for a

single observation at z is I (y ,z ,°) P(Y I z ,e(z)) The penalized likelihood is

=() fp(y I z ,0(z ))P.)(dzy ) + XJ(9)

The true parameter is defined pointwise at z as the minimizer over t E RI of

fP(v I z,t)Pr I x(du IzI)
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Some choices for I are discussed next.

(i) Consider the normal additive error model:

l1ns =-g(zn ) + En, ,where

where the c's are assumed to be i.i.d. normal random random variables with mean zero and con-

stant variance o!2. Then the natural choices for the partial parameter and the likelihood are

@(z)-=11s(z) ; l(y,,) = [y-_(_)J2

Note that the normality assumption is not really needed. This choice of I is appropriate when-

ever one wishes to estimate 80(z) E[Y I X=zJ.

(ii) If in (i) the variance a2(z ) is non-constant but depends smoothly on z as well, then natural

choices would be

6()) (g( ),-logo(Z))
I (Y,Z,) = -62(z ) + I e2viz ) [y _1(z )I2

2

Here we have chosen the parameterization 82(z = -log1(0 ) to avoid awkward positivity con-

strai nts.

(iii) If the errors in (i) are no longer assumed normal but to have density f , then one would

naturally use

I (y,z,) - log! [y -6(T)I

One may wish to replace - logf by a function p as in robust estimation of location; consult

Huber[141 for further details. Again one may incorporate scale estimation as well as was done in

(ii).

(iv) If the response Y is binary ( zero or one) with "pointwise" success probability

p(z)= PY=1 I X=ZI

then a natural choice is

0(z) = log[p ( )/(l-p (2 ))I
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I (y , 6) = -yO(Z ) + log(1+ce(x ))

The estimator will then be a non-parametric logistic regression estimator. Note that the logit

transformation leads to an unconstrained parameter. A probit approach is also acceptable.

(v) If Y is Poisson with mean X(z ), then a nonparametric log-linear Poisson regression estimator

is obtained by setting

-(z) logX(z)
I(y,2,G) =-Yi(z ) + C

This and the previous example are both special cases of the generalized linear model as described

in Nelder and McCullaghj18J. Any of the cases presented there may be treated in a similar

manner.

Parameter Spaces and Penalty Functlonals

The penalty functional J(6) is often chosen to penalize for "roughness". Suppose 6 is q-

dimensional valued, let ca (cl, 'ad) be a multi-index (d-vector with non-negative integer

co-ordinates), and let

Da~= fl

be a partial differential operator of order

d

latl =e
) =

Let X be a bounded domain in Rd. The Sobolev space W{(X; R 9) is the collection of R

valued generalized functions having derivatives of orders < p whose components are in L2(X).

The norm is

1i0 z= { *2IID:1(z) I L2(X)ll2 }2
a I <P

1Oo <0

One can define W; for any real number P > 0 using e.g. interpolation theory ( see Adams|l|,
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Coxl81, or Triebel|28] ), and in all that follows such fractional order Sobolev spaces are allowed,

unless explicitly excluded, although the reader may wish to think of p as an integer for simpli-

city. The spaces WE are Hilbert spaces when equipped with the inner product (for p an integer)

<e,( I WE> = y f[Ds"e,( )J [D,a,(z)J dz
I'<tXPX

If 0 Wm (it; q ), then a natural roughness penalty is

J(e)= S2 S fIDt'GAz2)J2dz (1.1)
,11a1m I

where 6, is the i'th component of 0 and the order m is prechosen. When q =1, this

corresponds to the roughness penalty of Cox[|9. The extension to q > 1 presents no difficulty.

When d=1, it is irrelevant whether one takes the integral over X (which is assumed to be a

bounded set) or over all of R as the solution of the minimization problem is the same. For mul-

tivariate X, integration over all of R d in the penalty is also possible, but we have not yet been

able to adapt the asymptotic theory to this situation.

In general when e is Hilbertian, it is natural to consider penalty functionals of the form

J(O)=<,We>

where W is a positive operator, see Cox[8J. The previously displayed penalty on W' can be put

in this form.

1.3. Main Asymptotic Results

Our theory relates to the large sample behavior of roots of the penalized likelihood equa-

tions. That is we look at the score operator, Z.),,

and discuss the properties of roots of the equations, Z,, = 0, as n -xoo. The limiting version of

the score functional is also of interest. This is defined in the regression case as

Zx(d) fDI(y,z,O)Pxy(dzdy) + XDJ(a)
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with analogous expressions for density and hazard estimation.

(Note that both Zx and Z.)X are mappings from e into the dual space e). The first step in the

analysis is linearization. Conditions are given under which Z) and Z.X have locally unique roots

and it is described how such roots can be approximated by simpler linearized "estimates". The

linearized estimates are defined in terms of the Hessian of the "continuous" penalized likelihood.

It may be helpful to think of this as a generalized "information" operator. For 0 E e, the Hessian

Gx(0) of the penalized likelihood at 0 is

GC(0) =D 21 (y ,z,)Pxy (dzdy ) + XD 2J (e)

The first is a continuous linearization. It says that for all X sufficiently small there is a unique

root, Ox, of Z, = 0 in a neighborhood of 00. Moreover, if d (Ox,o) measures the distance between

O> and 80, then we give conditions under which

d (Ox,00) =d (Tx,Oo) (1 + o (1))

where Ox, the linearized "estimate", is obtain by a one step linearization of Zx(-) about the true

value 00

= 0 - GXl (0o)(Zx(o) (1.2)

There is a corresponding discrete linearization result. It can be shown that for all X E [X,, ,XoJ, Xo

sufficiently small, and for all n sufficiently large, with arbitrarily high probability there is a

unique solution, 0,n>, to Z,, = 0, in a neighborhood of 0), satisfying

d (On X,Ox)= d(X, x) (1 + op (1))

where the linearized "estimate", 0,, is now given by

S n cex G - (Ox)Z (ex) (1.3)
Since

anx 80 _- (O" _
- x) + (ex -seo) -(Ox\x - x) + (-ex 0°)

the linearizations allow one understand the asymptotic behavior of roots of the penalized
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likelihood equations by studying the the asymptotic behavior of much simpler linear "estimates".

The continuous linearization provides information on the asymptotic bias of the estimator while

the discrete linearization gives information on its asymptotic variability. The linearization

theorems are presented in section 4. In a Hilbert space setting, where there is a rich spectral

theory, the properties of the linearized "estimates" can be analyzed in detail, and in section 5 this

aspect is worked out for a class of penalized likelihoods described in section 2.

1.4. Some Comments

Although the theory in section 4 implies the asymptotic existence of roots of the penalized

likelihood equations, it does not say what can happen in finite samples. Along these lines, a few

existence results are given in section 3.

The computational aspects of penalized likelihood are not discussed even though this surely

warrants some mention. Often in practical situations it is quite feasible to implement Newton-

type minimization algorithms for this purpose, see Cooley[6|, and Neuman and Yakowitz[ll9.

However, further work needs to be done in this area before we can get a good understanding of

the issues and subtleties involved.

The choice of the smoothing parameter X is not discussed here either. It seems that in some

situations it may be possible to come up with suitable versions of cross validation or unbiased risk

estimates, see O'Sullivan et. al.[211 and O'Sullivan and Wahba[201. However, a proper asymptotic

analysis of this problem is beyond the scope of the present paper.

1.5. Acknowledgment

The authors are indebted to Professors T. Leonard and G. Wahba for bringing this class of

estimators to their attention.
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2. Results for Generalized Smoothing in Sobolev Spaces

In this section, we state the assumptions and asymptotics for the regression, density and

hazard function estimation problems when 0 is a Sobolev space, and the penalty has the form

J(6) = <O,WO>.

2.1. Assumptlons

Any assumption on the z's applies to all three observational models, but assumptions about

y 's only pertain to the regression model.

Assumption A. (i) {Z,,1,Z2, * , ,,,} C XaC Ed, where X is a bounded, open, simply con-

nected, nonempty set with C'-boundary (Definition 8.2.1.2 of Triebelf281 ).

(ii) Yl1,Yn 2, * *,Y,-,, are random elemento taking values in some measurable space Y, and the

joint conditional distribution of Y- 1,Y,,2, * ,Y,,. given X.,1=z,1,X,,2=x, * * ,X,,,, =,,,, fac-

tors as the product of marginal conditional distributions of Y,,, given X,, =zn,, :i.e.

R

Law (YR 1,Yn2, ,Y,,,, | XI=Zfl ,Xn2=ZR2,2 ,X =z,nn ) = JP1x( Z,)I

Assumption B (i) There is a probability measure Px on _X such that if F, and F denote the dis-

tribution functions of PAiR) and Px, respectively, then

k=t- 8up F. ()-F()IT -O as n -_ .
sEX

(ii) For the density and regre8sion problems, Px has a density f (z ) which satisfies

0< K1< f (z:) . K2 < , for all z EAX, (2.1)

for some constants K1 and K2. For the hazard function problem, (2.1) holds for x E X = 0,1

and S(1) > 0. When X,,,, * ,X",, are i.i.d. as is assumed for density, hazard and the RDM

I

regression models, k,, is random and k,, - O (n 2). In regression with designed 2's, the best

one can achieve is k,, = 0 (n '(logn )(d-)/2). See Davis and Rabinowitz[121, p. 268 ff.

Assumption C. (i) e is a Hilbert space of functions 6: X - R uith inner product <, > and

norm 11 11.
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(ii) For .ome m > 3d /2, 9 = WI' (X ; R? Q), as sets and they have equivalent norms.

(iii) The pfnal!y functional 1(0) = <0,WO> where W is a bounded linear operator on e which is

self adjoint and nonnegative definite.

(iv) For some K1, K2,

KI110112 < <e,We> + jig I L2(X ; R9)112 < K2 1112
for allO E 8.

(v) The true function parameter 00 is in W' for some 8 > 3d /2.

Some further assumptions needed for the regression model, but first some notation. For any

normed linear spaces A and B, let B (A ,B ) denote the class of continuous linear operators

equipped with the usual operator norm

lT I B(A ,B)ll =sup {lITa I Bjj: a ES(1,A)}
where for R > 0

S(R,A ){a E A: Ila I A 11 R }

is the closed, centered ball of radius R in A .

