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gence of some interesting classes of estimators are worked out in detail. The
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1. Introduction

1.1. Motivation

Suppose T is an operator defined on a space of probability measures P. To estimate T (P)
using data from an unknown element P of P, one can sometimes replace P by an empirical
measure P(*) and compute T (P(* )). However, this straightforward approach is frequently inap-
plicable as T may not be defined on the possible empirical probability measures. Furthermore,
T may not be continuous in any topology in which the empirical P(") converges to P, so that
the small departure of P(*) from P translates into a large departure of T (P(")) from T(P). A

classical example of the former difficulty is density estimation: the empirical distribution does not

! Research partially supported by the National Science Foundation under Grant No. MCS-820-2560.
Research supported by the National Science Foundation under Grant No. MCS-840-3239.



possess a (Lebesgue) density. Nonparametric regression exemplifies both problems. Suppose
(X,Y) have a jointly continuous distribution, and we wish to estimate E(Y | X = z,|. The
corresponding empirical quantity is not even defined unless z, is an observed value of X (which
occurs with probability zero), and even if z, is observed, the corresponding estimate is not con-
sistent. In many scientific problems, the quantity of interest is only indirectly related to the data,
and this can compound matters further. For instance, in retrieval of temperature profiles from

satellite data (see O’Sullivan and Wahba[20]) one is interested in solving an integral equation
R(z)= [k(z,n0(n))dn

where R (z) is upwelling radiation at frequency z, §(r) is the temperature at pressure level x, and
k is a nonlinear function. There are available only “discrete noisy data” (z,Y,), - - - (z,,Y,)

where
R(z)=ElY, | X =5], 1<i<n

Even under the best of conditions of perfect observations, this problem is difficult to solve because
of instabilities that result from numerical errors. The addition of discretization and random noise

makes matters even worse.

This lack of stability in t.lzxe evaluation of T is a form of "ill-posedness”, a notion introduced
by Tikhonov|27]|. Over the last fifty years applied mathematicians have come to appreciate that
a vast collection of the problems encountered by engineers and scientists in such areas as Geophy-
sics(2, 6, 7, 4], Meteorology (25, 24, 30| and Tomography|(5, 29| are ill-posed in this sense. Given
the fact that real data are nearly always subject to random variation (not just rounding error) it

seems natural that statisticians should play a more active role in these problems.

An early technique for obtaining approximate solutions to "ill-posed” problems of the above
type was proposed by Tikhonov[26|. Let 6 be the parameter of interest. Tikhonov’s method,
which is known as regularization, has two components: a functional { which measures how well 6
predicts (matches) the observed data and a functional J which assesses the physical plausibility of

8. These functionals are set up so that smaller values generally correspond to more desirable
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values for 8. G.ven these functionals the method of regularization (MOR) chooses a parameter

value 4 which minimizes an aggregate

((6]data) + NJ(8) X > 0.

Good and Gaskins|13] introduced the method of regularization to statisticians under the
name of ”penalized likelihood estimation”. The functional ! which measures quality of predic-
tions is the “likelihood” term and J is the prior penalty or roughness component. Such estima-

tors have also been proposed in a Bayesian context by Leonard(15, 16].

The purpose of this paper is to provide a framework in which it will be possible to under-
stand the asymptotic behavior of penalized likelihood or method of regularization estimators from
a statistical point of view. Our theory is in the tradition of Cramer’s analysis of the method of
maximum likelihood. This theory is illustrated in the context of generalized smoothing. We

begin by giving a more precise mathematical specification of the penalized likelihood method.
1.2. The Penalized Likellhood Method

Estimation Methodology

We consider three types; of measurement models corresponding to density, hazard, and
regression function estimation. »In each case, the model is at least partially parameterized by the
corresponding function, which is taken to be an unknown element of a Banach space © with norm
[I)ll- Fix the unknown true parameter 8, and suppose (Z, : n=1,2, - - - ) denotes the observa-
tions in a sequence of statistical experiments. Then a penalized likelihood type estimator is

obtained by minimization over © of
Ihx(0) = 1, (Z2,,8) + NJ(6) .

Here, [, (Z, ,6) is referred to as the likelihood term. This could be a negative log likelihood, in
general the only requirement is that smaller values of [,(6) correspond to "models”, 8, which
better fit the observed Z,. J(6) is called the penalty functional ( J : =R ), and smaller

values of J correspond to more plausible values of 8, or, to a Bayesian, values of § with higher
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prior likelihood. The smoothing parameter \ controls the tradeoff of sample versus prior informa-
tion.
We next consider the specification of the likelihood term for three types of observational

models, and afterwards give examples of the penalty functionals.

Measurement Model and Likellthoods
(a) Density Estimation

We observe a random sample X,X,, * * - , X, from a density f, where f = log 6,. Fol-

lowing Silverman[19], the "likelihood” component of the penalized likelihood is
fe"dz - [&(z )P4 Xdz)
X X

where P){") is the empirical distribution of X;,X,, * * - ,X,. It is necessary to assume J(6) =0

whenever 4 is a constant function (Theorem 3.1,[19]).
(b) Hazard Estimation

Assume X,,X,, - - - X, are positive random variables and we observe min(X,,1), the minimum of

X, and 1. This corresponds to a survival experiment with a set time on the length of the experi-

/

ment. The target parameter is §, = logh where A\ = 1F is the hazard function and F is the

cumulative distribution function. Partially following Anderson and Senthilselvan|3], the "likeli-

hood” component of the penalized likelihood is given by
Je"*)S, (z)dz - [o(z)PS"Xdz)
where S, is the émpirical survival function (1-F,). The limiting survival function is denoted
S = 1-F.
(¢) Regression Models

One observes a sample of n random pairs (Xo1,Ya1)(Xa2,Ya2), - * * /(Xan »Yan ) Where the
X,,'s are thought of as covariates and the Y, ’s as responses. The conditional distribution of Y

given X =z is denoted
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Law(Y | X=z)= Py x("|2)

The covariates X,;, - - - ,Xaa need not be truly random, i.e. they may be degenerate random ele-
ments. In fact, we shall treat them as non-random for the regression model and write z,, for the
observed value of X,, . Inferences will proceed conditionally on the observed values of the X, . If

they were random, say s.i.d, then since the distribution of X,

Law (X, )= Py
is not of interest (i.e. is a nuisance parameter), such conditional inference is reasonable and is
justified by the principle of ancillarity, as indicated on pp.33-35 of Cox and Hinkley[10].

Let P§}) denote the joint empirical measure of the (Zps , Y ), 3.e.
PAABXA) = = I(Y,) Issn) . ACY, BCX,
1==]

where I, denotes the indicator function of the set A, and ¥ ( X ) denotes the range of Y,, (

X, ). Similarly let
P;\‘")(B)=l215(zm) ’ Bg_Xv
n 1 =]

denote the marginal empirica.i of the z,’'s. We will assume P}”) approaches a fixed limiting
design measure, Py. Then there is a joint measure Pyy with marginal Py and conditional
Py, x. When (X,,Y,), - - (Xan,Yaa ) are i.i.d. random pairs from Pyxy, we shall refer to the
random design model (RDM). However, the asymptotic theory works better if the z,, are more

uniformly distributed than would be obtained from the RDM.

Suppose that the conditional distribution Py |x(-]|z) is ”partially” specified by a ¢-
dimensional vector §(z ), and © is a space of ¢g-dimensional functions in X. The likelihood for a

single observation at z is {(y,z,8) = p(y | z,6(z)) The penalized likelihood is
lax(8) = [oly | 2,00z )P Ndzy) + N (6)

The true parameter is defined pointwise at z as the minimizer over t € R of

Jolu | 2,6)Py x(dy | 2) .



Some choices for | are discussed next.
(i) Consider the normal additive error model:
Ui = ﬂ(zﬁl ) + €qy ,where

where the €'s are assumed to be i.i.d. normal random random variables with mean zero and con-

stant variance 0% Then the natural choices for the partial parameter and the likelihood are
0(z)=w(z) ; (y,z,0)=[y-8(z)F

Note that the normality assumption is not really needed. This choice of ! is appropriate when-

ever one wishes to estimate 8y(z) = E|Y | X =z].

(ii) If in (i) the variance o*(z) is non-constant but depends smoothly on z as well, then natural

choices would be

6(z) = (p(z ),~logo(z))

Ly .2.6) = ~b(z) + 5™ [y-0(2)]?

Here we have chosen the parameterization 6,z ) = -logo(z ) to avoid awkward positivity con-
straints.

(iii) If the errors in (i) are no longer assumed normal but to have density f , then one would
naturally use

I{(y,z,0) = -logf [y—6(z)

One may wish to replace —logf by a function p as in robust estimation of location; consult

Huber[14] for further details. Again one may incorporate scale estimation as well as was done in

(1i).

(iv) If the response Y is binary ( zero or one) with ”pointwise” success probability
p(z)=PlY=1| X=z] ,

then a natural choice is |

bé(z) = loglp (2)/(1-p (2))] ,



7.
I(y,z,0) = -y8(z) + log(1+¢'())
The estimator will then be a non-parametric logistic regression estimator. Note that the logit
transformation leads to an unconstrained parameter. A probit approach is also acceptable.
(v) If Y is Poisson with mean X(z ), then a nonparametric log-linear Poisson regression estimator
is obtained by setting

6(z) = log\(z)
l(y "z ;0) = —yO(z) + e'(‘)

This and the previous example are both special cases of the generalized linear model as described

in Nelder and McCullagh{18]. Any of the cases presented there may be treated in a similar

manner.

Parameter Spaces and Penalty Functionals

The penalty functional J(6) is often chosen to penalize for "roughness”. Suppose 8 is ¢-
dimensional valued, let a = (a;, - - - ,@;) be a multi-index (d-vector with non-negative integer

co-ordinates), and let

d aa;
Do =[] 2=
)=l 9z, !

be a partial differential operator of order
d
la]l = Y a,
1=l

Let X be a bounded domain in R?. The Sobolev space WE(X ; R) is the collection of R?
valued generalized functions having derivatives of orders < p whose components are in L X).

The norm is

e | w3(Z;R)| = { zI: 1D.%6,(z) | LAX)I?}?
q

|
1<,

INQ
INA

One can define W3 for any real number p 2> O using e.g. interpolation theory ( see Adams|l],
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Cox|8|, or Triebel(28] ), and in all that follows such fractional order Sobolev spaces are allowed,
unless explicitly excluded, although the reader may wish to think of p as an integer for simpli-

city. The spaces W§ are Hilbert spaces when equipped with the inner product (for p an integer)

<8, | Wi> = ? {[D,"ﬂ] (z)l [D;aej (z)) dz
1

INA

|a
1<y

Ife = W2 (X ; R?) then a natural roughness penalty is

q
Jo =YY ¥ _!;[D,"O,(z)]zdz , (1.1)

j=|a|=m

where 6, is the i'th component of & and the order m is prechosen. When ¢ = 1, this
corresponds to the roughness penalty of Cox|9]. The extension to ¢ > 1 presents no difficulty.
When d =1, it is irrelevant whether one takes the integral over X (which is assumed to be a
bounded set) or over all of IR as the solution of the minimization problem is the same. For mul-

tivariate X, integration over all of R ¢ in the penalty is also possible, but we have not yet been

able to adapt the asymptotic theory to this situation.
In general when © is Hilbertian, it is natural to consider penalty functionals of the form
J(6) = <6,Wé>

where W is a positive operator, see Cox(8|. The previously displayed penalty on W3 can be put

in this form.