Recall that in the regression problem, the "likelihood" is determined by an M-estimation

functional p: YXXXRI -Rt+. Let *t: YX-X RI -. RI be the gradient, j, of p(y I x,t)

w.r.t. the variable t . The dot will be used to denote differentiation w.r.t. the variable t . A set

of assumptions regarding v need to be specified. These "regularity conditions" are similar to (but

stronger than) those given in Cramerlil|. Loosely speaking, these conditions hold provided

p(y I z,t ) is "sufficiently smooth as a function of z and t with derivatives satisfying moment

conditions." In what follows, we shall use K, K1, K2,- * to denote positive finite constants

which may depend on p, d, X, q, and Px, and are not necessarily the same in each appearance.

Dependence on other variables in the problem will be explicitly indicated by their inclusion in

parentheses after the constant. Global constants, which are the same in each appearance, will be

denoted by M1,M2, * with the same rules for dependence on the quantities at hand. Let

(Z,t) = f0(y I ,t )PyIx(dy I)
x



- 13 -

Assumption D (i) For all : E X, and for all t E R;,

flkk(y I:,t) I Ifi l2PyIx(dy Iz) = Ml(x,t) < X

(ii) Let

Kc(z,tl,t2) = COVIVY(y I 2,t1),Vy(y I Z:t2) j X=z i

f10Y I -- It ) It 01t 10(y I Z t2) - 72J,t2)l PY X(dY ZZ I

then for all R > 0, the below indicated restriction of K satisfies

Kc E C'(XXS(R AR I)XS(R,I,R); I ').

(iii) For all u E S(1,R ), z E X, tI,t2 E S(R,R ),

0 < M2(R) < u' Ic(:,tl,t2)u < MA(R) < oo

(iv) For aUl E X, i(y I ,t) eZi8ts Py X( I :) almost surelyfor all t E R q and satisfies

fI(y I :,t)PyI x(dy ) it(,t)

(v) For all : E X, for all R > O, for all t E S(R,R ), andfor all u E S(1,R7),

M4,(R) < u ' O ,t )u < M6(R)
(vi) Let

r(:,t)= CoVk(Y I,t) I X= IJ

TJD kk' (Z ,t ) = fly', (, IZ ,t ) - *,,' (z ,t )J ['/k (y I Z ,t ) - VPtk (Z ,t )l Py x(dy I Z )

Then for aU R > 0, r satisfies

rE Cd(X XS(R,Rf) ;Rfxx)x

(vii) For all u,v E S(IP"), X E Xf, and t E S(R,Rkj),

U) UjP T}. t t' (z .t )tv vp, < M6(R ) < xo
j ko't"p _

(viii) For aU z EX. ,'(y I z ,t) eisits Py I x( I z )-a.s. for aU i E RI and satisfies
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fsup El(u I 1t) RXx><lPy x(dy Iz) S M7(R) , for all x.

tES(R ,I?)

(ix) For all R > 0, the below indicated restriction of i satisfies

E Cd(_ XS(RpJ? );)

Remarks. Only D(ii), D(vii) and D(ix) represent strong departures from Cramer's assumptions.

These are used to deal with some of the problems that arise from the infinite dimensional parame-

ter. Note that all boundedness requirements on p or t only involve the point-wise parameter t in

bounded subsets of R q

2.2. DerIvatlves

In this section, we give representations for the derivatives of the penalized likelihood l,, X and

related functionals. Only directional (Gateaux) derivatives are used. One of the most useful facts

from the theory of function spaces is Sobolev's Imbeddlng Theorem : WE (X ;R f ) is a subset

of C' (Z; I?) if p > r + d/2, and the injection mapping is in B(W;,C' ), i.e.

11 I C' < K11e I Wflj
for some constant K, 0 < K < m. Under these conditions, we say W; is continuously imbed-

ded in C' and write

W CC'

See Theorem 5.4 of Adams[|l ( noting that our assumption of C' boundary in A (i) implies any

of the cone conditions ), or Theorem 4.6.1 (e) of Triebel[281 (note that W' is equal to B' by

Remark 2.3.3/4 and Definition 4.2.1 of[281).

Remarks. (a) From C(ii) and Sobolev's imbedding theorem, we have

0 c cd (2.2)

It follows from this that each of the real valued maps 0 -- 0, (z) (evaluation of the j 'th com-

ponent of 0 E e at z E X) is a bounded linear functional on 0. By the Riesz representation

theorem and C(i), there is for each j, 1 < j < q, and each z E X an element f, (z) E 0 such

that
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6, (z)= <6,E,(z)> , for all 0E e

When q = 1, this is equivalent to the property of being a reproducing kernel Hilbert space. We

will write

~(zw) =(41(Z), (?( )

as a column vector with components in e, for each 2 E . The transpose is denoted ' (2).

This notation is merely for algebraic convenience.

(b) The penalty functional, J(0) = <, WO>, could be given by

J(0)=fJIIL (z) I RI?12dz

where L : Wj (X;I? L2LX;R I ) is a system of q linear differential operators of order m, in

which case W = L 'L is a boundary value operator of order 2m obtained from Green's formula.

See Proposition 2.2(ii) of CoxOl.

(c) The true parameter in the log density and hazard estimation problems is the underlying log

density or hazard of the X, 's. Thus the data are assumed to derive from a model determined by

00. However for the regression model, the "true" parameter 80 is determined by p and Py x as

indicated above. If p is obtained by taking the negative log of a (point-wise) likelihood, then we

are not assuming that Py x(x 2) is in the given parametric model. In this case, 0o(z) is the

value of the point-wise parameter which minimizes Kullbak-Leibler "distance" between

PY x( I z) and the model.

(d) We do not require that 0o E 8. Indeed, e is dense in many function spaces with weaker

norms, so our estimates ( which are in e ) can converge to something which is not as smooth as

the elements of e.

The penalized likelihood type estimator, eRX, is obtained by minimization of the penalized

likelihood functional I,\ over eE 0. Since 0 is a Hilbert space, it is isomorphic to e in a

canonical way, and we identify 0 with e' for purposes of calculating Z,,. The forms of Z,, for

the examples we discuss are as follows:
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Log Density: Zn X(6) = fi(z ) e I(z)dz -f (2 )PA(`)(dz ) + 2XWO

Log Hazard: Z),,(9) = f f(z ) e ()S, (z )dz - f f(z )P"`)(dz ) + 2XW6

Generalized Linear Regression: Z, ,(6) = fJ(z ),P(y I z2 ,(z ))P'(i~dxdy ) + 2X W 8 (2.2)

2.3. Asymptotic Notation

The following asymptotic notation will be used. If f and g are real valued functions on a

metric space U and uo E U, then

f (u) < g(u) as u -_ u0

means for some K and some neighborhood N of u 0,

f1(u)I < K
g (u)

for all u E N,

where the numerator is required to be zero whenever the denominator is zero. If there is an addi-

tional variable v and V(u ) is a set of values of v for each u, then

f(u,v) < g(u,v) as U -* U0

uniformly in v E V(u ) means

8U
f (U, )8 <1I

vEE(u) 9(u,v J
as u - u0

If f (u ,v ,w) and g (u ,v ,w) are random variables on a probability space Ql, then the above means

that for all E > 0 i K E (O,oo) and 2 N, a neighborhood of u0, such that

P (wEEl: u( f (u uvw) >K }< c , forallu E N .
v E4VU) g(u,pv,w)

The notation

f (u ) g (u )

means f (u) < g(u) and g(u) < 1 (u).

as u -u
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Fi nally,

f (u,v) << g(u,v) as u- u

uniformly in v E V(u ), is taken to mean that for all K > 0

P {wEf:E U$ f(u,vW) >K 0
EVI() g(u,v,w)

as u - u0.

2.4. Linearised "EstImates' and a Summary ofAsymptotle Results

The continuous versions of the Z, x's become important in the asymptotic analysis. For the

examples we discuss these are given by

Log Density: Zx(6) ff(z)e"()dz -fJ(z)Px(dzx) + 2XWG

Log Hazard: Zx(6) ff( )e (z)S ( )dz - f e(z)Px(dx) + 2XWG

Generalized Linear Regression: Zx(O) = f (z)V(x,(z ))Px(dz) + 2X WG (2.4)

Note that Zx(6) = EZRX(6) under the RDM, and more generally, Z, x(6) _ Z x(O) as n _ x for

fixed X, e. Hence, for large samples, ,,x should be approximately unbiased for Ox where

Zx(6x) = 0

The existence of Ox (for X sufficiently small ) is established in section 4. Our approximant, 8,,

to O,X is obtained by linearization of Z.,,(6) about 6), i.e. by setting

Zvi>(6x) + Gx(ex)(Gx-4)= 0

where

Gx(U) DZ(e) =U(e) + 2xW

Gc :e - B (e,e) and U (U) E B (8,0) are given by

Log Density: U(O)f = ft(z )c'(z).( )d2
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Log Hazard: U (O)= f (z )c'(W()S (z )dz

Generalized Linear Regression: U(6)C = ;'F(z )i(z ,6(z ))S( )Px(dz) (2

for all C E 0. Thus, the linear approximant is given by

=nX + Gx'(O4Zx(Gx)

Of course in order to study convergence it is necessary to deflne "closeness". It is natural to

use norms for this purpose, and there is a convenient parameterized family of norms ( and associ-

ated Hilbert spaces ) which is determined by the structure of the problem. For the U operators

in (2.5), Section 1 of the Appendix shows that for each X sufficiently small there are sequences

{> L-v=1,2, ) of eigenfunctions and {y>,) of eigenvalues which satisfy

<0^,,IU(90)0,=> (2.6)

< 0xv) W'Oxg> 7YXv 6LM

for all pairs v,4 of positive integers, where 6E, is Kronecker's delta. For b > 0 let

IIIIXb = { XV}2

and let Exb denote the associated IHilbert space obtained by completing { 6 ee11011:,b < X }

in 11 1lxb norm, with inner product

a:

< @, 1+X&v<y @iQ><f @)>

According to Section 1 of the Appendix, the e0b norms are uniformly equivalent, provided

0<b <1 (Corollary A1.4), so it suffices to consider a fixed X, say X = 0. We write

0ob b I IHIlob = II1I-&i < P >0b = < , >b * TV=- =v=0V (2.7)

Furthermore, if O<b <1, then 1i1llb is equivalent to W" -norm (Lemma A1.2). If the penalty is

of the form (1.1), then for 1<b <2 and bm-1/2 not an integer, the eXb norms are uniformly

equivalent and Eb can be identified as a closed subspace of a Sobolev space We" satisfying cer-

tamn homogeneous boundary conditions, and with a norm equivalent to the Sobolev norm. The
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parameterized collection {eb b > 0) of Hilbert spaces, determined by W and U, is referred to

as the penalty-information (PI) scale of Hilbert spaces. We now state our main results. For the

density and hazard estimators we have:

Theorem 2.1 Suppose Assumptione A, B, and C hold. Let p =8 /m where m i8 given in C(ii)

and s in C (v). There is some Xo such that for any b satisfying

0 < b < min{ 2-d/2m , p , (p -d /2m )/2 )

III,, - II9 - O(n-1X<bd/'2m)) (2.8)

ile| x ol 1 2 < \(p-b^) ,(.

uniforrmlyfor X E (0,XoI. Moreover if, for 8ome c>min(0,b -d /2m), X, i8 a sequence such that

n(-m«/3d)<< <<

then forX = ,

lIw,uX - eOn « n-X(b+d/2m) (2.10)

Proof: Theorem A2.1 of the appendix gives (2.8). Let

c e + d/2m

for some E such that

b < c' <p.