1.3. Main Asymptotic Results

Our theory relates to the large sample behavior of roots of the penalized likelihood equa-

tions. That is we look at the score operator, Z,,
Z,\(8) = DIyy(6)

and discuss the properties of roots of the equations, Z,, = 0, as n —co. The limiting version of

the score functional is also of interest. This is defined in the regression case as

Z\(8) = [Di(y,z ,0)Pxy(dzdy) + \DJ(8) .
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with analogous expressions for density and hazard estimation.

(Note that both Z, and Z,, are mappings from © into the dual space ©°). The first step in the
analysis is linearization. Conditions are given under which Z, and Z,, have locally unique roots
and it is described how such roots can be approximated by simpler linearized "estimates”. The
linearized estimates are defined in terms of the Hessian of the "continuous” penalized likelihood_.
It may be helpful to think of this as a generalized "information™ operator. For § € ©, the Hessian

G () of the penalized likelihood at 4 is
G\(6) = [D(y,z ,0)Pxy(dzdy) + X\D?J(8)
The first is a continuous linearization. It says that for all X sufficiently small there is a unique

root, 6y, of Zy = 0 in a neighborhood of 8,. Moreover, if d(8),0;) measures the distance between

8, and 6,, then we give conditions under which
d (85,80) = d (61,80 (1 + o (1))

where 6, the linearized ”estimate™, is obtain by a one step linearization of Z,(-) about the true

value 6y
6, = 65— G (80)Z(9) (1.2)
There is a corresponding discrete linearization result. It can be shown that for all X € [X,,\g|, X
sufficiently small, and for all n sufficiently large, with arbitrarily high probability there is a
unique solution, 0:“, to Z,, = 0, in a neighborhood of 8, satisfying
d(8a5,8)) = d(Far,8) (1 + o0, (1))

where the linearized "estimate”, 9,5 is now given by

8ux = 65 - G\ H(8))Zax(6)) - (1.3)
Since

B =80 = (Bar = 6) + (6.~ 60) = (8.2~ 6) + (B - 60)

the linearizations allow one understand the asymptotic behavior of roots of the penalized
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likelihood equations by studying the the asymptotic behavior of much simpler linear "estimates”.
The continuous linearization provides information on the asymptotic bias of the estimator while
the discrete linearization gives information on its asymptotic Qa.ria.bility. The linearization
theorems are presented in section 4. In a Hilbert space setting, where there is a rich spectral
theory, the properties of the linearized "estimates” can be analyzed in detail, and in section 5 this

aspect is worked out for a class of penalized likelihoods described in section 2.

1.4. Some Comments

Although the theory in section 4 implies the asymptotic existence of roots of the penalized
likelihood equations, it does not say what can happen in finite samples. Along these lines, a few

existence results are given in section 3.

The computational aspects of penalized likelihood are not discussed even though this surely
warrants some mention. Often in practical situations it is quite feasible to implement Newton-
type minimization algorithms for this purpose, see Cooley[6], and Neuman and Yakowitz[19].
However, further work needs to be done in this area before we can get a good understanding of

the issues and subtleties involved.

The choice of the smoothing parameter X\ is not discussed here either. It seems that in some
situations it may be possible to come up with suitable versions of cross validation or unbiased risk
estimates, see O'Sullivan et. al.[21] and O'Sullivan and Wahba|20|. However, a proper asymptotic

analysis of this problem is beyond the scope of the present paper.

1.5. Acknowledgment

The authors are indebted to Professors T. Leonard and G. Wahba for bringing this class of

estimators to their attention.
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2. Results for Generalized Smoothing In Sobolev Spaces

In this section, we state the assumptions and asymptotics for the regression, density and
hazard function estimation problems when © is a Sobolev space, and the penalty has the form

J(8) = <8, Wé>.

2.1. Assumptions

Any assumption on the z's applies to all three observational models, but assumptions about

y’'s only pertain to the regression model.

Assumption A. (i) {Zn1,Za2 - " " +Zan} © X C R*Y, where X is a bounded, open, simply con-

nected, nonempty set with C®-boundary ( Definition 8.2.1.2 of Triebelf28] ).
(ii) Yoy, Yag - - -, Yas are random elements taking values in some measurable space Y, and the
joint conditional distribution of Y, 1, Y4 -, Ya, given X, 1=2,,,Xp0=2Zpa * * * ,Xpa =2, fac-
tors as the product of marginal conditional distributions of Y,, given X,, =z,,, i.c.
n
Law (Yo, Va2 - Yan | Xa1=2a1Xa2=Za2 " =" Xon =72, ) = 'I;[glpnx(' | Za ).

Assumptlon B (i) There is a probability measure Py on X such that sf F, and F denote the dis-

tribution functions of Px(") and Py, respectively, then

k, = sup |F,(z)-F(z)| — 0 as n — oo.
teX

(ii) For the density and regression problems, Py has a density [ (z) which satisfies
0<K; S f(z)SK;< > , forall z € X, (2.1)

for some constants K, and K,. For the hazard function problem, (2.1) holds for z € X = [0,1]

and S(1) > 0. When X,,, - - - ,X,s are 8.4.d. as is assumed for density, hazard and the RDM

wol-

regression models, k, is random and k, = O,(n *). In regression with designed z's, the best

one can achieve is k, = O, (n(logn )(¢"V/2). See Davis and Rabinowitz(12], p. 268 fI.

Assumption C. (i) © is a Hilbert space of functions § : X — R with inner product <-,"> and

norm ||*||-
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(ii) For some m > 34 /2,8 = W7 (X ; R ), as sets and they have equivalent norms.
(iii) The penalty functional J(6) = <6,W 6> where W is a bounded linear operator on © which is

self adjoint and nonnegative definite.
(iv) For some K, K »,

K\ll]* < <6,We> + (18 | LAX ; RY)I* < Kl6]]* ,
for ali§ € ©.

(v) The true function parameter 6, is in W3 for some s > 3d /2.

Some further assumptions needed for the regression model, but first some notation. For any
normed linear spaces A and B, let B(A ,B) denote the class of continuous linear operators
equipped with the usual operator norm

HT | B(A,B)||= sup {||Ts | B||:a €S(1,A)}
where for R > 0

S(R,A)={a €A :|la | Al <R}
is the closed, centered ball of radius R in A .

Recall that in the regression problem, the "likelihood” is determined by an M-estimation
functional p: Y XX XR? = R+ Let y: Y XX XR? — R be the gradient, p, of p(y | z,¢)
w.r.t. the variable ¢t. The dot “will be used to denote differentiation w.r.t. the variable . A set
of assumptions regarding ¥ neéd to be specified. These "regularity conditions” are similar to (but
stronger than) those given in Cramer(11]. Loosely speaking, these conditions hold provided
o(y | z,t) is "sufficiently smooth as a function of z and ¢ with derivatives satisfying moment
conditions.” In what follows, we shall use K, K, K, - - - to denote positive finite constants
which may depend on p, d, X, ¢, and Py, and are not necessarily the same in each appearance.
Dependence on other variables in the problem will be explicitly indicated by their inclusion in
parentheses after the constant. Global constants, which are the same in each appearance, will be

denoted by M,,M,, - - -, with the same rules for dependence on the quantities at hand. Let

@(35‘)={r¢_’(v|3o‘)l’nx(“ |z)
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Assumption D (i) Forallz € X, and forallt € R,
Jllvy lz.t) | RY|PPy x(dy |z) = M\(z,t) <
(ii) Let

K(z ,ty,ts) = Cov[¥(Y | 2,60 9(Y | 2,t2) | X=z|
= f[w(ll Iz"l)—i’(zrtl)l W’(” lz-‘z)-i’(zvtz)l' PYIX(d” Iz) ’

then for all R > 0, the below indicated restriction of x satisfies
k€ CXXS(R,R)XS(R,R"); R"™7).
(iii) Forallu € S(1,R?),z € X, t,,t, € S(R,R"7),
0< My(R) < u! k(z,6,,t)u < My(R) < 00
(iv) Forallz € X, w(y | z,t) ezists Py | x(- | ) almost surely for all t € R? and satisfies
[9(u 1 2.0)Py x(dy | 2) = ¥=.t)
(v) Forallz € X, forallR > 0, forallt € S(R,R?), and forall u € S(1,R"),

M(R) < u' ¥z,t)u < M(R)
(vi) Let

fz,t)=Covlp(Y |z,t) | X=2| ,
T (2.8) = [l¥,, (¥ L 2,6) =%y (2,6)] [Bae (v | 2,8) = Bar (2,1)) Py x(dy | z)
Then for all R > 0, 7 satisfies
T€ CHXXS(R,R'); RV*1%1),
(vii) Forallu,v € S(1LR"),z € X, andt € S(R,R"Y),

U, 7 e (2,8)v v < M(R) < 00
1.k, k' wa)

(viii) For all z € X, ¥(y | z,t) ezists Py 1x(- | z)-a.8. forallt € R? and satisfics
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[ eup |lW(y |z.t) | RO>OUPy x(dy |2) < Mo(R) , forall z.
tES(RJRY)

(ix) For all R > 0, the below indicated restriction of ¥ satisfies

veCHXXS(R,R');R") .

Remarks. Only D(ii), D(vii) and D(ix) represent strong departures from Cramer’s assumptions.
These are used to deal with some of the problems that arise from the infinite dimensional parame-
ter. Note that all boundedness requirements on p or ¢ only involve the point-wise parameter ¢ in

bounded subsets of R Y.

2.2. Derlvatives

In this section, we give representations for the derivatives of the penalized likelihood /,, and
related functionals. Only directional (Gateaux) derivatives are used. One of the most useful facts
from the theory of function spaces is Sobolev’s Imbedding Theorem : W3 (X;R ) is a subset
of C"(X;R")ifp > r + d/2, and the injection mapping is in B(W3,C"), i.e.

el cr il <K |le| Wil
for some constant K, 0 < K < oo. quer these conditions, we say W3 is continuously imbed-
dedin C' and write
| wice'
See Theorem 5.4 of Adams|1] ( noting that our assumption of C™ boundary in A (i) implies any
of the cone condit;ions ), or Theorem 4.6.1 (e) of Triebel[28] (note that W] is equal to B by

Remark 2.3.3/4 and Definition 4.2.1 of[28]).

Remarks. (a) From C(ii) and Sobolev’s imbedding theorem, we have
ecc! (2.2)

It follows from this that each of the real valued maps § — ¢,(z) (evaluation of the j’'th com-
ponent of § € © at z € X)) is a bounded linear functional on ©. By the Riesz representation
theorem and C(i), there is for each j, 1 < j < ¢, and each z € X an element £,(z) € O such

that
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0,(z)=<6,&,(z)> , forall 6€O .

When ¢ = 1, this is equivalent to the property of being a reproducing kernel Hilbert space. We

will write

£z) = (&(z) - - & (2)f

as a column vector with components in 6, for each z € X. The transpose is denoted ¢ (z).

This notation is merely for algebraic convenience.

(b) The penalty functional, J(6) = <8, W8>, could be given by

J(8) = LIIL 8(z) | R||%dz

where L : W2 (X;R?) — LAX;R")is a system of ¢ linear differential operators of order m, in
which case W = L *L is a boundary value operator of order 2m obtained from Green’s formula.

See Proposition 2.2(ii) of Cox[9].

(c) The true parameter in the log density and hazard estimation problems is the underlying log
density or hazard of the X;’s. Thus the data are assumed to derive from a model determined by
6o. However for the regression model, the “true” parameter 6, is determined by p and Py |x as
indicated above. If p is obtained by taking the negative log of a (point-wise) likelihood, t.hen‘ we
are not assuming that Py | x(- | z)is in the given parametric model. In this case, 6,(z ) is the
value of the point-wise parameter which minimizes Kullbak-Leibler ~distance” between

Py x(- | z)and the model.

(d) We do not require that 6, € ©. Indeed, © is dense in many function spaces with weaker
norms, so our estimates ( which are in © ) can converge to something which is not as smooth as

the elements of ©.

The penalized likelihood type estimator, 6,,, is obtained by minimization of the penalized
likelihood functional I,, over 8 € 8. Since © is a Hilbert space, it is isomorphic to ©° in a
canonical way, and we identify © with ©° for purposes of calculating Z,,. The forms of Z,, for

the examples we discuss are as follows:
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Log Density: Z,,(0) = [€&(z)e"dz - [&(z)P§"Ndz) + 22W 6
Log Hazard: Z,,(8) = [&(z)e"*)S,(z)dz - [&(z )P4 (dz) + 22 W6

Generalized Linear Regression:  Z,,(8) = [&(z)¥(v | z,0(z )P} dzdy) + 22xWé  (2.2)

2.3. Asymptotic Notation

The following asymptotic notation will be used. If f and g are real valued functions on a

metric space U and ug € U, then

f(u)< g(u) as u — u

means for some K and some neighborhood NV of u,,

<K , forallu €N,

I (v)
g(u)

where the numerator is required to be zero whenever the denominator is zero. If there is an addi-

tional variable v and V' (u ) is a set of values of v for each u, then

!(uyv)sg(u’v) as U = Uy
uniformly in v € V(u ) means

f(u.v)
R R

If f (u,v,w) and ¢ (u,v,w) are random variables on a probability space , then the above means
that for all e > 0 3 K € (0,00) and = IV, a neighborhood of ug, such that

f (u,v w)

>K}<e, forallu €N
g(u,v,w)

P Q:
{we veaupp(u)

The notation
f(u)=g(u) a3 u — U

means f (u) < g(u)and g(u) < f(u).
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Finally,
,(uvv)<<g(u:v) as U — uo ,

uniformly in v € V(u), is taken to mean that for all K > 0

f (u,v;w)

7.0 .0) >K}—0

P Q:
{wea: e,
as 4 — U,

2.4. Linearized "Estimates” and a Summary of Asymptotic Results

The continuous versions of the Z,,'s become important in the asymptotic analysis. For the

examples we discuss these are given by

Log Density: Z,(8) = [é&(z )e!dz - [&(z)Px(dz) + 2xW
Log Hazard: Z,(8) = [£(z)e’®)S(z)dz ~ [&(z)Px(dz) + 2AW§

Generalized Linear Regression: Z,(8) = ff(z )¥(z ,0(z ))Px(dz) + 22 W6 (2.4)

Note that Z,(6) = EZ,,(8) under the RDM, and more generally, Z,,(8) = Z,(8) as n — oo for
fixed A\, 8. Hence, for large samples, 9.“ should be approximately unbiased for 8, where

Z)(6,) =0
The existence of 6, ( for \ sufficiently small ) is established in section 4. Our approximant, 7”,
to 0.,” is obtained by linearization of Z,,(6) about 6,, i.e. by setting

Z,\(8)) + G\(6)6,-0) =0

where
G\(0) =DZ,(6)=U() + W ,

G, :0 — B(9,8) and U(6) € B(6,0) are given by

Log Density: U (f)¢ = [&(z)e’*)(z)dz
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Log Hazard: U (8)s = [€&(z)e'*)(z)S(z)dz
Generalized Linear Regression: U (8)¢ = [ &(z )¥(z,8(z )z )Px(dz) (2.5)
for all ¢ € 8. Thus, the linear approximant is given by
Oax = 6y + G7Y(6,)201(65)
Of course in order to study convergence it is necessary to define "closeness™. It is natural to
use norms for this purpose, and there is a convenient parameterized family of norms ( and associ-
ated Hilbert spaces ) which is determined by the structure of the problem. For the U operators

in (2.5), Section 1 of the Appendix shows that for each X\ sufficiently small there are sequences

{#r, : v=1,2, - - - } of eigenfunctions and {7,,} of eigenvalues which satisfy

<A, U(6)r> = 6, (2.6)

<¢XV1W¢)u> = T 6uu
for all pairs v,u of positive integers, where §,, is Kronecker’s delta. For & > 0 let

© 1
[6llhe = { 2(1+‘7x°u)<9,u(9x)¢xp>2 ¥,
v=t

and let ©,, denote the associated Hilbert space obtained by completing { § € © : ||4]]s < oo }

in ||/|]]ns norm, with inner product
= b
<8,6> = Y, (1+7)<8,U (6,)r,> <, U (6,) 5, >
=)

According to Section 1 of the Appendix, the ©,, norms are uniformly equivalent, provided

0<b <1 (Corollary Al1.4), so it suffices to consider a fixed \, say A = 0. We write

8w =06, , |lllee =1lls » <> =<2>y » W=7 , ¢ =200 (27)

Furthermore, if 0<b <1, then ||}||, is equivalent to W™ -norm (Lemma A1.2). If the penalty is
of the form (1.1), then for 1<) <2 and dm-1/2 not an integer, the ©,, norms are uniformly
equivalent and ©, can be identified as a closed subspace of a Sobolev space W™ satisfying cer-

tain homogeneous boundary conditions, and with a norm equivalent to the Sobolev norm. The
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parameterized collection {6, : b > 0} of Hilbert spaces, determined by W and U, is referred to

as the penalty-information (PI) scale of Hilbert spaces. We now state our main results. For the
density and hazard estimators we have:

Theorem 2.1 Suppose Assumptions A, B, and C hold. Let p = 8 /m where m is given in C(ii)

and 8 in C(v). There is some Ao such that for any b satisfying

0< b <min{2-d/2m ,p ,(p-d/2m)/2} ,
B> = 6:]1F = Op (n~IxE438/2m)) (2.8)
185 - Goll# < N8 (2.9)

uniformly for X € (0,\o|. Moreover if, for some ¢>min(0,b -d /2m ), A\, is a sequence such that

nem/3d) o )\ << 1
then for \ = \,,

Bax ~ 0as]|2 << n-InHO+E/2m) (2.10)

Proof: Theorem A2.1 of the appendix gives (2.8). Let

¢’ =€+ d/2m

for some € such that
b < ¢’ <p.
The existence of ¢ * is guaranteed by C(v). From Theorems 5.1 and 4.1, A\, exists and we have
116x — 6|2 =~ AET-0) \(p=c®) . \(p-D)
proving (2.9). Corollary 5.3 and Theorem 4.2 imply

[y - é,x||, m {nINHTH/M)N\(C )Y L Iy e+ f2m)
= {n"I\NAHd/2m)} .yl (b +d/2m)

<< piz-(d+d/2m)

provided X € [\, ,Ao]. Q.E.D.
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The optimal upper bound on the rate of convergence is obtained by equating the asymptotic ord-

ers of the variance and bias. The asymptotic behavior of these quantities is given in (2.8) and

(2.9). Equating, we find that the optimal rate of convergence applies if

X’l‘ —_— n-zm/(zmp"'d)
and the resulting rate of convergence of the penalized likelihood estimators is

100 - 8l = 0, (n-2mo-4)/ams 40

The conditions under which X, satisfies n(34/™) << A\ ! << 1 for b < d/2m +e < p, can be

worked out on a case by case basis. For example if b <d /2m then we can let ¢ be arbitrarily

small, and the optimal rate is covered provided
d < mp

which is guaranteed by C(v).

For the regression case we have:

Theorem 2.2 Suppose Assumptions A, B, C, and D hold. Let p = 3 /m where m is given in

Cfii) and 8 in C(v). Letd satisfy
0< b <min{2-d/2m ,p ,(p-d/2m)/2} .
Suppose A = M\, 18 a deterministic sequence such that for some ¢>0,
max{ Er/4n ™/ 2M (- /3d) ) o\ << 1

where k, 18 given in assumption B. Then
[Bas = Omrllf << nA{E+4/2m)
Ellfar - G| = n-ix0+4/2m)

16x - 6ol|# < X -0

(2.11)

(2.12)

(2.13)

(2.14)

Proof: Theorem A2.2 of the appendix gives (2.13). For the other two relations, we need to intro-
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duce an auxiliary norm. Let

c'=¢€¢+d/m

where ¢>0 is chosen so that

Note that such a ¢’ exists by Assumption C(v) and our requirements on b. It follows from

Theorem 4.1 and 5.1 that
1165 = 6ol|# < NI A=) = \(-0)
which proves (2.14). Theorem 4.2 and Corollary 5.5 imply
”F'x _ 9ux||02 << {n—lx-ﬂc‘-l—d/zm)x(c’—b)} . {n-lx-(c’-H/‘Zm)}
<< {"—lx—ﬂcﬂd/‘.’m)} . {n—lx-(bi-d/zm)}
<< noIN(bHe/2m)
which is (2.12). Q.E.D.