The existence of c ' is guaranteed by C(v) . From Theorems o.1 and 4.1, X0 exists and we have

11x -_O||b X_\(c-b) (p-c) - X(p-b)

proving (2.9). Corollary 5.3 and Theorem 4.2 imply

117x 6 |x|II 2 =: (n-1X-2(c'+d/m)X(c '-b)) 1n-lc +d/2m)

= { n 1X-2(C+d/2M)) . n -1<4b +d/2nt)

<< n-« ,

provided X E [X3.,Xoj. Q.E.D.
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The optimal upper bound on the rate of convergence is obtained by equating the asymptotic ord-

ers of the variance and bias. The asymptotic behavior of these quantities is given in (2.8) and

(2.9). Equating, we find that the optimal rate of convergence applies if

Xi -- n -2m /(2mp +d)

and the resulting rate of convergence of the penalized likelihood estimators is

X -el =-0g2 (n-2m (p -b )/(2mp +d))

The conditions under which X,,' satisfies n(c4d/m) « Xn <C 1 for b < d /2m+e < p, can be

worked out on a case by case basis. For example if b <d /2m then we can let e be arbitrarily

small, and the optimal rate is covered provided

d < mp

which is guaranteed by C(v).

For the regression case we have:

Theorem 2.2 Suppose Assumptions A, B, C, and D hold. Let p = /m where m is given in

C(ii) and 8 in C(v ). Let b satisfy

0< b < min( 2-d/2m , p , (p -d /2m )/2 }

Suppose X = X, is a deterministic sequence such that for some e>0,

max{ kRm/d,nmI/d k2mI/d,n(c-m/3d) } << X, << i * (2.11)

where k. is given in assumption B. Then

1X-exII << n -liXb+d/2m) (2.12)

E1163>,X-6 2 nlXb-1 +d/2m) (2.13)

IIOx - e0II < X{Pb&) * (2.14)

Prooft Theorem A2.2 of the appendix gives (2.13). For the other two relations, we need to intro.
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duce an auxiliary norm. Let

C ce+ d/m
where E>O is chosen so that

b < c' <p

Note that such a c' exists by Assumption C(v) and our requirements on b. It follows from

Theorem 4.1 and 6.1 that

118x - GohI1 < X(c*b) X(P-c) - X(P-b)

which proves (2.14). Theorem 4.2 and Corollary 5.5 imply

hI~~- On x11 2 < {c1X-c+d/2)X(c')}{bn-1X\-c*+d/2m)}

<< {n-1X-2(c3d/2m)) {n -1>iXb +d /2"m

<< n-1>{b+d/2m)

which is (2.12). Q.E.D.

Again, using these results, we can obtain information about convergence rates. Note that

(2.13) gives the order of the asymptotic variance and (2.14) gives an upper bound on the order of

the asymptotic bias. The optimal upper bound on the convergence rate is obtained by setting

these equal. The value of X so obtained is

X n-2m/(2mp+d) (2.1)

which results in

19ie> - 2011? < n-2m(p-b)/(2mp+d)

It remains to be seen if this convergence rate satisfies (2.11). To this end, we must specify k.. In

what follows, e denotes an arbitrarily small positive quantity, not necessarily the same in each

appearance. According to results in numerical integration (e.g. Davis and Rabinowitzl121, p. 268

ff.), we have

i > (logn )(d-i)/2n -l > n-I
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and the lower bound is achievable. With this estimate on the "discrepancy" k,,, one obtains that

n('-/4d) iS the dominant term on the l.h.s. of (2.11), and that the X sequence in (2.15) satisfies

(2.11) provided

mp > 5d/2 . (2.16)

One will typically believe p > 1, so we see that a rather stringent lower bound on m is required

for our theory to cover the optimal convergence rate. We conjecture that this lower bound can be

reduced considerably.
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3. Existence of Minimizers of the General Penalized Llikelihoods

The general penalized likelihood, defined on a Banach space e with norm|i||, is written as

(x) f I (y,,T)PA)(dzdy ) + XJ (O) (3.1)

where I: Y xxX E -_ R + and J : e - R+. For arbitrary "likelihood" functional, l, and

penalty functional, J, the existence of a minimizer of (3.1) is difficult to check. In large samples

and for X not too big the results in section 4 demonstrate that, with increasing probability, there

exist locally unique roots of the penalized likelihood equations (DIR.x 0 ). If the penalized likeli-

hood is convex then in large samples, with increasing probability, it will have a unique minimizer.

However, this is still an asymptotic result which does not provide useful information for what

might happen in small samples. We now present some results on the existence of minimizers in

the finite sample situation.

From classical optimization theory Luenbergerj171 we know that if f is a weakly lower

semi-continuou8 functional and for some K the set {ff K ) is non-empty and bounded, then

one is guaranteed, the existence of at least one minimizer of f . Unfortunately, for penalized

likelihood functionals., the boundedness condition is difficult to check in practice and a simpler

condition is desirable. Intuitively, one would hope that the effect of the penalty/prior ought to be

to improve the identifibility of the parameter. Thus if the estimator existed for some X0 then for

any X > X0 the corresponding penalized likelihood estimator should also exist. Along these lines

we have the following result.

Theorem 3.1 Suppose that for all X, 1,., is weakly lower semi-continuous and that for some X0 the

sets, {l), 0 < K }, are bounded for aU K. Then for aU X > Xo, ,. x has a minimizer.

Proof: Given X > X0, choose °1 E 0 and K such that I,,x() < K and (I|,o S K), is non-

empty.

Since X > X0 and l(@) 2 0, {l,,( < K), C (l|xo < K), and as the latter set is bounded

the existence of the minimizer of 1,,v follows. Q.E.D.

A more interesting possibility, raised by Silverman[231, is the following. Consider
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noting that the minimization of the "likelihood" part of lnx, f (y,x,2)P1Sr)(dxdy), over 00

corresponds to minimizing {">, with X = x, one asks, when does the existence of a minimizer of

fl(y x,x)P4`)(dxdy ) over 0o guarantee the existence of a minimizer of ,, x for 0 < X < oo. The

answer to this question in, at least, a Hilbert space setting is provided by the following result.

Theorem 3.2 Let e be a Hibert 8pace and suppo8e eO is a linear subspace of 0 tith P being the

projection map onto the orthogonal complement of 00 - 09f?P say. Suppose

(i) J i8 weakly lower semi-continuous and J() > constant lIP ell for aU o E elfP17

(ii) fl( ,x ,O)P}r)(dzdy) is weakly continuous and convex on e.

Then whenever =! minimizer, 80 of fl (y ,z ,6)Px)(dxdy ) in 00, the penalized likelihood estimator

exists for 0 < X < o.

Proof: Let 0 < X < oo be given and let 81 E e. If B = n{lx < lnx(81) ) is bounded then we

are done ( by the weak lower semi-continuity of In X). Suppose B is unbounded, then i {68)

C B such that 11k 11 -. x and { l,,x(6k) } is bounded.

Obviously, by (i), { IIP(k)ll)} must be bounded so it must be that ll(I-P)Ok lI as

k -xo. However

@,a 2 (I-P p't 2 et + I (-P e)2 2 2

and fI(y x 0)PJ`)(dxdy ) is convex so we have

fl(y,x,yt)P;)(dzdy) < fIfl(y,z,6t)PI'0(dzdy) + fIl(y,x,(-P6k))PJ)(dzdy)
and since fI (y,z ,6)PA(;dzdy) is convex and has a unique minimizer in eo,

fI(y ,z , ¶)PA(j)(dzdy) - oo as k - oo. But this implies, since fI (y ,xz,6)Pj)(dzdy) is weakly

continuous and { IIP (°k )ll ) is bounded, that fI (y ,z ,°k )PJ)(dzdy) -Xco as k -xoo. Contrad-

icting the definition of (6k }. Q.E.D.

Remark: One can relax the convexity condition to quasi-convexity, provided the existence of a

unique minimizer of fl(y ,z ,6)Pg)(dxdy) over i0 guarantees that the sets {



- 25 -

E 9: f I (y,x,9)P}y)(dzdy) < K } are bounded for all K.
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4. Linearization of Roots of Penallzed Likelihood-Type Equations

Recall, from equation (1.2), that in the general case

U0 = arg min{f (y ,z O)Pxy(dzdy))

So with differentiability,

As we indicated in section 1 there are two general linearization theorems; a continuous one and a

discrete one. To describe these results in detail we need to introduce some further technical

machinery. Firstly, let 1111iXc be a family of norms, indexed by X and c, on 8. These norms are

used to measure convergence of estimators. The Banach space obtained by completing e under

the norm 1111jC is denoted Oxc For notational convenience we will often drop the X subscript.