Again, using these results, we can obtain information about convergence rates. Note that
(2.13) gives the order of the asymptotic variance and (2.14) gives an upper bound on the order of
the asymptotic bias. The optimal upper bound on the convergence rate is obtained by setting

these equal. The value of A\ so obtained is
A A n2m/ame+d) (2.15)
which results in
100y - Boll# < noom o=t amr )

It remains to be seen if this convergence rate satisfies (2.11). To this end, we must specify k,. In
what follows, ¢ denotes an arbitrarily small positive quantity, not necessarily the same in each
appearance. According to results in numerical integration (e.g. Davis and Rabinowitz|12], p. 268

f.), we have

ky > (logn )¢ Vgt > gt



.99 .
and the lower bound is achievable. With this estimate on the "discrepancy” k,, one obtains that
n{cm/44) is the dominant term on the L.h.s. of (2.11), and that the X\ sequence in (2.15) satisfies
(2.11) provided

mp > 5d/2 . ’ (2.16)

One will typically believe p > 1, so we see that a rather stringent lower bound on m is required

for our theory to cover the optimal convergence rate. We conjecture that this lower bound can be

reduced considerably.
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3. Existence of Minimlizers of the General Penalized Likellthoods

The general penalized likelihood, defined on a Banach space ©® with norm ||-||, is written as

L(8) = [U(y,z.0)PiNdzdy) + N (8) (3.1)
where { : Y XXX =+ Rt and J:8 - R* For a.rbit.nky "likelihood” functional, !, and
penalty functional, J, the existence of a minimizer of (3.1) is difficult to check. In large samples
and for A not too big the results in section 4 demonstrate that, with increasing probability, there
exist locally unique roots of the penalized likelihood equations (Dl,, = 0 ). If the penalized likeli-
hood is convex then in large samples, with increasing probability, it will have a unique minimizer.
However, this is still an asymptotic result which does not provide useful information for what
might happen in small samples. We now present some results on the existence of minimizers in

the finite sample situation.

From classical optimization theory Luenberger(17] we know that if f is a weakly lower
semi-continuous functional and for some K the set {f < K} is non-empty and bounded, then
one is guaranteed, the existence of at least one minimizer of f . Unfortunately, for penalized
likelihood functionals, the boundedness condition is difficult to check in practice and a simpler
condition is desirable. Intuitively, one would hope that the eflect of the penalty/prior ought to be
to improve the identifibility of the parameter. Thus if the estimator existed for some )\ then for
any X > Ao the corresponding penalized likelihood estimator should also exist. Along these lines

we have the following result.
Theorem 3.1 Suppose that for all \, I, 18 weakly lower semi-continuous and that for some A\ the
sets, {I, o S K }, are bounded for all K. Then for all A\ > X\, I, has a minimizer.
Proof: Given N\ > )\o, choose 6, € ® and K such that [,,(8,) £ K and {{, r < K}, is non-
empty.

Since X > Xoand J(8) 20, {l,» £ K}, € {l.n, < K}, and as the latter set is bounded
the existence of the minimizer of {,, follows. Q.E.D.

A more interesting possibility, raised by Silverman|23], is the following. Consider
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@, ={6:7(8)=0}
noting that the minimization of the “likelihood” part of [,,, fl(y,z,O)P},’})(dzdy ), over 8,

corresponds to minimizing /,, with A\ = oo, one asks, when does the existence of a minimizer of
fl(y ,z ,G)P‘\‘;)(dzdy ) over By guarantee the existence of a minimizer of I, for 0 < A\ < co. The
answer to this question in, at least, a Hilbert space setting is provided by the following result.
Theorem 3.2 Let © be a Hilbert space and suppose Og is a linear subspace of © with P being the
projection map onto the orthogonal complement of Oy - OJ°'? say. Suppose

(i) J is weakly lower semi-continuous and J(6) = constant ||P 6|| for all 6 € ©F°"”

(i) fl(y.=z ,0)P43)(dzdy ) is weakly continuous and convez on ©.

Then whenever 5! minimizer, éo of fl(y .2 ,0)P{3)dzdy ) in ©,, the penalized likelihood estimator
ezists for 0 < XA < oo.

Proof: Let 0 < A\ < oo be given and let 6, € 8. If B = {{,, < ,.(6,) } is bounded then we

are done ( by the weak lower semi-continuity of /,,). Suppose B is unbounded, then 3 {6, }

C B such that ||6, || — o0 and { {,,(8;) } is bounded.

Obviously, by (i), { ||P(6:)l] } must be bounded so it must be that ||(/-P)8;|| = oo as

k — oco. However

1 1 1
0855(’-”)03 =?03 +-2—(—P0t)

and [I(y,z,6)P47)dzdy) is convex so we have

[1(v,2 0OP dzdy) S £ [1(y.2 80P Ndzdy) + % [1(y 2 (P 6, )P dzdy )

and since fl (v, ,0)P,8'r’(dzdy) is convex and has a wunique minimizer in ©,,
Ji(y ,2,00)Pyp)(dzdy) — oo as k — co. But this implies, since Ji(y.z )P {3 ) (dzdy) is we-akly
continuous and { ||P (8;)l| } is bounded, that fI(y,z,8,)P)p)(dzdy) — co as k — co. Contrad-
icting the definition of { 8, }. Q.E.D.

Remark: One can relax the convexity condition to quasi-convexity, provided the existence of a

unique minimizer of [ ((y 2 ,0)P\{})Xdzdy) over ©, guarantees that the sets {
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8 €O,: [I(y,z,0)P¥3) dzdy) < K } are bounded for all K.
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4. Linearization of Roots of Penalized Likellhood-Type Equations

Recall, from equation (1.2), that in the general case
0o = argemin{fl (y,z,0)Pxy(dzdy)}

So with differentiability,

Zoby) =0

As we indicated in section 1 there are two general linearization theorems; a continuous one and a
discrete one. To describe these results in detail we need to introduce some further technical
machinery. Firstly, let ||:]|». be a family of norms, indexed by X\ and ¢, on ©. These norms are
used to measure convergence of estimators. The Banach space obtained by completing © under
the norm ||-||,. is denoted ©,,. For notational convenience we will often drop the X\ subscript.
The linearization theorems below depend on applying a particular fixed-point theorem. Now it
will turn out that special conditions have to be placed on the norm in order that this fixed-point
property be obtained - see section 5. However, once the fixed-point property holds in a particular
norm information about the behavior of the linearization in a variety of (typically weaker) norms
can be read off. For this reason, the results in this section are always stated for a pair of norms,

lIll,.. and |||l... The fixed-point property is established in the ¢ ‘-norm while the ¢-norm

results give the behavior of the linearization in norms of more direct interest.

Continuous Linearization

Let
b(N) = |18 - 6oll,« = IG " (80)(Z1(60) - ZolbDI, . = 1G (o) NDI (Bl (4.1)
and for some admissible ¢ and ¢* and R > 0, define constants

K;(\R)= 4e s ) [1G7Y(00)D *\(60+01)0204ll ..
hohESED )

and
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G Y(80)D 35 (80+ PR
éaeg'!(‘leex‘.) [1G»7H(80)D 1 5(80+ ¢1) P24

KA\R) =

where D3,,(8) = fD’l(y,z,O)P,\‘;)(dzdy) + A\D3J(6). (We assume that { and J are 3 times

differentiable w.r.t 6).
The hypothesis for the continuous linearization theorem concern the behavior of these constants

as X approaches zero. Let r *()\), and r()\) be sequences such that

Ki(nz(N\) =r*'(N)

KNz ()) = r()) (4.2)
for z (M) = b(N).
Theorem 4.1 Let ¢ and c¢* be given. Suppose lxinzr *(N) = 0, then we can find constants K,, K
and N, such that, for ali X € [0\], ! ¢, € 5(-;-1{0» (A\),©,,.) such that if 6, = ¢ + 6, then
Z,(6,) =0, and

18, - 6ll,. S K r*(\) 5 ())

16, - 6:llc < K r(x) 8 (N)
where 6)‘ = 00 - G)“I(OX)Z)‘(%).
Proof. Consider the mapping, Fy, on © given by

Fy\(¢) = ¢ - G, (8;) Z,\(6o+0)
1

21(0 b(X\) . The conclu-

By definition of b (X\), 5 Ko such that for all X\ < X, |[6x - 6]l <
sions of the theorem will follow once we have established that F', is a contraction on the closed
ball S(%Kob (7),8, .) for all X sufficiently small.

To show that F, maps the ball into itself, we consider [|F)(¢)l,. for

€ s%xob (A).8, ).
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IFA(BNI, .« = lIFx(#) - (Br-00) + (Br—bo)ll. .
< |¢ - G (80)Z (60 +¢) + Gx_l(ao)zx(oo)”co + |16, - boll, « '

while for the contraction property, we look at [1F(¢1) - Fx(¢2)“5- for

b8 € S(FKob(1),8,,.),

F(81) - Fa(82ll,« = 181 - 82 = Gx7(80)[Z(80+81)-Z 1 (60+ 82, -

Applying the mean value theorem, for any continuous linear functional f , = ¢° between ¢ and

the origin such that

[ (6 - G\7Y(60)[Z1(80+8) - Z:(80)]) = 1 (¢ ~ G\ (00)|DZ\(80)0 + %Dzz)\(90+¢‘)¢¢])
=f (%G \80)D3\(00+0°)¢9) since DZ, = G,

Thus

| £ (8- G700 2500+ 8) = Zx(00)) | = | 1 (3G (0)D*x(00+6")69) |

Taking the supremum over functionals of unit norm we have

e - G2 (60)| Zx(00+¢) — Z2(8o)lll,« = sup ||—;'Gx—l(9o)D x(60+9° )20,
¢° €Llog)
where L [0,6] = {t¢ | t €[0,1] }. Hence, by definition of K3
1.,...
IFAON,+ < {5KZOWKb (V) + 3} Ko b (M)
SHK P )+ 3} Kob ()

Expanding Z,(6y+¢;) — Z\(6p+@2), an analogous argument gives

IF(81) - Fa(@a)ll, < sup  |IGx7Y(6:)D*5\(86+8° )" (:1-02), .
0 €Lye])

¢ ¢ LIOJ”I
S {K2(\Ko 8(N)} 161 - ¢l .

SAK (M} 161 - ¢l

Thus, since r *(\) — 0, there is some )\o such that the terms in brackets are less than one for all

A < Xo. Hence, for all A < Xy, F, is a contraction on S(%—Kob (>),8,,.)- and so, by Theorem

9.23 of Rudin|22|, F, has a unique fixed point, ¢,, in S(-;-Kob (2),8,..). It follows that
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. . . . 1 -
8, = 6o + ¢, is the unique solution to Z, = 0 in S(?Kob ()\),GM.). By definition of 6,

8 - 6, = F($n) - G17(86)Z1(60)
= Fi($n) - F1(0)
Thus

118y - &:ll,. < IFx(#) - Fr(0)ll,.
<K r'N)bs(N)

Using the definition of K, and r()\), possibly altering the choice of the generic constant K and

reducing Ao, we can also guarantee that
6s-6ll. <K r(M)b(2) ,

forall A < X\oo Q.E.D.

Discrete Linearization

The existence of 8, for all X € [0,)\o] allows us to describe a discrete analogue of Theorem

4.1. For A < X\, let the sample Hessian operator at 4, be denoted:

I, = [D¥U(y,z,6,)P})dzdy) + \D2J(8,)

For some admissible ¢ and ¢*, let

Ki(nX) = ve .s!(‘i?en .)IIG{‘(EX)(I,)‘ - Gy\(8:\))¢ll, .

K‘; (n ,XyR ) = 4€ g'(‘lpiek ) "G)‘—I(OX)DSI, )‘(0)‘+¢1)¢2¢3”c. ,
‘l' ‘26 S(R'ex‘.)
and
_ ~1 -
Ky\(n \)= ‘e g(“{ek.)”("x (6,)(In» - G(8)))¢ll.
Kyn \R)= sup 1G\7(6:)D 3 \(05+01)d204ll.

‘;G S(l,ek a)

0. 62ES5(RS )

where D%,,(8) = [D3(y,z ,0)Py3)dzdy) + \D3J(6).
The assumption for the discrete linearization depends on the asymptotic behavior of these
constants. Roughly speaking, we require that the sample Hessian operator, I,,, converges to the

limiting Hessian operator, G,(6,), in an appropriate manner and that [ and J are sufficiently
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smooth. Let d(n,\), r°(n,\), and r(n,) be (non-random) sequences such that for all
A € [X” vXO]

ar - 6ll,. = 0, (d(n\) (43)
K{(n))+ KZ(nX z(n,\) = 0,(r’(n,\)
K,n X))+ Kyn X \z(n,\) = 0,(r(n,\)) whenever z(n,\) = d(n ).

With conditions on the behavior of these quantities, we have a discrete linearization theorem.

Theorem 4.2 Let ¢ and c* be given. Suppose {\,} is a such that r*(n,\) = 0 ag n — oo for

any sequence of X '8 in [\, ,Xo|]. Consider the event E(n ,\) given by

E(n,\): 3! solution to Zar = 0 8.y = Oy + u» » $ur € S(—;-Kod(n )8, ..),
satisfying |16, - Fusll,. < K r*(n2) d(n ),

and ||0,y - Gsll. < K r(n,))d(n,)),

then for all 6 > 0 we can find n, and constants K, and K such that this event occurs with proba-
bility > 1-6, for alln > ng and X € [N\, )|

Proof. The argument amounts to a probabilistic version of the proof of Theorem 4.1. Since
[8ax = &ll,» = O,(d(n,))), for some K, the event E' (n ,\):|[8,5 -6\|,. < —;—KO d(n )
occurs with probability > 1-6/3 for all n > ngand X € [\, )]

Consider the mapping F,, : © — O given by

Fox(¢) = ¢ - G\7(8))Z,5(00+0)
The existence and uniqueness of 0?,,) will follow once we have established that, for n sufficiently

large and X\ € [\, ,\q|, with arbitrarily high probability, F,, is a contraction on the closed ball

1
S(3Kod(n 28, ,.)
To show that F,, maps the ball into itself, we consider ||F,,(¢)|| . for ¢ € S(%Kod(n N8O, ..),

Fax(®)ll,« = IIFax(8) = (Bar-05) + (Bur-0)II, .
< 116 - Gy 6)Zn(0r+9) + G Y IZG(BI,« + |1Fnr - 6], «
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While  for  the contraction  property, we look at |[[F,\(¢)) - Fax(¢2)l|,. for
1
$1,42 € S(—2-Kod(n )6, . .),

HFas(81) = Fax(82ll,e = [161 - 82— G276 [Zan(65+ b1 )-Znr(6r+ )l

Applying the mean value theorem as in Theorem 4.1, for any continuous linear functional f, 5

¢°® between ¢ and the origin such that

I (¢ = G\U B[ Zar(0r+0) = Zar(61)) = [ (¢ ~ G,7Y6))|DZ,1(6,)8 + %Dzznx(9x+¢')¢¢])

Since Z”x = Dl,.)‘ and DZ,, x(ox) = I.x,

= 1 (GMB)IGNB) — Lual#) - £ (5Gx(6,)D%,5(01+4° )69)
i.e.

| £ (8- G N O)Zan(66+0) - Zon(0)]) ] < |7 (GH O ax - Ga(B)O)| + | f (%Gx'l(ox)ps‘ux(ox'*'w)¢¢)|

Taking the supremum over functionals of unit norm, we obtain

“an(¢)”5. < G\ M0\ Iax - Gx-l(ex))¢”c’ + L sup ||G\7Y(6,)D%, NGSABET- | S ‘I'Ko d(n )
24° eLpoy] ¢ 2 '

A similar expansion of Z,,(6\+¢1) — Z,(6r+@2) yields

Fax(81) = Fax(82)ll,. S [IGA7(6:)Inx = G (6\))(S1-82)]l, -

+ sup G H(6:)D %, 5 (8:+0°* )8 (61-92)ll,
¢ € Ll9)

‘ ‘uo € LP.‘“]
Hence by definition of K| and K; on the event E' (n ,)\) we have

IFas(@)l,« S UKi(n M)+ 3K3(n XK d(nN)} + 3] Ko d(n )

and

1Far(¢1) = Far(82)ll,. < {Ki(n.\) + K3(n \Kod(n,\)}|l¢1- ¢l

The terms in brackets can be made less than a constant times r *(n ,\) plus % and a constant
times r’(n,\), respectively, with probability > 1-§/3 for n sufficiently large. Thus, since
r*(nX\) — O, there is some nqsuch that for all n > ngand A € |\, )| the event:
1
IFax(O)ll.. < Kod(n,)) foralh ¢ € S(5Kod(n,))0,.) (4.4)

IFax(81) = Fax($2ll,e < K r*(n\) |61~ &ll,. Jfor ol ¢,,¢; € S(—;’Kod(" A8, ..)
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where K r*(n ,\) < %,

occurs with probability > 1-26/3. On these events, F,, is a contraction mapping on the ball

S(%Kod(n )8, ,.), and so, again by Theorem 9.23 of Rudin|22|, F,, has a unique fixed point,

¢‘S,,x in S(—;—Kod(n 2),0, ..). Letting é“ =6, + é,,x, we have Z,,x(é,,x) = 0. Moreover, since

0,) = 6, — G17Y(6,)Z,1(6)), we have

160 - B, sl e = 11Gx7(62) G \(62)(04 -8,
= [IG\ (B[ GA(6:)8x - GA(6:)0r + Zur (B, .
= |IF3(#a>) - Fax(0)l], .

< Kr'(nX)Kyd(n,))

Similarly,

||9ux - ank”c = “R-x(‘ﬁn) - an(o)llc
l -
S {Kl("’)\) + ;KZ("vX:KO d("r)‘))}”%x"cc ’
and we can choose n, larger, if necessary, and guarantee that, for n > ng, and XA € [\, )|, the

term in brackets is less than a constant times r (n ,\) with probability > 1-6/3 i.e.

< K r(n)\) Kod(n,\)
Combining the event upon which this occurs with the event in (4.2), we have that 5 n, and con-

stants Ko and K such that for all n > ngand X\ € [\, ,)\o] the event E(n ,\) occurs with proba-

bility > 1-6. Q.E.D.
Straightforward modification to the argument in Theorem 4.2 can be used to prove the following:
Extenslons.

(a) If the asymptotic orders of magnitude in (4.3) are uniform for A € [\, ,\o|, then Theorem 4.2

can be strengthened accordingly. In this case, kJ E(n ,\) has arbitrarily high probability for
€ Py

n large enough.
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(b) If the asymptotic orders of magnitude in (4.3) are almost sure, not just stochastic, then it fol-

lows that | E (m X)) will have arbitrarily high probability for n large enough. This, in turn,

m>n

can be strengthened, as in (a), provided the asymptotic orders of magnitude are uniform for

A 6 lxn ’XOI‘
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5. Application to Generalized Smoothing

The hypotheses of linearization theorems in section 4 will now be shown to hold in the gen-
eralized smoothing context of section 2. Norms, II'llnc, associated with the penalty-information
scale of Hilbert spaces, given in (2.6) are used. Appendix 1 describes various technical properties
of these norms and we will make repeated use of these properties in the sequel. Having esta-

blished the existence of a valid linearization in some norm ||-||M., the results will be used to

derive information on the limiting behavior of the linearization in (weaker) norms, ||:||., for

0 < ¢ < ¢*. Assumption A through D are in force throughout this section.

We begin with the continuous linearization. For any of the generalized smoothing estima-
tors discussed in section 2, the limiting behavior of the constants b (\) and r()\) in (4.1) and (4.2),
can be easily described. Suppose the continuous version of the penalized likelihood Iy is such that

the U operator (U (8) = D?2l4(8) ), is given by
U(8)¢ = f{' (2)h(z,6(z))e(z )dz (5.1)
where A : R4 XIR?Y — R *™7 satisfies

(h.1) For ail R > 0, there are positive constants M (R ) and M,(R ) such that for all z € X,

t ES(R,R"),andu € R with||lu | R]| =1,

MR)< u' h(z,t)u < MAR)

(h.2) & is differentiable with respect to t and let h(z,t) denote the tensor a—h%-zf‘-l For each
R > 0, there is a positive constant My(R ) such that fort € S(R,R7),

sup | hyi(z.t)| < Ms(R)

140148,

A quick examination shows that for the generalized smoothing models A becomes:

Log Density Estimation: h(z,t) = e’ ; Log Hazard Estimation: h(z,t) = ¢’ S(z) ;

while for Generalized Linear Regression

h(z,t)=Wz,t) f(z) ,and A(z,t)=Wz,t)f(z) . (5.2)
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In all cases h satisfies conditions (h.1) and (h.2): The density case is trivial, use B(ii) for the
hazard case, and in the regression situation B(ii) and D(v) imply (h.1) while B(ii) and D(viii) give
(h.2). Using (h.1) Appendix 1 gives results concerning the norms associated with the P.I. scale of

Hilbert spaces derived from U. Utilizing these norms we have the following theorem.

Theorem 5.1 Let I, be such that U is given in (5.1). Ifd /2m < ¢* < (28-d)/4m where s is

given in C(v), then for all0 < ¢ < ¢’ the constants in (4.1) and (4.2) have the following behavior

as X — 0.
(i) b(N) == \N—")2 where p =3 /m.
(ii) r(\) << NET-2 as N = 0.

Remark: By C(v) ¢ /m >3d /2m, so there exists ¢ * satisfying the hypothesis of the theorem.
Proof:
35N = 118 - 8ol = l160 — Gx(80)U (0)6oll,Z. - (53)
so it follows directly from Theorem 2.3 (c) of Cox|8] that
b2(\) < K \P=¢°)
for some K and all \ sufficiently small.