The linearization theorems below depend on applying a particular fixed-point theorem. Now it

will turn out that special conditions have to be placed on the norm in order that this fixed-point

property be obtained - see section S. However, once the fixed-point property holds in a particular

norm information about the behavior of the linearization in a variety of (typically weaker) norms

can be read off. For this reason, the results in this section are always stated for a pair of norms,

gl llXCo and TjjlC.The fixed-point property is established in the c'-norm while the c-norm

results give the behavior of the linearization in norms of more direct interest.

Continuous Linearization

Let

b (X) I TX - = IIGx'(Go)(Zx(U0) - Zo(eo))Ic. = IG-(eo)(XD:(0o)I)Ic (4.1)

and for some admissible c and c ' and R > 0, define constants

K2* (,\,R )- I(E I1G)k-'(@O)D 3(8+1),0+020311c3*3 E S r
01,02ES(R,e9 )

and
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K4(X,R ) = 8Up G x-'(Oo)D31 (0+ 00020311c
03E S(1,e*

Xc01,02E S(R,9 ¢)

where D31.X(6) = fD31(y Iz ,6)P,j)(dzdy) + XD3J(6). (We assume that I and J are 3 times

differentiable w.r.t 6).

The hypothesis for the continuous linearization theorem concern the behavior of these constants

as X approaches zero. Let r ' (X), and r (X) be sequences such that

K2'(,\, ()X)) r ' (X))

K 2(X,z()) r (X) (4.2)

for - (X) = b (X).

Theorem 4.1 Let c and c ' be given. Suppose lim r '(X) - 0, then we can find constants Ko, K

and Xo such that, for all X E [0,Xol, E ! Ox E S(- Kob (X),EXC.) such that if ex =8 , + 60 then

Zx(6>) 0, and

Ox - Oxflc. K r (X) b (X)

II6x - OxII:c K r(X) b(X)

where U> = 6o - G x-'(8x)Zx(#0).

Proof. Consider the mapping, F,,, on 8 given by

F x = - G x '(60) Z>(00+ )

By definition of b (X), > Ko such that for all X < Xo, 117x> - 6ollc. < 4 Ko b (X) . The conclu-

sions of the theorem will follow once we have established that FX. is a contraction on the closed

ball S(-2 Kob (X),0>.) for all X sufficiently small.

To show that F>. maps the ball into itself, we consider IIFx(0)11c. for

4 E S(-Kob(X)0 xco2
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ll(OX)tlc. --llFx(~)- (OX-@o) + (Ox-6o)ll¢.
< ll4/ - Gx-'(#O)Zx(Oo+0) + Gx-j(Oo)ZX(6o)11,. + X - eol.c

while for the contraction property, we look at llFx(O1) - Fx(02)11,l for

01,02 E S K 0b (X)jElxc,1

IlFx(Oi) - Fx(02)ll = ll+- 02- G,-'(0o)1Zx(0o+401)-Zx(eo++02)lllc
Applying the mean value theorem, for any continuous linear functional f , itO between 0 and

the origin such that

f ( - Gx-'(6o)jZx(eo+O) - Z>(0o)1) = f
( - G-'(0)[DZ> + 2 Z)

= f (2G -'(o)D 31X(o+)+ ) since DZ. G=
Thus

I f (o - Gx -'(o)[Zx(6o+0) - Zx(eo)J) I = f ( _-(o)D31x(eo+0* )OO)2
Taking the supremum over functionals of unit norm we have

Il - G) -'(Uo)1Zx(6o+0) - Zx(Go)ll11c. 2 CxG (Oo)D {x(6o+t' )OO)IIc
where L [0,O { t( 1 t E 10,11 }. Hence, by definition of K2

Fx(O)jc, < {-K (XjKOb(X)) + } Ko b(X)
1< (K r(X)+ -}K0 b(X)

Expanding ZX(o±0+1) - Z>(60+2), an analogous argument gives

llFx(Ol) - Fx( t2)ll 1< 8 Up llGx-(x)D I X(90++ ')k ( 1-c2)I*
E L [oIo

E** L O,# **

< {K (X,Ko b (X))) 1ll0 - 0211c

< (K r ' (X)} 11 1 - i211c'

Thus, since r ' (X) - 0, there is some Xo such that the terms in brackets are less than one for all

1X < X0. Hence, for all X < Xo, Fx, is a contraction on S(.iKob (X),0),c.). and so, by Theorem

9.23 of RudinI221, Fx has a unique fixed point, X, in S(-.KOb(X)?0XcO). It follows that
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Ox = Oo + Ox is the unique solution to Zx = 0 in S( 2 Kob (X),E8xC). By definition of Ox

- Ox= Fx() - G1-'(0o)Zx(Oo)
F= ()- Fx(O)

Thus

I11x - Oxllc. < IIFx(4k-A) - Fx(0)IIc.
< K r (X) b (X)

Using the definition of K2 and r (X), possibly altering the choice of the generic constant K and

reducing X0, we can also guarantee that

II1G - OxIIc < K r(X) b(X)
for all X < X. Q.E.D.

Discrete Linearization

The existence of 6x for all X E [1,Xol allows us to describe a discrete analogue of Theorem

4.1. For X < Xo, let the sample Hessian operator at 6x be denoted:

I,x = fD21((yz Ox)P;)(dzdy ) + XD2j (OX)
For some admissible c and c ', let

K;(n ,X) = sup IGx1-(Ox)(I*x - Gx(6x))'II ¢cE S(1.@ *

K2 (n ,X,R) = 8Up IIGx-'(8X)D31RX(eX+01)020IIC.
03E S(1, *)IX

*1 02E S(R,G *)

and

K1(n,X)= S(4 )IIX(X)(NX - Gx(e))oIIc

KA(n,X,R)=Up IIG)x-1(Ux)D51uX(ex+01)020sIIc
03E S(1,G *)

01, 02 ES(R,@ ,)

where D31RX(6) = fD 31 (yv,z,O)P#)(dd) + D3J(G).

The assumption for the discrete linearization depends on the asymptotic behavior of these

constants. Roughly speaking, we require that the sample Hessian operator, I' x, converges to the

limiting Hessian operator, G>(Oe,), in an appropriate manner and that I and J are sufficiently
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smooth. Let d (n ,X), r '(n ,X), and r (n ,X) be (non-random) sequences such that for all

X E [X ,X0J

II,,>, -ox II =O (( (n X)) (43)
K (n,X) + K2(nX,z (n,)) (r '(n,X))
Kl(n,X) + K2(n,X,z(n,X)) = O,(r(n,X)) whenever z(n,X) z d(n,X).

With conditions on the behavior of these quantities, we have a discrete linearization theorem.

Theorem 4.2 Let c and c ' be given. Suppose (X,, } is a such that r (n ,X) - 0 as n -x for

any sequence of X 's in fX. ,XoJ. Consider the event E(n ,X) given by

E(n,X) ! solution to Z.,= 0 8nx = 6x + On x, OxxESE(Kod(n

satisfying flO,>, -,xx>IIcv < K r (n ,X) d(n ,X),

and 118.x -7@>,Ic .< K r (n,X) d (n ,X)

then for all 6 > 0 we can find no and constants Ko and K such that this event occurs wuith proba-

bility > 1-6, for all n > no andX E [X3,Xol.

Proof. The argument amounts to a probabilistic version of the proof of Theorem 4.1. Since

jj,,>, -6xjllc. = O(d(n,X)), for some Ko the event E' (n,X) 8j1,,>,-6>||v < -Ko d(n,X)2

occurs with probability > 1-6/3 for aU n > no and X E [X. ,Xo.

Consider the mapping F>,,: 0 -_ e given by

F, =(0) = - G -l(PO)Z,, x(ox+
The existence and uniqueness of 6,,, will follow once we have established that, for n sufficiently

large and X E [X, ,X0I, with arbitrarily high probability, F., is a contraction on the closed ball

S(Kod (n X),4Xc2

To show that F.>, maps the ball into itself, we consider IF,, x(O)IIc. for 0 E S(2jKod(n ,X),1>0V .),

IIF>,(O)Ij = IIF >(') - (e, >-6>) +
-11 G ,-1(8)Z.x>(ox+ ) + G>-'(00)Z,,>,(U>,fI c + III'x - IIc
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While for the contraction property, we look at iIFRX(01) - F,, (X 2)I for
1~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

01,02E6 S K2 od (n ),Ox)c')
2

IIF x(J1) - F=X(02)11c ' - 1 - 02-Gx(O)[Z0x(UX+01)-ZnX(Ox+ 2)JII '*

Applying the mean value theorem as in Theorem 4.1, for any continuous linear functional f,

' between ¢ and the origin such that

f ( - Gx-l(Ox)|Zv x(Ox+0) - Zj(#)(el) = f (O - G-l'(O4)DZnx(x )0 + 1D2Z>X(6X+')Q1)2

Since Z, as Di., and DZ,,x>(6x) a l,

= f (Gx1'(0)4[Gx(6x) - I,,xJ|) - f (1 G -1(6 )D3I,X(6x+)44)2

i.e.

1~~~~I f (0 - Gx-(6x)lZax(Ox +k) - Z x(6x)l) I . I f (G>j(Ux)[I3 - Gx(Gx)l ) I + I f (2 G x-'(Ox)D8 x(eX+ ¢ )'0) I2

Taking the supremum over functionals of unit norm, we obtain

jF3,x(0)I . < IICGxf(Ox)(I,,x - Gx'1(Ox))tIIc + 2 up G.x-'(x)D'I , (Ox+ )
c

+ -K0d(nK,)- 2 0 d (n X)C
A similar expansion of Z,X(OX+01) - ZJ(O9X+02) yields

IIF"x(41) - FnX(02)11 . 11.x-'(O>)(I* _GIG(X04c(
+ 8up I G< -1(9x)D31X (OX+ ")O ((01-02)1 c'

O" E L 1*.J
fee ELp,

Hence by definition of Kl and K' on the event E' (n ,X) we have

jFn x(0)jl c, :5< K[ (n ,A) + IKK ( n ,X,KO d (n ,\))} + -1KO d (n ,X)22 ~~~~~2
and

IIFax(¢1) - FRX(02)1.1 {K,"(n X) + K(n,X,K0 d(n ,X))} 11I1 -0211c'
The terms in brackets can be made less than a constant times r '(n,X) plus - and a constant2

times r '(n ,X), respectively, with probability > 1-6/3 for n suffieciently large. Thus, since

r '(nX) _0, there is some nosuch thatfor aU n > nO and XE [X,X0ol the event:

IIFRx(c).<C Ko d(n,X) for aU E S(
1 Kod(n,X)08)c.) (4.4)

IIF" x(0j) - Fos )(02)11 C < K r '(n ,\) 110, - 0211ce for aU 01,02 E S(2Kod(n X),EX .)
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whereK r'(n,X)< 2'

occurs with probability > 1-26/3. On these events, FR>x is a contraction mapping on the ball

S( 2 Kod(n ,x),ex, .), and so, again by Theorem 9.23 of Rudin[221, F.), has a unique fixed point,

0,, in S( 2 Kod(n X),>x.c.). Letting O. x = Ox + O,, x, we have Z,,x(),,x) 0. Moreover, since

=>#x - G>i-1(@>)Z,,>(,), we have

'9zX-=RIIc||Ga>-'(e9x)Gx(ex\)(e,x - @>.)IIc

= |ICGx-'(Px)|ICA(Px )19,, X- G>,(6>,)6> + Z,,x(6x\)1IIc.

IIF,, x(x,x>) - F ,x(O)II c.

< K r (nX,)Kod(n, X)
Similarly,

II-R>.- 6AIIc = IIFx,x(0ax) - F,,x(O)IIc
< {K1(n,X) + -K2(n ,X,Ko d(n ,X))}I4j,,xII.2

and we can choose no larger, if necessary, and guarantee that, for n > no and X E [X,, ,XoJ, the

term in brackets is less than a constant times r (n ,X) with probability > 1-6/3 i.e.

< K r(n,X) Ko d(n X)

Combining the event upon which this occurs with the event in (4.2), we have that :- no and con-

stants Ko and K such that for all n > no and X E [X,.,XoI the event E(n ,X) occurs with proba-

bility > 1-6. Q.E.D.

Straightforward modification to the argument in Theorem 4.2 can be used to prove the following:

Extensions.

(a) If the asymptotic orders of magnitude in (4.3) are uniform for X E [X..,XOI, then Theorem 4.2

can be strengthened accordingly. In this case, y E(n ,X) has arbitrarily high probability for
X e 1xi

n large enough.
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(b) If the asymptotic orders of magnitude in (4.3) are almost sure, not just stochastic, then it fol-

lows that U E(m,X) will have arbitrarily high probability for n large enough. This, in turn,
m >a

can be strengthened, as in (a), provided the asymptotic orders of magnitude are uniform for

X E Ij" ,Xol.
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5. Appllcatlon to Generalized Smoothlng

The hypotheses of linearization theorems in section 4 will now be shown to hold in the gen-

eralized smoothing context of section 2. Norms, IIikx, associated with the penalty-information

scale of Hilbert spaces, given in (2.6) are used. Appendix 1 describes various technical properties

of these norms and we will make repeated use of these properties in the sequel. Having esta-

blished the existence of a valid linearization in some norm the results will be used to

derive information on the limiting behavior of the linearization in (weaker) norms, I , for

O < c < c e. Assumption A through D are in force throughout this section.

We begin with the continuous linearization. For any of the generalized smoothing estima-

tors discussed in section 2, the limiting behavior of the constants b (X) and r (X) in (4.1) and (4.2),

can be easily described. Suppose the continuous version of the penalized likelihood lx is such that

the U operator (U(O) = D210() ), is given by

U(0)= fJr (z )h (z ,6(z ))f(z )dz (5.1)

where h : R d X.R I satisfies

(h.1) For all R > 0, there are positive constants M1(R ) and M2(R ) such that for all z E X,

t E S(R,E¢), and u E Rx wIth IIu R = 1,

MI(R < u' h (z,t)u < MvR)

(h.2) h is differentiable with respect to i and let h(z,t) denote the tenor Oh (Z 't) For each

R > 0, there is a po8itive constant MA(R ) such that for t E S (R ,R? I),

sup I h,*k(z pi) I < M4R)

A quick examination shows that for the generalized smoothing models h becomes:

Log Density Estimation: h (z ,t ) = ; Log Hazard Estimation: h (z ,t) = e S(z)
while for Generalized Linear Regression

h(,t)=t z,t ) f (z ) , and h (z,t ) = (zt ) f (z ) ((5.2)
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In all cases h satisfies conditions (h.1) and (h.2): The density case is trivial, use B(ii) for the

hazard case, and in the regression situation B(ii) and D(v) imply (h.1) while B(ii) and D(viii) give

(h.2). Using (h.1) Appendix 1 gives results concerning the norms associated with the P.!. scale of

Hilbert spaces derived from U. Utilizing these norms we have the following theorem.

Theorem 5.1 Let I> be such that U is given in (5.1). If d /2m < c' < (2s -d )/4m where s is

given in C(v), then for all 0 < c < cC the constants in (4.1) and (4.2) have the following behatior

as X- 0.

(i) b(X\) f(P-c')/2 where p =s/r .

(ii) r(X) <<« (c-0/2 as X - 0.

Remark: By C(v) s /m >3d /2m, so there exists c ' satisfying the hypothesis of the theorem.

ProofP

b2(X) = x - U= IGo - G( (90)e01U
2l)_1>2.X (5.3)

so it follows directly from Theorem 2.3 (c) of CoxI8I that

b2(X) (KX(Pc)

for some K and all X sufficiently small.

For part(ii), we have D3l (U0+u )vw = U(6o+u )vw where

U (a) ft . f,( ) V(z,B(z))w (2t(z dz. (5.4)
*1 I1 tn

But the fact that c' > d /2m implies OX 5CC (X;I? I), by Sobolev's imbedding theorem and

Lemma A1.2. Hence, if X is sufficiently small, 0 E S(R *4XC*) implies

C(.Z;C(g;1)5 K R

So, for any = 80+u with Ilu lic. < R and 2 E X, we have, by (h.2),

5u' I h,)k(,e(zi)I < M7(R' ) (5.5)



- 36 -

where R' depends on 90 and R . It follows that

CJIG (0o)U(8)vw lsc(56

= ~(1+7')* {.9 ~~G<GC(eo)f (z)h41t(z,e(z)) v,(z)wt(z)dz,U($O)O,> )2
Li :~~=1k=l=1

= (1+7-)(1+2Xvy)-2 {Y- f4'V. (z )h,,O (Z , 6( ))V, (z )Wk (z )dz }2

< c(1+'m)(1+2X\'y2)- {q2fIk1,(z) I R 112dz}

*{M92(R' )K liv I C(XR,I?)II2 11w I C(X,i? )lI2}

< K(R) lIv I C( ,R¢)I12 11w I C(X,R) I12E(1+rn c)(l+27vL)-)2IV

Here, the second equality follows from Lemma A1.3 (ii), the third relation from Cauchy-Schwartz

inequality (5.5), and the fourth from Lemma A1.2 with b = 0, and the fact that 1IMll -2 for

all v=1,2, . Thus, if v E S(R,0xc.) and w E S(LeOXC), by Soboley's imbedding theorem

and the fact that c > d /2m, the sup-norms of v and w can be bounded by constant multiples

of R and 1 respectively. Thus for such u, v and w, by Lemma Al.l(c)

l Gr-'(9o)D 31,(O0+u )vw 11c < K (R ) Ac +dPm)

and so for X < X0, from part(i),

r (X)12 < K X(,-c') -{c +d /2m)

where K depends on do and X0. However, since 2c' < e/rm - d/2m, XP-2c -d2m << I and so

[r (X)2 « X(c-) Q.E.D.

For the discrete linearization we must analyze the constants given in (4.3). Results for the

density and hazard estimators are given in the next theorem. Theorem 5.4 tackles the regression

case.

Theorem 5.2. Consider the log density and hazard estimators. Let XO be such that Theorem 4.1

holds. If d/2m < c' < 2-3d/2m then forO < c < c' we have

(a) sup IlGx-e(8x)(Imx - GC(ex))u 112 < Tl(n ,\) and(a)
12,* -1
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(b) GUp 3(6x)D5IRX(6X+u )vwII 2c < T(n ,X)R2
flu 1j2 < R2, lIv11 2 < R2

1IIwiIe<1Ac

k0 density case
where Ti(n ,X) = O (k 2)X4c+d/2M) hazard case

{ O (XAqc+d/2rn)) density case
and T2(n ,X) = -(c d/2m hazard case

All relations being uniform in X for X E [0,XoI-

Remark: Assumption C(ii) guarantees d /2m < 2-3d /2m, so the assumption on c is not vacu-

ous.

Proof: With u E S(1,0)X.), we have

GOx-1(8x)(Ijjx - Gx(O),))u
0 density case

- - ) =G - 5( u) e U (z )[S, (- )-S(z )Idz hazard case

In the hazard case,

§§GX(8)I4(:)ex() u(Z )S. )_S ( ) d1T 2

E II +7 c I < G\-x-2O)f u)e(.T S(z)-S (z)]( )d.-? OxO,>
v-I

- I1+ -YXc1I[+2X$y7x,v2 {f Ox,(z )e u (z )[S, (z_ )-S(z )Idz )2
v-I

the latter relation comes from Lemma A1.3(ii). For X < Xe, 6\ is bounded in sup-norm, and

c * > d/2m so by Lemma A1.2, e>.C C C(X,R). Hence the term in brackets can be

bounded as

I f4~(:)e'X(S\ (z )(S,, (T)-S(z)Idz 1 2 < sUp 1Fx(z)-F(T )1211U I C(X,R)112f 2(Z )dz
By Lm2A U 1 2 t

By Lemma Al.3(i'), ||iv | L2(X,R )112 =Z I uniformly in A and v. It follows that

sup | G
2
X 1(efG(z )e u (z )[S, (z )-S(z )Idz lIl < Ek,2S -2

IlI *, v_I
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k2 X-4c +d/2m) by AL.I(c)

Since the relation is uniform in X for X E [O,Xol, this proves the first part of the theorem. For the

second part we let u, v E S(R ,O>xC) and w E S(L,0X,COY

GC x-'( (z)ef()v (z)w(z:)dz 11 2c density case
xG~-1(6z)D Sjx(ex+u )vw IIC = { GAt(Ox)ff (I)C \( (z1$)wZ(zv)S(Z )dz || c hazard case.