For part(ii), we have D3,(6p+u Jvw = 0(0°+u Jvw where

U@) =X 3 B [& (@) (z.0)E,(z)6 (2 )dz. (5.4)

tam] ju=]l k=)

But the fact that ¢* > d /2m implies e,..C C(X ;AR ?), by Sobolev’'s imbedding theorem and

Lemma A1.2. Hence, if X is sufficiently small, ¢ € S(R 18, ,+) implies
lle | CX;RIISKR
So, for any p - 6o+u with |lu]|].. < R and z € X, we have, by (h.2),

wup | hiu(z,0(2))| < MAR" ) (5.5)

LEY
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where R’ depends on 8, and R . It follows that

G (Bo)U (8)vw || (5.6)
= Y+19) A% 3 B <G @) 6(2)hye(z,0(2) v, (2)wy (2 )dz, U (8)8,> 2

t=x] =]k ==l
= Y (1+1))(1+2x3,)2 - { Zk””' (2)he (2,8(2))v, (2w (2 )dz )2
< Y a+0)0+2) 2 - {e?fllelz) | R4z}
MR )K |lv | CX.R)? |lw | CX.R")I?}

SKR)|lv | CXRYP lw | CX.ROIPXA+1))(1+20,)7 .

Here, the second equality follows from Lemma A1.3 (ii), the third relation from Cauchy-Schwartz
inequality (5.5), and the fourth from Lemma A1.2 with b = 0, and the fact that ||¢,||§ = 2 for
all v=1,2, - - -. Thus, if v € S(R,8,,.) and w € §(1,8,,.), by Sobolev’s imbedding theorem
and the fact that ¢* > d /2m, the sup-norms of v and w can be bounded by constant multiples

of R and 1 respectively. Thus for such u, v and w, by Lemma Al.1(c)
1Gx Y (80)D ¥ (b0t u Jow ||Z < K (R) Z{c+a/2m)
and so for A < X, from part(i),

[r (VI < K Ao=e) pAetdfam)
where K depends on 8, and \o. However, since 2c* < o /m - d/2m, 6 A\?~2"~4/2m ] and so
[r (V)] << N*-9). Q.E.D.
For the discrete linearization we must analyze the constants given in (4.3). Results for the
density and hazard estimators are given in the next theorem. Theorem 5.4 tackles the regression

case.

Theorem 5.2. Consider the log density and hazard estimators. Let Mo be such that Theorem 4.1

holds. Ifd /2m < ¢*® < 2-3d/2m then for0 < ¢ < ¢*® we have

(a) sup  [1Gx7H(6\)Uax - GA(B\)u |l < T(n ) and

""”:o -}
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(b) sup 2||G{‘(0))Dsl,.x(0x+u Jow || < Ton N)R?
R

2 < R? 2 <
Hulll e S BEIVIG o <
ol 2, <1

density case

0
where Ty(n \) = { 0, (k 2\ e +d/2m) hazard case

o (A (e+df2m)) density case

and  Ty(n ) = { 0, (N +d/2m)) hazard case

All relations being uniform in X for A € {0,)].

Remark: Assumption C(ii) guarantees d /2m < 2-3d /2m, so the assumption on ¢ * is not vacu-

ous.

Proof: With » € §(1,8, .), we have

density case

G\ 0 )Iax - G(B\))y = G0, [ €(= )"y (2 )|S, (2 )-8 (z)]dz hazard case

In the hazard case,

NG 6) [&(z e ™ u(2)[S,s (2)-S (2)]dz |12

= D 1+951< Gy U8 [ €z )e " u (2[5, (2 )-8 (2 )]dz, U (6,)y, >

vl

= 3 11+ D02 {2 )e "u(z)[S, (2)-5 (2)]dz }?
v=m)

the latter relation comes from Lemma A1l.3(ii). For A < )g, 6, is bounded in sup-norm, and

¢’ > d/2m so by Lemma Al2, O, ., C C(X,R) Hence the term in brackets can be

bounded as

| fedz)e™u(2)(Su(2)-S(2)ldz |2 S eup | Fulz)-F(2)] %1l | CX.RI® [¢i=)dz

= k2 ||u |l
By Lemma A1.3(i), |[|¢, | Lo(X,R)||2~ 1 uniformly in X and v. It follows that

sup ‘||G;*(o,)fe(z)e'*“’u (2)S\ (z)-S(2)]dz ||2 < k.2 fi [14+755)[1+ 235, ] 2

Il ”:‘ o =
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- k2 N +d/2m) by Al.1{c) .

Since the relation is uniform in X for X € [0,)\¢], this proves the first part of the theorem. For the

second part welet u, v € S(R,8,,.)and w € $(1,8, .),

, .
||G;‘(ox)f£' (z)e NEHa(e), (z)w(z)dz||2 _ density case

G, Y8,)D 3, (6 +u )vw |2 =
NG (6:)D (B4 u Jow |13 NGO [€ (2)e ™y (2w (2)S,(2)dz |2 hazard case.

The density case is independent of n. Indeed, the analysis in Theorem 5.1 gives

O (A{¢+¢/2)) R2 for this term uniformly in \. For the hazard case, we have

NG H8) [ € (2)e "Dy (2)w(z)s,(2)dz |12
<G B)fE (2)e "D v (2)w(z)s(2)dz |12
+ 116318 [€ (2)e "y (2)w(2)[S, (z)-5(2)]dz ||12

Again the argument of Theorem 5.1 gives O (\{¢+4/2%)) R2 for the first term. Writing out the

second term, we have, by manipulations identical to those above

16,6 [€ (2)e "y (2)w(z2)[S, ()-S5 (2)]dz ||12

= D1+ 29,2 ([l )e "M O (2 )w (2)[S, (2)-5 (2)] dz )2
=]l

. d/2 . - ?
An analysis of this term gives in k, A{¢+9/2™) R2 ypiformly in X\. Since k, — O by B(i), the

second term is negligible by comparison to the first and the result follows. Q.E.D.

Combining Theorem 5.2 with Theorem A2.1 (which gives stochastic bounds on

[18.x — 6|53 ) we obtain the following Corollary.

Corollary 5.3 Under the hypotheses of Theorem 5.2, the sequences d(n ,\), r *(n ,\) and r(n )\)

have the following behavior uniformly for X € (0,)\)
(i) d*(n \) == nIzATHm)
(ii) r*3n ) s pINAH/m)

(iii) ,.z(n ')‘) 2 pINAc+d/m) X’.'c
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Thus if n ]\ +4/™) 4 O the asymptotic behavior ofé,.x and @, is the same.
Proof Theorem A2.1 gives (i) while (ii) and (iii) follow from Theorem 5.2. Q.E.D.
Finally we turn to the generalized linear regression model. Much of the technique used in

our next theorem is taken from Theorem A2.2. For this reason and in order to keep the proof

more brief, we shall omit details of arguments which are very similar to those used in Theorem
A2.2.

Theorem 5.4. Let \o be such that Theorem 4.1 holds, and suppose {\, : n > 1} is such that

k™ << (5.7)
k™ << nt L (5.8)
Letd/m < ¢® < 2-3d/2m,and0 < ¢ < ¢’, then

(a) sup  ||G N6 Iax - GA(B))u | € Ty(n,\) where E| Ty(n ,2\)| < n-Ix{c+i/f2m)

el 2. =1

(b) sup G (6:)D 3, A (60 +u Jow||Z < Ton NR? where

llull2o < RZ,IvIZ, < R?
hwil2, <1

E| To(n )| < ale+d/zm)
The bounds on the ezpectations being uniform for X € [\, )\

Remark: Assumption C(ii) guarantees 3d /2m < 2-3d /2m, so the assumption on ¢ * is not vacu-

ous.

Proof: We begin by sketching the proof of part(a).

Letting G,.(8\)¢ = EDZ,,(6,)¢
- fxe (2)¥(z 00(z )z )P dz) + AW forc€ O, .,

for any u € ©, . we have

NG\ 0\ )ax - GA(B))u |1E < NG 0\ )Jax — Gan(6)))u |12 (5.9)
+ |G\ 7H 6 )(Gar(6)) - G (6))u ||

Here the second term can be analyzed, as ||G,7(6,)(Z, o6)) - Zo(0)|},2 in Theorem A2.2, to give
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G NGax(8:) = GA(@))u |1 = I E'J i) [GTHBIE, (26,1 (2.,6,(2 ) ue (2 )| PAM-Py |(dz )II.2
Je=lkw=l X

= Z [l+’7)f,,”1+2X’1>‘,,]-2
==}

(St (2)8(z,03(2))u ()| P )-Py|(dz )}?

Since ¥ € CXXS(R,R'); R"*")and ¢*>d/m sou € Wi (X,R"), we obvt.ain the follow-

ing bound by means of Lemma 4.2 of Cox|9)

| ‘frw (z)6(z ,05(2 ))u (2)[PE-Px|(dz) | < kallén, | WEII - llu | WE.

But, from Lemma A1.2 and AL3(i), ||¢,, | WE|J? < 1+7,¢/™, and this implies, by (5.8), that

NG 6, )(Gar(8) - GA(B\))u |I% < ke H8d/2m) 1y N
< noiz{eHazmyy INE
¢

The first term on the r.h.s. of (5.9) is stochastic and to analyze it we use a technique similar

to that in Huber[14], pp. 166-167 . Let u and v be unit vectors in ©,, and ©, . respectively.

a0 (o] [o0] o0
v = Yu,d, , v= 3 v,.6 ., where ) [l+1i|u} = 2[1*‘7;‘;]”3’ = 1.
vaml V=1 = |
Now
x o0
<u,G, 7 0)(Iax - Gaa(@))v >2c = 3 Y u,[14%8 <o, U (6,) [ G, (8,)€ (2)

vam] 0 oy

< (W | 2.6(2)-¥(z 6(2)))

Y N € )Py§5 (dzdy )>

© o 1 1
=Y Y uf1+%i)2A . 1470 Py, (5.10)
vaml o oy

where AW. is explicitly given by

L
a,.= é Z': 1+13)2 1+7,50] 2f < U(B)GH8)E, (2)>
k ) ) maui

@y | 2,02 (2,0(2))8y 0, (2)PEFNdzdy)
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Applying the Cauchy Schwartz inequality to (5.10) gives

00 00 . .
<u,G\H BN ar - Gaa(B\)v >% < Y [1+miful? o [1+75. v 3 Y AZ,
v=m] vesl w'

= Z Au":/'
w*

We will now show that Y E[A2.] € n~]\H*+¢/2™) ypiformly in X € [\s ,Xo|- And so with

vv

Ty(n\) =[S A2, + kA{cH84/2m))

w®
EI Tl(n,k)l < ln—lx-(c-l-d/zm)_*_ knzx-(c-{-ad/zm)]
~ piIz(c+d/2m) by (5.8),
part(a) is established.