The density case is independent of n . Indeed, the analysis in Theorem 5.1 gives

0 (X-(d/2^)) R2 for this term uniformly in X. For the hazard case, we have

11C1(s I4' ( ) (r g~(s )V (X )W (T )S. (T )dZ 11 2cII1Gx'(Gx)f( (zT)e
<lJG I.& )+M

C\( ( )V(z)w(z)S(z)dz11 2

+ IIG x-1(ex)f '")eI( )v(x)w(z)[S,(z)-S(z ) dz 1 2c

Again the argument of Theorem 5.1 gives 0 (X{c+d/2m)) R2 for the first term. Writing out the

second term, we have, by manipulations identical to those above

1G x-'(Ox)I' (z2 )e( t( ) ( T )w (z )[S,, (z )-S (T )] d.T 11 2XC
= iI1+' c1[I+2X7xv[-2 {(f x(x )e v>() (z )w (2 )[S. (z )-S(z)zd }2

ul3=p

An analysis of this term gives in k,, X-c +d/2m ) R 2 uniformly in X. Since kR _ 0 by B(i), the

second term is negligible by comparison to the first and the result follows. Q.E.D.

Combining Theorem 5.2 with Theorem A2.1 (which gives stochastic bounds on

II8x - @)O_ll2c) we obtain the following Corollary.

Corotlary 5.3 Under the hypotheses of Theorem 5.2, the sequences d (n ,X), r '(n ,X) and r (n ,X)

have the follotwing behatior uniformly for 1E (0,Xo

(i) d2(n ,X) = n-1'XAc'+d/2m)

(ii) r ' 2(n ,X) =., n -'X-2(c ' +d /" )

(iii) r . n X) =z- n -1,\-2(,, ' +d /", ) X cO-C
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Thus if nlX\2(c+d/m) __ 0 the asymptotic behavior of ,,x and OR>, is the 8ame.

Proof Theorem A2.1 gives (i) while (ii) and (iii) follow from Theorem 5.2. Q.E.D.

Finally we turn to the generalized linear regression model. Much of the technique used in

our next theorem is taken from Theorem A2.2. For this reason and in order to keep the proof

more brief, we shall omit details of arguments which are very similar to those used in Theorem

A2.2.

Theorem 6.4. Let XO be such that Theorem 4.1 holds, and 8uppose {X.: n > 1) is such that

k, ),, « 1 (5.7)

k,2Xd/ << n1 (5.8)

Let d/m < c' < 2-3d/2m, andO < c < c then

(a) 8up IGx-'(6>)(4x - G\(6)x))u ll> S TI(n ,X) where E I T1(n ,X) n< nl1Xc+d/2m).
IIu 12

(b) sup IG -'(Ox)D3l,,#,(X+U )VW|12C < T2(n ,X)R2 where

Illu IIw2< R.211v112, < R2
Illwll, <1

El T2(n,X)l <S -(c+d/2m)

The bounds on the expectations being uniform for X E 1X. ,oXJ

Remark: Assumption C(ii) guarantees 3d /2m < 2-3d /2m, so the assumption on c is not vacu-

ous.

Proof: We begin by sketching the proof of part(a).

Letting G,X(6x)S EDZ= x(Ox)f

=fet (z)X,x(x))(z)Pj")(dz) + 2XWS forSfeXOc

for any u e >X C we have

1 a>G1(e>)(h, - G (Ox))ulluI2I< G1 (o)(1, - G,, >,(9x))u ll>2 (5.9)
+te s d t n-a()(nc, l(eN) - The(or))u 11 22

Here the -second term can be analyzed, as JIGx-'(80)(3yn,ON) - Zd°)l2 inC TermA.,t ir
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G x-(( ( - G x(Ox))u fG2c= 9 fGJ'(6x)t, (z )V '9(,(z )) Ut (z )[Py(R)-Px (dz )IIx"c
jJI
00

S I1+#>C}vl1+2Xyx,J-2

*f OXI! 2)7,X( ) (2 )[Pj")-Px J(d.T )}2

Since E Cd (g X S (R,R1?) R q x ) and c > d /m so u E W (gj,R), we obtain the follow-

ing bound by means of Lemma 4.2 of Cox[9I

t fx' (2)4T(zT,6x(2T))u(2T)[PI )-PxI(dz)I <k| j11,, I W tl I W l[

But, from Lemma A1.2 and A1.3(i), fl&>v | W2 7<1+yx'"/" and this implies, by (5.8), that

Gx-1(6x)(G9 x(6x) - G (6>))u II>2 <k2 2 -c+Sd/2m)IUl>u ,
2

< n -IX<c +dI2m)IlU 11 2

The first term on the r.h.s. of (5.9) is stochastic and to analyze it we use a technique similar

to that in Huber[141, pp. 166167 . Let u and v be unit vectors in 8>c and E>X. respectively.

00 00 00 co

u = , ,V E V Ox, where [i+7yx'l,J4 = X 1.
i'- v* =1 1- 5,1

Now

<u,Gc 6x)(Ix-("X G"c(6x))v>),c = E u &1 l+aycv < ON u G(f)

v P. OxP+,(2 )P;)(d.Tdy )>

00 0011
= S v [I+-,cv v (5.10)

where A is explicitly given by

1 12E E 11+Xc12{l7s¢ ^ U (Ox)G x-(Ox)fj- (z >
k (t(jZ[

('P*k (YiIz,~z)-, z,9( :)~~(zy
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Applying the Cauchy Schwartz ;i,equality to (5.10) gives

<u, -'(Ox)(10X G x(0X)> Xc ),|+\vUv2 017C 0U22.))v~~~> V I/
.

v2,

We will now show that JE[Z2.J < n-1Xc+d/2m) uniformly in X E [X\ ,Xol. And so with

T1(n ,X)= [ AM2. + 2)C+d/ J
/vPe

E I T1(n ,X) | < [nf1X(c+d/2m) + k,2RXc+d/2m)
n - by (5.8),

part(a) is established.

E[%J = X [ . V1+ix',[ -j ±f<Ix,U(Ox)Gx-'(x)tJ(z)>
)J,k,j ,k' =I1

<Otxv, U (OX)CG,-'(8X)fI (2 )> * rlkl' kt (2T ,OX( )) *+0>' t (T )OX0 t' (2 )Pj`kdx)
Summing over v and v' gives the expression

S E [& 2, I f < G x-'(OxfI( (zT ),G x`t(Ox)fIt (.T )> x c

LI/v ,k,VI' ,k' -4

T't'( ex(2 )) *E X2 t 2)X> ,(X)l7¢^]le ")d

The result will follow once it is established that PP) may be replaced by Px in the r.h.s. We

show that the above expression is ; n-1>Cc+d/2M), with error <«n-1X<c+d/2m) and this will

establish the result. Assuming the replacement of the discrete measure, PIR), by the continuous

analogue Px is alright, the n.lX-4c+d/2') bound is obtained by an argument similar to that used

in Theorem A2. The crucial step is to show

f 4VXM (Z )0_V, (Z )r,k,' t' (T POX(' ))OXv k OX0 'i PX(d'T ) < MID(R )l+>l\ol, 11\0

But this follows from B(ii) and D(vi). Thus using this bound, Lemma A1.3(i) and the analysis in

Theorem A2 we can get

[&I 2
1 -'(8X)fj (S ),G -'(8f)(, (z )>x c

I,k,' t' n

'_
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<Etl+axC}l1+2Xaxl-2 . E [I+7y c:
V=1

However, from Lemma Al.l(a), v> t/dI and since c ' > d /2m, the sum over v' is finite.

Hence, by Lemma All(c)

E [a 2, 1< n-'Xc +'/2=

It remains to justify the replacement of Pi") by Px. Employing the integration by parts formula

in Lemma 4.2 of Cox[9| and assumption D(vii), we obtain, by arguments similar to those used for

equation (A2.8) in Theorem A2, that

00

TJk kI (x ,OJ(Z)) * O't(x )XtV,k' (2 )I1+-yxc*-.IPJ")-PxI(dx) I

< K {eup |F,(z)-F(z) J I|r I Cd(gXS(R,R );Rfxfll * 118e I Cd(g;R )I1z

{ f I Dz[l< G (( (),G1G (Ux)fk (*)> x c
O E (0,1)

00

ZS +xv't ( )O'k> '(k)l1+7 c$ [VI)I dx)

where z1X9 has components

Z s[91 I(sA if .=1O

and A E (O,o) is chosen so that X C [-A ,A I"; see Assumption A(i). The integrand in the last

term is written as

00

D lsl< GA,-1 (Ox),f G[,+:A[1(1+2)X [+(1X' I)(> ()X' ()2(2)

oo X

v'X

V&1~~~~I+,ycI[1+2X-xI-211+iy [1D/f[,OXS' (ZT)Os/)I (zT )0t"\. (ZT)0X k (x )

(Again the argument justifying the interchange of D5, and E E parallels that used in Theorem
&A_JV._IM

A2). Utilizing the product rule for differentiation, we have
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f| D/[Xx, ( ) (2 )>>'* (x )+Xe' (X )J(x 1LJ) I dx

= SESE J I l(Ds°lX2, )(Dft2 X )(D/3f.X k)(Ds/P4)xL . )I(x L1) I dx
91+92+#3+94 m9

<K S 11X>, | cl~~O1il11X,
91+#2+93+94t

f D )(Ds Xx)(x I0) I dx

<K( ) E | |W2 +d/2-+tttk^ I W21 21 +d/2+
#1+#2+#3+#4-

. W2q1W |31 - d- IPl )/2* *it W 041 -Ed-I-1 )/2+1c

where e > 0 is arbitrary. The bounds on Xv in this last in equality follow from Sobolev's imbed-

ding theorem, and the bounds on 0,,,, follow from the Cauchy-Schwartz inequality and Sobolev's

theorem on traces ( Eqn. (2), p 97 of Adams|l| or Theorem 4.7.2 of Triebell281 ). Replacing the

Sobolev norms by equivalent e.b norms and using the fact that ,8 E {O,i)d, we see that the last

displayed quantity is

C |1+74 d +1 -f)/2ml + (d -fq /2mt

Now returning to Eqn. (5.11) and using I :t< d and bounds on IlrI CdiI and tIOx 1 Cd11, we

obtain that the l.h.s of (5.11) is

EI- Cl||+X_j |-2[ rv2d+t)/2wt1 (d 4-f)/2m[1X l

Now 7 t (V')2J/d, so with c'>d/m, the E over v' is flnite for some e > 0. Moreover,

since c +d /m <2-d /2m, Lemma AI.l(c) implies that the sum over v is Z ->Cc4d/2m. Hence the

bound in the last equation becomes

< kx X-cX d /2m = kIC -d/m .X-(c+d/2m) «< X(C+d/2') by (5.7)

Thus replacing PP(") by Px is an o (nrl)C<c+d/2n)) approximation, establishing part(a) of the

Theorem.
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We now outline the proof of part(b). For this let u, v, w Ee) , with llU ll 2 < R

Vll2>, < R, and IlWlW2c < 1.

t§ G )7'(Ox)D31, X(OX+u )vw llx2¢ = 11 fGJX-'(Ox).( (Z )*(,k: (V I Z ,OX(Z )+U (tz))
j ,tk,l

*vk (z )w, (z )P)J)(dzdy )II 2c

For convenience let 0>. = ,+u. By straightforward algebra, the Cauchy-Schwartz inequality,

B(ii), and Lemma A1.3(ii), we have that the last quantity is

00

< K { I[ +7y I[ +2X>x.I[-2 flkxi(z) II? I llP2p )dz)

*fll(y I X,x 2P(z)) R xl2P@)(d.dy)

11V I C (X,R 4 12 11W C 1 12

But x v, and w Ee.O. and since c'>d/m, 8xc> 5 Wd(, ), the replacement of P}p)

by Px can be carried out as before to give

ao

< K {E[1+7yc ]J1+2v-yx j2 flkj(z) I I? 2PX(d.)T

* flkY I -T RX(z))x I 12pI i Zdy,
* liv C (X,R0)II2 11W I C(X,R f)II2

This in turn, utilizing the argument in (5.6), is bounded as

< K Ac+d/2m) flII( Iz,Ox(Xz))pj;k.T

*IlV 11 2¢0 IW 11 2

< K >c(c+dI~m)f~jlj,(y lz,0x(z)) I R¢X¢)fz _

Thus, by D(viii), for some R' , depending only on X0 and R, with

T2(n X)=K X(c+d/2t)f Jup llIX(u l:,t) R¢plxkdZdy
tES(R' ,Rf)

El T2(n ,X) < K M 2 (R ' )Xc +d/2)
Which completes the proof of (b). Q.E.D.
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Combining Theorem 5.4 with Theorem A2.2 (which gives bounds on ElIG x - Oxllj2I.) we

obtain the following Corollary.

CoroLary 5.5 Under the hypotheses of Theorem 5.4, the sequences d (n ,X), r (n ,X) and r (n ,X)

have the following behavior for X E [X ,XoI

(i) d~~2(n nIX-{c*+d/2x&

(ii) r'2(n,X) ) n1X-c+d/m)

(iii) ~r 2n ,) n -1,\-2(c ' +d /2n c '-c

Thus if n -1X-2(c +d /2m) _ 0 the asymptotic behavior of ,, x and T.) is the same.

Proof The results are obtained by Markov's inequality. (i) follows from Theorem A2.2, while (ii)

and (iii) follow from Theorem 5.4. Q.E.D.

Remark 1. In order for Corollary 5.5 to be uniform in X E [X,, oj a more careful analysis than

that in Theorem 5.4 or Theorem A2 would be required.
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Al. The Penalty-Informatlon Scale of HIlbert Spaces

Following (5.1), let U be an operator valued map U: e - B (e8,) given by

u (O)C fe (z )h (z,O(z ))d )dz

where h :IR,d XjR -R IUx satisfies

For aU R > 0, there are positive constants M1(R) and M2R ) such that for all x E X,

t ES(R,IO),

M1(R) < u ' h(z,t)u < M(R) (Al.l)

In section 5, we indicated that the U operators, U(B) - D21 , associated with the the penalized

likelihoods or section 2 satisfied the above condition. We now state and prove certain technical

results on the P.1. scale of Hilbert spaces associated with U and the generalized smoothing opera-

tor W - see (2.7). Assumptions A through C are in force throughout. Note that U is an operator

valued map U: - B(0,09). The existence of the e valued integral which defines U(6)( is

easy to establish.

Lemma A1.1 Fiz R >0.

(a) For all 0* E S(R ,C(X;I?)), there exists { ,v=1,2, } C 0 and

{ ,,,: iJ-1,2, ) C [ O,xo) such that

(b) The eigenvalues in part (a) satisfy

asov--oo uniformly in. E S(R,C).

(c) If b >0 and c >0 are such that

b + c <2-d/2m

then
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(l+av)(1+Jv)(1+2X$~~V)-2 p:: > -( +c+d¢11

as X-.0 uniformly in 0, E S(R,C).

Proof. (a) Let 0.0 denote L2(X) equipped with the norm

1

II0 1 eo l={If' (2 )h (z,°. (z ))O(z )PS (dz))2
I

<= , U (e,)> 2>

It follows from (A1.1) and the definition of U(O.) in (2.4) that EK1(R) and K2(R) such thatfor

all 0* E S(R,C),

K1(R )II9 I L2(X;R ' )II < 118 1 0.oII (A1.2)
< K2(R )I01 L2(Z;RI )j , for all 0 E L 2()-

Now let T denote the imbedding (injection operator) of e into 0.0. Note that T is the composi-

tion of the imbedding of e into W' ( see C(ii) ) and the imbedding of Wf' into 0.0, and the

latter is compact by the norm equivalence (A1.2) and the easily checked compactness of the

imbedding of W' into L2. Hence, T is compact, and so T' T is compact.

One easily checks that the adjoint operator T 0.0 -o. 0 is given by

T ' 8 f f' (z )h (X ,O (z ))O(z )P. (dz

and so T T = U(0). The existence of the eigensystem , y. follows from section 3.3 or

Weinberger[311 and the construction in Proposition 2.2 of Cox[8|.

For part (b), let { 0y) and (,I,) be the eigenfunctions and eigenvalues satisfying

f|' zv( )0(z )dz = ,

S (o)fDs*+q :(z)D,' 0M(z)dz = (A1.3)

It follows from (All) that the quadratic forms

B,(O,O) = OUO @

B(O,O) = <9,01 L2(;R'f)>
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{B, O<i <m ) is a normal system (Definition 4.S.S.1 of Triebel[28|); (iii) if d=1 then

B, = d/(d/d )m+; (iv) Assuming bm-1/2 is not an integer, e.b is the closed subspace of Wbm
given by {O E W" : B, e 0 on aX for all i < (b -1)m -1/2), and (A1.4) holds.

Proof. The result for b 0 is immediate from (Al.l). For b 1, it follows from the assump-

tions together with C(ii) and C(iv). For 0 < b < 1, we apply the K-method of interpolation as

defined in Triebel[281 ; see also Cox481. Let

Ks2(u ,') = inf{u2<81,Wel> + <e-e1,U(e, )(e-e1)> e E 0)

K2(U ,) = inf(U2<1,W 1> + lie-el I L 2112 eE 0)

A straightforward calculation with the expansion in terms of O,,'s yields

ao

11911 2_ C (b )jK.2( u ,)U (2 +')du + <e,U(G,)G> (Al.5)
0

forO< b <1, where

c (b) = ffu12b(1+u2ldu}4-
0

Let llllllb2 be given by

111111 = c(b )JK(u O)U 2b+1)du + 11 I L2121(A1.6)
0

Now IlliIb& doesn't depend on O., and is equivalent to W2' norm when b 0,1 by the same

argument as before. For b E (0,1), the 1111116 - norm is obtained by the K-method of interpola-

tion ( or equivalent to one so obtained ), and so also to Wb. norm, as it can be obtained by

applying the K-method to W° =L2 and W' ( see Theorem 4.3.1.1 of Triebel[281 ). From the

b = Ocase of the lemma, we have for all 9E 8

Ki (R )K (K((R)-(Au1 ) v K, (ues) < K R )K (K l(R )-1 u ,0)

Substituting this into (A1.S) and (A1.6) givers

min(I,K,(R 2 < Ilell 2 < maz(I,K2(R )2(1-b))Illelll 2
b 06 b
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which completes the proof of (A1.4).

We only sketch the proof of part (b). One shows first that 0.2 has the indicated form by

an integration by parts (Green's formula) argument combined with duality theory as in Theorem

3.2 of CoxI8I. The boundary operators arise from the multivariate Green's formula as in the

proof of Proposition 2.2 (ii) of Cox|9|. One fills in I<b <2 using the interpolatory theory of

Besov spaces with boundary conditions as in Proposition 3.1 of Cox[|9 or Theorem 3.4 (b) of

Cox{8J. Q.E.D.

In the next result, we collect some useful facts.

LemmaA1.3. Let 6. E S(R,C) and c > 0.

(i) II4|.,II? 1 + -y , for v=1,2,

(ii) G-1 (9o)U(8.)0.> = (1 + 2X7o,)-10.lforv=1,2, andX > 0.

(iii) Let X0> 0 and c < 1, then for aUl E X, e > 0, 1 < j <q, and X E (0,XoJ,

JI -1CX 6 ((2* )|| 2<S K (R P,\ ),\4c 41+,+)d /m )

Proof. Part (i) is immediate from the definitions. The calculation needed to verify (ii) is given

in Coxj8j, equation (3.12). For (iii), we have

JI Gj-1 (6o )(, (z )II 2 (1+7y c)< G)-1 (e )(, (z ),U(6, )0,V>2 (A1.7)

- (1+-y cj)<f (: ),G -1 (6. )U(8. )0&, >2

= ,(1+-y cL)(1+2X7.y)-2< (, (z ),POLv>2

= ((1+ici)(1+2X7yv),2,2L2(2)

The first equation follows from the definition of 1111., the second from self adjointness of

GC1 (6.) as an element of B(0,0) (note the W is self adjoint by C(iii) and an easy calculation

shows U(O.) is self adjoint ), the third from part (ii) above, and the fourth from the definition of

(, (z) as the Riesz representer of evaluation at x of the j'th component of an element of 8.
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Using Sobolev's imbedding theorem, Lemma A1.2, and part (i), we have for any e > 0

0.2L(_z) S 11.V I Wjl+)d/2 112

= K (R )(I1+y 2(I+)d/2m)

which gives

||Gx ( ,( | < K(R )(I+-, c,)(I+-y /2nd)(1+2Xy* )-2

Letting X-.O, the last quantity is

< X-cEl+(t)d/2n+d/2n)

uniformly in 8. E S(R,C), by Lemma A1.1(c). Note that m > 3d/2 in C(ii) guarantees that

c +(1+e)d /2m < 2-d /2m for some e > 0 and all c E [0,11. The result follows from this.