Ela2.] = }"_} (1475 [1+7;,,'.]“ % <, U6:)G Y (6,)¢€, (z)>

vt 7.k,3" k! ==l
<¢)\V-U(0)\)Gk—l(o)‘)€]' (2 )> “ Tyt k! (z '0X(z )) .¢Xy'k (3 )¢)w't' (z )PA‘”)(dz)

Summing over v and v* gives the expression

TEaL= 3B L[<G0)E ()60, ()

U.
1.k,90 k! ==
o0
Ty 10 (2,00(2)) © X0 8,0, (2)8,,0 ., ()14, 2P Ndz)
v =
The result will follow once it is established that Py§*) may be replaced by Px in the r.h.s. We
show that the above expression is == n IN{¢+4/2m) with error <<n I\N{¢+9/2m) and this will
establish the result. Assuming the replacement of the discrete measure, P_{"), by the continuous

analogue Py is alright, the n~I\{+4/2") bound is obtained by an argument similar to that used

in Theorem A2. The crucial step is to show

.£¢Xv; (2 )¢m' (z )Tjk}' t’ (3 ’9X(: »¢;,,0 k ¢x,- i’ Px(‘-") S MO(R )"¢)\u">‘20”¢xy'")~20 .
But this follows from B(ii) and D(vi). Thus using this bound, Lemma A1.3(i) and the analysis in

Theorem A2 we can get
1 - -
TEBLIS ¥ <6 0)6 ()60 (3)>
w’ J'.v]' ok' -

iy 1 (200(2) 0 3 8,0, (2)8,,0 40 (2)147,55 | Py (d2)
v° wmi
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[e] fe o) .
< SEnieam,? e 3 1+
vam] P
However, from Lemma Al.1(a), 1 ,~t”™/? . and since ¢*>d /2m, the sum over v° is finite.
Hence, by Lemma Al.1(c)

2 -1 +d /2
YEAZ.l<n Ale+d/2m)
w’

It remains to justify the replacement of Py¥*) by Px. Employing the integration by parts formula
in Lemma 4.2 of Cox|9] and assumption D(vii), we obtain, by arguments similar to those used for

equation (A2.8) in Theorem A2, that

| f< G, (8,)€,(2),G\H8))€,r (2)> (5.11)
“Tikyt k! (1 :9x(3 )) : i ¢)u,‘g (2 )¢x,,°k' (1’ )[1+,7;v:]—llp§n —PXl(dz) I
v° ==y

S K{awp| Fa(z)}-F(z)|}Ir | CUXXSR.RIRI -|l6s | CHXRT| -

{ ¥ [IDLI<GM(B)E ()G (6 ()>).

g€ {01}¢

Y b (e OS2 8) | dz )

v ==l

where z 8] has components

I ir =1,
2ll=\4 it g =0 ,

and A € (0,00) is chosen so that X € [-A,A|*; see Assumption A(i). The integrand in the last

term is written as

D:’[< GX_I (ok)fj (z ),G{l (9x)€t(3 )>Xc f: ¢)‘”a k(z )¢Xy’ I (z )[1+‘7xcy: l_l]

v® -l

=D!F D N+l 11 [P, (2 )by (2)8, 04 ()00 (2)
vl 0 i

Q0 O .
=33 |1+7Xcv][1+2x’7xu|.2[1+'7;y' [P'DL (s, (2)00s,0 (2 )8, 0 (285,040 (2 )|
vl ey
' o 0
(Again the argument justifying the interchange of D,’ and Z 2 parallels that used in Theorem

vaml 0 o

A2). Utilizing the product rule for differentiation, we have
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f I DIB[¢XU] (J,’ )¢)~1/;' (I )¢x,,'g (z )¢)y'k' (z )](z [ﬂl) I dz
= YUY S1D. s, (D 2bn, D20, . VD, . (2 (B]) | d2

By Blnly
14 ;Mg‘f‘ﬂa"”‘ = f

<K SEYY lon, 1€ lio,r 1€

PRy Y Y

1D, DS, ., N2 18) | dz

1841 +d /24« | 8y] +d /24
S K() LYY e Wyt e, | W22 I
ﬂﬁ-ﬂﬁ—ﬂ:ﬁ-ﬂ.-ﬁ

18,1 Hd=| 2] )24 [ 241 Hd-| 81)/24<
W, I | W'’ )

) “¢xy ’ ||¢Xu‘

’

where ¢ > 0 is arbitrary. The bounds on ¢,, in this last in equality follow from Sobolev’s imbed-
ding theorem, and the bounds on ¢, . follow from the Cauchy-Schwartz inequality and Sobolev’s
theorem on traces ( Eqn. (2), p 97 of Adams|1] or Theorem 4.7.2 of Triebel[28] ). Replacing the
Sobolev norms by equivalent ©,, norms and using the fact that g € {0,1}‘, we see that the last

displayed quantity is

e T
~ 14
| =m0

Now returning to Eqn. (5.11) and using | 8] < d and bounds on ||7| C¢|| and ||6) | C¢||, we

obtain that the L.h.s of (5.11) is.

SN PR BTN ) Bl IR D) ER A nl ) R AGhat i
14

”'

Now 7, . = (v* )>m/¢, so with ¢*>d /m, the ¥, over v’ is finite for some ¢ > 0. Moreover,
since ¢ +d /m <2-d /2m, Lemma Al.1(c) implies that the sum over v is = X\°~2¢/2™ | Hence the

bound in the last equation becomes

< k NEMAR = p \/m A\ o \AeH2m) by (5.7) .
Thus replacing Py*) by Py is an o(n~"A{¢+4/2™)) approximation, establishing part(a) of the

Theorem.
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We now outline the proof of part(b). For this let u, v, w € 6,.. with |[¢]|2, < R,

”””fc' < R,and||v]}2 €1

q ..
NG GNP (B+u)ow |l = || Y [GTH0)E(2)0,u(y | 2.60(z)+u(z))
1.k e
“o(z)w (2 )P,‘,’})(dzdy )”ch
For convenience let bx = #,+u. By straightforward algebra, the Cauchy-Schwartz inequality,
B(ii), and Lemma A1.3(ii), we have that the last quantity is
00
< K {Y 1+ [1+2%,072 [llenlz) | R||2PVdz )
v==)

Sy 1 2,65(2)) | RY*9%1|12P )X dzdy )

e | CXRP|lw | CXROP .
But ¢,,, v, and w € ©, . and since ¢*>d/m, 8, . C WS(X,R "), the replacement of Py

by Py can be carried out as before to give
< K (S 1mifi+ Bl fllondz) | RYIPx(d))
S [ 2,05(2)) | R¥%0<0|2Pf3 Y dzdy )
v | CXRENw | CX.R? .
This in turn, utilizing the argument in (5.6), is bounded as
< KB [y | 2,00(2)) | RO 2P dzdy )

el w2,
< K XEHE (116 | 2,0,(z)) | RO<T<2P{Xdzdy ) R?

Thus, by D(viii), for some R’ , depending only on \y and R, with
Ton \) = K \N+/2m) [ qup  |lg(y | 2,t) | RO |ZPJ3 ) dzdy)
teS(R’ ,RY)
E| TAn . \)| < K M#(R' ) {c+i/2m)
Which completes the proof of (b). Q.E.D.
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Combining Theorem 5.4 with Theorem A2.2 (which gives bounds on E|[d,, - 0)‘“)\20') we
obtain the following Corollary.

Corollary 5.5 Under the hypotheses of Theorem 5.4, the sequences d(n ,)\), r*(n ,)\) and r(n )

have the following behavior for X € |X\, M|

(i) dz(n N n-I{(c’+d/2m)
(ii) r'¥n )= n-Iz-Ac’+d/2m)
(iii) rin ) &= nTINATH2m) \ct e

Thus if n~]\"2c*+4/2m) _, 0 the aaymptotic behavior of 0?,,)‘ and @,, is the same.

Proof The results are obtained by Markov’s inequality. (i) follows from Theorem A2.2, while (ii)

and (iii) follow from Theorem 5.4. Q.E.D.

Remark 1. In order for Corollary 5.5 to be uniform in X € [\, ,\o| 2 more careful analysis than

that in Theorem 5.4 or Theorem A2 would be required.
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Al. The Penalty-Information Scale of Hilbert Spaces
Following (5.1), let U be an operator valued map U : © — B(©,8) given by

U )= [€ (2)h(z8(z))z)dz
where A : RYXR? — R"*7 satisfies
For all R > 0, there are positive constants M,(R) and MJR) such that for all z € X,
t € S(R,RY),

M (R)< u' h(z,t)u < MAR) (Al.1)
In section 5, we indicated that the U operators, U(8) = D?l,, associated with the the penalized
likelihoods of section 2 satisfied the above condition. We now state and prove certain technical
results on the P.I. scale of Hilbert spaces associated with U and the generalized smoothing opera-
tor W - see (2.7). Assumptions A through C are in force throughout. Note that U is an operator

valued map U : © — B(6,8). The existence of the © valued integral which defines U (6)¢ is

easy to establish.

Lemma Al.l Fiz R >0.
(a) For all 6, € S(R,C(X;R")), there ezistsa { ¢,,:v=12,--- } C O and

{ Yo.:v=12,--- } C [0,00) such that

<¢an(9n)¢cy> = ayu
<¢.V,W¢.“> = 7ou6vu

(b) The eigenvalues in part (a) satisfy
Vo, == VI
as v—oo uniformly in 8, € S(R,C).
(¢) If 5 >0 and ¢ >0 are such that
b+¢ <2-d/2m

then
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V(170 )(1+75) (142070, )2 m N Hekafim)
14
a8 \—0 uniformly in 8, € S(R,C).

Proof. (a) Let ©,, denote L {X) equipped with the norm

2y
2

1601 ©.dl = {[¢ (2)h(z,6.(z))(z)P:(dz)}
1
= <8,U(6,)8>2.
It follows from (A1.1) and the definition of U (8, ) in (2.4) that 5 K (R ) and KR ) such that for

all 6, € S(R,C),

K(RNO|ILAX R < 18] 8.4l (A1.2)
S KAROILAXR)|| , forali 6 € LAX).

Now let T denote the imbedding (injection operator) of © into ©,, Note that T is the composi-
tion of the imbedding of © into W ( see C(ii) ) and the imbedding of W2 into ©,,, and the
latter is compact by the norm equivalence (A1.2) and the easily checked compactness of the

imbedding of W2 into L, Hence, T is compact, and so T* T is compact.

One easily checks that the adjoint operator T* : ©,, — © is given by
T*0= [¢ (z)h(z,0,(z))8(z)P;(dz)

and so T*T = U(8,). The existence of the eigensystem ¢,,, 7., follows from section 3.3 of

Weinberger|31] and the construction in Proposition 2.2 of Cox(8|.

For part (b), let {:b,,} and {:1,,} be the eigenfunctions and eigenvalues satisfying

[¢ Uz)o,(z)dz =5,
X

) (Z,']!; D¢ [z)D26,(z)dz = 1,5, (A1.3)

| a | ==m
It follows from (A1l.1) that the quadratic forms

B.(6,6) = <6,U(0,)0>

B(6,8) = <0,6| L{X;R")>
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(B, :0<i<m} is & normal system (Definition 4.8.8.1 of Triebelf25]); (i) if d=1 then

B, = (d /dz)™ " ; (iv) Assuming bm -1/2 is not an integer, ®, is the closed subspace of wir

given by {6 € Wi™ : B,8 = 0 on 8X forall i < (b-1)m-1/2}, and (A1.4) holds.