Q.E.D.

Corollary A1.4. The norms IliIxc for 0 < c < 1 are uniformly equivalent for X E 10,XoI, i.c. if

X,X' E jO,XoJ, then 8), =e, , and

KIIIOIlxc .5 11011),# c < K211811Xc

for all U E O>x, where the constants K1, and K2 do not depend on X, c, or 6.
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A2. Rates of Convergence of the Linearized Estimators

The linearized estimators in section 2

= - Ga>X- (e4)ZMx(Ox) (A2.1)

tends to ex as n -oo. Here we derive stochastic bounds on I, x-OxII2for the generalized smooth-

ing estimators discussed in section 2. Our bounds for the linearized log density and log hazard

estimators say JI X_4Xli 2 k2\,.2X.c+d/2m)uniformly for X E 10,XoI. The bound obtained for the

regression case gives EfIGWX-_OXII>2 ; nX\<c+d//2") which is uniform for X E [XR. ,Xol, with some

restrictions on the asymptotic behavior of X,,. Here again norms employed are those associated

with P.1. scale of Hilbert spaces.

Theorem A2.1 Let c be given with

O< c < 2 - d/2m

where p = 8 /m is given in C(v). Then as n -*oo, the linearized log density and hazard estima-

tors introduced in section 2 satisfy

EIIffs- |OxII 2< k2X4c(+d/2m)

uniforrnly in X E [O,Xol . (d =1 for the hazard case).

Proof. For the linearized log density estimator we have

- = Gx-'(x)Z x(Ux) = G Zs(x)[Z(ex) Zx(())-
= G>'(Ux)jE(z ) [PI")-Px (dz)

Taking norms and using Lemma A1.3 (ii) gives

00

-18" 2 = E [1+7x, c|[1+2\7)-y[2 {ff 4z )[PP' )-Px J(dz )}2

Note that E{f(f z)[p~sA) Px(d )}2 = n-'VaroX(X) < n-EJX) n - I> = n

The result follows from this and Lemma Al.l (c). An almost identical argument is used for the

log hazard estimator. Here
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O Ox- -GGx((O )1ZRc40) - ZoOO)i
= -G-1(ex) {tf(Z)e' X( )[Ss (z )-S(z )1dz - f (z )(PI")-Px)(dz)}

G x'(ex)f E( )(P} )-PX )(dz) - G- '(ex)f.e( )e)(Ze[S. (z )-S (z )dT

Thus

EIIO#>, - exIIx2c

Z [1±'Vx 1[+2X7xjI2
v

Va[n ~ x(Xs )l p,11(Xl) + n1 -l f J*(z )c I>$ )l~ ,00(X, )dz}
. .10

The variance in the last expression is

I

< n1E[(4(X)Ij,,l(X))J + n_-(f ,0(z)e'A )dz)2 < n
0

uniformly in X and v by a familiar argument. Q.E.D.

Finally, for the linearized regression estimator we have the following result.

Theorem A2.2 Consider the linearized regression ctimator. Suppose that the sequence {X:

n > 1) isosuch that

k X;d/r << 1 (A2.I)

k,2X,d << n1 (A2.3)

Let c be given with

O<c <p

where p = s/m is given in C(v). Then a* n-oo,

Ell*-nl2I'W Xc¢ h"

uniformly in X E [X. ,XoI-

Proof. From the definitions,

=llex\_#Bllk2c EIIGCj-1 (e) Zs
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EIIG>C1 (0x)[Z3o(Ox) - Zo(OX)JII>2c
El G1 (x)4[(Zno(Ox) - Zno(O)) + (ZR o(x) - Zo(6x))I I>Xc

where Zx(#e) 0 was used at the second step, and

Zs o(e) = EZ"x(e) = f(z) (z,(z ))P}")(dd) + 2XWe

We will show

II G (6x)1Z1d9Ox) - << EI G A1 (86)[Zj0(Ux) - ZR (eX)1I>2 (A2.4)

fJ< GA (Ox)f, (z) GB 1 (ex)(
K, (z Ox(z ),Ox( ))PX (dz)

1n-(C+d/2=)

uniformly in X E [XI ,X01. This will prove the theorem.

Working backwards through (A2.4), we first show the third relation. The calculation used

in (A1.7) can be modified to show that

< G - (Ox)f, (z ),G- (eX)kk (z )>xvk (z )

so the l.h.s. of the third relation in (A2.4) is equal to

n -1E (1 vc,,)( 1+2X-jxj,-2f0tsu(),}zC(2,ex( ),Ox(z))O),Jz)PX ( dz) (A2.5)

Assumption D(iii) guarantees that the integrals are bounded above and below by constant multi-

ples of II¢> I L2(V;I?, )112 with constants that are independent of X E (O,X0J and v. Further, by

D(v), we may replace L2( ;R I) norm by IIxllo and the statement is still valid, including the uni-

formity of the constants, as the norms lII'hIo are uniformly equivalent for X E 10,Xoj by Corollary

A1.4. Since 11I)112= 2, the quantity in (A2.5) is

gzt n (l+ c)(1+2X-x,,)-4 M n -l>,\-c +d/2n

where the latter relation follows from Lemma Al.l (c). This proves the last relation in (A2.4).
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Turning now to the middle relation in (A2.4), a straightforward calculation shows

EIIG -' (Gx)IZ,0(ex) - Zo(j)112 f < G. ( ),G (
j4=k =ml

so it suffices to show that as n -xoo

I f< G> 1' (64)E, (2 ),G _' (X)ft (z )>.C K,t (z 8( ),eX( ))[PPx)-PxJ(dz) (A2.6)
<<(\+d/2n)

uniformly in X E[X,I,Xo. By the integration by parts formula in the proof of Lemma 4.2(i) of

Cox[Ig, the l.h.s. of (A2.6) is

< X I fD/°I< G>-' (ex)4 (.),G, - (G4)e (')>XC Ijk(K,Ox(*),Ox(*))1(z [8) (A2.7)
EE (0,1)d

{Fs (T[J)-F(z[/5)}dz I

where 6 is a multi-index with only zeros and ones, D denotes differentiation w.r.t. 2 ( the dot

appearing in 5 places ), and the derivative is evaluated at z [,I8 with components

if /5 =1
.p A if ,d, =O0

where A E (0,00) is chosen so that X C [-A ,A id ; see Assumption A(i). The distribution func-

tions F. and F are defined in Assumption B(i). By applying the product rule and the ehain rule

for differentiation, one can see that the quantity in (A2.7) is

<K {up lF,,(z )-F(z ) }lic I C d (K X S (R ,R)X S(R,R q );R q x IF (A2.8)
* heX I C (.K;R maz f D.O[< G -1 (ex)f (z ), G{(ex)( (z )> X, (z ) I dz:}

0 E (o,1)d

where K E (O,x0) is independent of X, and R > 0 is chosen so that heOx I CII <R, for all

X E I0,Xol. Now

Ds.< GCX1 (ex)C) (z ),GB-' (ex)Ck (z )>xc = c (z )0xuk (s)

(1+7 c)(1+2X7Xp)-2D/[l&Av (z )vk (z )j
v
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where the interchange of D/# and S will be justified below. Utilizing the proof of Lemma 4.2° in

Cox§lj again, we have

I | D/'xv, ([)'3x1(.)J([p8) I dx < K 2W (J;I?)I12

<KII*LIIIX2b , b =d/m

where Assumption C(ii) and Corollary A1.4 ae used at the last step. Now by Assumptions B(i)

and D(ii), Theorem 4.3 (i) with c > 3d/2m (which implies IiGx I Cd(X;Rf )|I is uniformly

bounded ), and Lemmas A1.3 (i) and Al.l (c), the quantity in (A2.8) is

< K kx (l+%yc)(l+2x\-y4 2(l+7y>/) (A2.9)

k. x-c 3d /2n

In view of (A2.2), this establishes (A2.6), once the claim about interchanging differentiation and

summation is proved. In fact, we have shown that the series of derivatives ( the last expression in

(A2.8) ) is absolutely convergent in L '(X;I?'f ), and thus converges in L '(X;R I) to something.

A standard argument using the mean value theorem and Lebesgue's dominated convergence

theorem can now be applied. ( The series of absolute values of the derivatives is the dominating

function. Note that each 0,x, is in C (X ;R?') since v, E e c W' Cc d by C(ii) and Sobolev's

imbedding theorem.)

Finally we consider the first relation in (A2.4). From Lemma Al.3(ii),

G Xl(8X)(} ( )= < G (eX))f (2 ) U (8x0K)A> O-xt

so that

IG1 (Ox)[Z 0(x) - Z0(0_)IIIs = I fJCX(G ).,(Z)j,(z ,,(Z))[P')-PxJ(dX )IIT2s
- (l+7 c )(l+2X7%,,2(f+' i( )( ,9X(Z))[POX PXI(dx )}2

The argument used in deriving the bound (A2.6) can be adapted to. show
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ff' x>(z )u(z,6( ))!P,R)-PxI(d) I < kn liiv | W2(X;I? )lI

Assumption D(vii) is used here, and the relation is uniform in X,v. When this is substituted into

the previous relation and use is made of C(ii) and Lemma Al.I(c), one obtains

IIGX1 (x)[ZO(Ox) - Zo()X)III> 2 < k82 r(l+7t )(1+2,\-yx)-2(l+?y'")
; k42 X-(C d/2m)

In view of (A2.3), this shows the first expression in (A2.4) is << nlA'c+d/2,), which establishes

(A2.4) in entirety. Q.E.D.
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