Proof. The result for b = 0 is immediate from (Al.1). For b = 1, it follows from the assump-

tions together with C(ii) and C(iv). For 0 < & < 1, we apply the K-method of interpolation as

defined in Triebel[28] ; see also Cox(8]. Let

K2 (u,8) = inf {u2<8,,W8,> + <6-8,U(8,)9-6,)> : 6 € 8}

K*(u,8) = inf {u2<0,W8,> + ||6-6, | LJJ|*: 6 € ©}.

A straightforward calculation with the expansion in terms of ¢,,'s yields
Q0
613 = c(b)fKHu,0)u®+Mdy + <6,U(9,)s>
0
for0 < b < 1, where
[ o]
c(b)={fu"?(1+u?du }?
0
Let ||]9]|| Z be given by

a
MoIE = c(8)fK(u,0)u @y + |6 | L.
0

(A1.5)

(A1.6)

Now ||I-lil, doesn’t depend on @,, and is equivalent to W3™ norm when & = 0,1 by the same

argument as before. For b € (0,1), the |||||], - norm is obtained by the K-method of interpola-

tion ( or equivalent to one so obtained ), and so also to W3™ norm, as it can be obtained by

applying the K-method to W = L, and W ( see Theorem 4.3.1.1 of Triebel[28] ). From the

b = 0 case of the lemma, we have for all § € ©

K (R)K(K\(R)'u,0) < K,(u,0) < KAR)K (K (R )"u,0)

Substituting this into (A1.5) and (A1.6) gives

min{1K (R Y lI6lI1F < 110113 < maz{1,Ko(R Y-} |6l|



- 50 -

which completes the proof of (Al.4).

We only sketch the proof of part (b). One shows first that ©,, has the indicated form by
an integration by parts (Green's formula) argument combined with duality theory as in Theorem
3.2 of Cox|8]. The boundary operators arise from the multivariate Green’s formula as in the
proof of Proposition 2.2 (ii) of Cox[9]. One fills in 1< <2 using the interpolatory theory of
Besov spaces with boundary conditions as in Proposition 3.1 of Cox[9] or Theorem 2.4 (b) of

Cox|8]. Q.E.D.

In the next result, we collect some useful facts.
Lemma Al1.3. Letd, € S(R,C)andc > 0.

(’) ”¢ou”::2 =1+ '70':1/ for V=l;2’ T

(i) G(8,)U8,)0e, = (1 + 2M,,) 0, forv=12, - - - and A > 0.

(iii) Lethg>0andc <1, thenforallz € X,e>0,1<j <gq,and) € (0,2,

1G5 (8.), (212 € K (R NN {eHI+IE/m)

Proof. Part (i) is immediate from the definitions. The calculation needed to verify (ii) is given

in Cox{8|, equation (3.12). For (iii), we have

NGt (6.)€, (2M1E = Y (1+75)< G (0,)€,(2),U(8, )8, >3 (AL.7)
= Y (1+75)<&,(2),G1 (6,)U(9,)8.,>2
= Z(l+’1.‘,,)(l+2k7,‘,)'z< § (2 )y¢w>2

= S(l+’1fy)(l+2x7cu)—z¢3w (3 )

The first equation follows from the definition of ||/||,., the second from self adjointness of
G (6,) as an element of B(8,0) (note the W is self adjoint by C(iii) and an easy calculation
shows U (4,) is self adjoint ), the third from part (ii) above, and the fourth from the definition of

€,(z) as the Riesz representer of evaluation at x of the j’th ¢omponent of an element of ©.
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Using Sobolev’s imbedding theorem, Lemma A1.2, and part (i), we have for any ¢ > 0

82,(2) < lldoy | WEHH22
< K (R)$ellZa4)ar2m
= K (R )(1+7 e /2m)

which gives

1G5 (0.)€, (212 € K(R)L(A+15)(1+7 842 (1420,,)2 .

Letting A—0, the last quantity is

< \H{eHi+)d/2m +d f2m)

uniformly in 4, € 3(R ,C), by Lemma Al.1(c). Note that m > 3d /2 in C(ii) guarantees that
c+(1+€)d /2m < 2-d /2m for some € > 0 and all ¢ € [0,1]. The result follows from this.

Q.E.D.

Corollary Al.4. The norms ||)||\. for 0 < ¢ < 1 are uniformly equivalent for X € [0, i.e. if

X,X' € IO,XOI, then 9)‘5 = exl ¢ and
Kllloll)«c S ”9"x' ¢ S Kz"”"xc

for all§ € ©,,, where the constants K,, and K, do not depend on )\, ¢, or 4.
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AZ2. Rates of Convergence of the Linearized Estimators
The linearized estimators in section 2

Guy = 6, - G (6,)2,,(6)) (A2.1)

tends to 6, as n —oo. Here we derive stochastic bounds on ||8,,-6,]| 2 for the generalized smooth-
ing estimators discussed in section 2. Our bounds for the linearized log density and log hazard
estimators say |[0,y 0|2 == k2N{+4/2) yniformly for A € [0,)\o]. The bound obtained for the
regression case gives E||8,,-6,| )% = n-IN(c+4/2%) which is uniform for \ € [NaXo], with some
restrictions on the asymptotic behavior of A\,. Here again norms employed are those associated
with P.I. scale of Hilbert spaces.

Theorem A2.1 Let ¢ be given with

0<ec<2-d/2m

where p = 8 /m 1is given in C(v). Then a8 n —co, the linearized log density and hazard estima-

torg introduced in gection 2 satisfy

Ellf.-6,]12 < E2{(c+e/2zm)

uniformly in X\ € [0,\o|. (d =1 for the hazard case).

Proof. For the linearized log density estimator we have

Bu - 0, = G (0))Zax(6)) = G 7H6)[Zax(02) - Z4(6))]
= G\Y(8\)f&(z) [P£")-Px](dz)
Taking norms and using Lemma A1.3 (ii) gives

00

18,1 - &I = 2[1+7x‘v]ll+2>\7xul°2 {f &z )| PA™)-Px |(dz )}

Note that E{f¢[(z)[PE-Px|(dz)}* = nWar$ [X) € n'E$3X) = n7Y|$|5 = n"".
The result follows from this and Lemma Al.1 (c). An almost identical argument is used for the

log hazard estimator. Here
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9ar - 0, = -G x'l(ﬂx)[Z,, o8 - ZO(GX)]
= -G, (8 {[&(z)e "[Sy(2)-S(2)|dz - [&(z (P -Pyx )(dz )}
= G,H6,) [ €(z (P -Px (dz ) - G,7Y8,) [&(z)e "5, (2 )-5 (2 ) dz

Thus

E”in AT 0X”X2c

00
== E [l+’1\cy] [l+2k'1>‘,,]'2
r==1

n n 1
“Var[n1Y ¢, (X, Mpy(X,) + nly f¢Xu(z )e e )’[: oo)( X, )dz |
t ==}

s ==l 0

The variance in the last expression is
p '
< n (Gl X M py(X ) + n 7 [ordz)e az ) < 0t
0
uniformly in X and v by a familiar argument. Q.E.D.

Finally, for the linearized regression estimator we have the following result.

Theorem A2.2 Consider the linearized regression estimator. Suppose that the sequence {), :

n > 1} is such that

L™ << (A2.2)
kNS << nt (A2.3)
Let ¢ be given with
0<c<p

where p = 8 /m i8 given in C(v). Then as n —o0,
E|[8.-0,]1% = n-IxAc+e2m)

uniformly in X € |A, ,No|-

Proof. From the definitions,

E|[d,-0\l1% = E||G* (6,)2, NG WA
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= E||G 5 (8))[Zno(62) - Zo(61)]I1%
= E||G 7 (6.)[(Zno(6r) = Zaol6)) + (Zno(6) = Zo(8:))I1Z

where Z,(6,) = O was used at the second step, and
Z,o(8) = EZ,\(8) = [&(z)¥(z,0(2z))P{"Ndz) + 2AW 4

- We will show

G2 (8,)|Zno(6)) = Zo(@IZ << ElG 5 (8))[Zno(8)) - Zx oI (A2.4)
S 75 B I<EI 0 ()65 0)éc(z)>s.

x5t (2,6x(2 ),6:(2))Px (dz)

~n —IX—(G +d/2m)

uniformly in A € |[A\, ,\o]- This will prove the theorem.

Working backwards through (A2.4), we first show the third relation. The calculation used

in (A1.7) can be modified to show that

<GHO)E, (2), G (06 (2)>: = L (1+0)(1+237,,) 28, (2 )b (2)

so the L.h.s. of the third relation in (A2.4) is equal to

n V(1)) 2 ¢ a2 )x(2,6x(2 ).05(2 ))$rd 2 )Px (dz) (A2.5)

Assumption D(iii) guarantees that the integrals are bounded above and below by constant multi-
ples of ||#n, | L2(X ;R ?)||?> with constants that are independent of A € (0,\o] and v. Further, by
D(v), we may replace L {X;R ") norm by ||-||xo and the statement is still valid, including the uni-
formity of the constants, as the norms ||-||,o are uniformly equivalent for A € [0,)\¢] by Corollary

Al.4. Since ||¢y.|%h = 2, the quantity in (A2.5) is

= T (1) (14D, )2 & a etz
14

where the latter relation follows from Lemma Al.1 (c). This proves the last relation in (A2.4).
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Turning now to the middle relation in (A2.4), a straightforward calculation shows

E||G (8))]Zaol6)) - Zyo O = 2'3 E'J f<G\_l (6:)€, (2 ), G (0,)€: (2 )>c

g e=lkm=]

k(2 ,0x(2 ).0(2 )P Ydz)

so it suffices to show that as n —oc0

| [<G(80)€,(2),G (8:)€x (2)>xc %56 (2,6:(2),0:(2 )| PA™-Px |(d2) | (A2.6)
<< x—(c+d/2m)
uniformly in X € [A\, ,\o]. By the integration by parts formula in the proof of Lemma 4.2(i) of

Cox|9], the L.h.s. of (A2.6) is

< E l sz’[< Gx—l (Ox)f, (').Gx'l (9x)€t (')>xc Kt ('.9x('):9x('))](3 [ﬂl) (A2~7)
pe (01}¢

{Fa(z[8))-F(z[6))}dz |

where A is a multi-index with only zeros and ones, D denotes differentiation w.r.t. z ( the dot

appearing in 5 places ), and the derivative is evaluated at z [8| with components

Z if A =1
#Bl=14 i 5 =0

where A € (0,00) is chosen so that X C [-A,A | ; see Assumption A(i). The distribution func-
tions F, and F are defined in Assumption B(i). By applying the product rule and the chain rule

for differentiation, one can see that the quantity in (A2.7) is

S K {ewp|F.(z)}-F(z)| }lIx | C{XXS(R.R*)XS(R,R'}R"*| (A2.8)

6 | CHX R {’e"::f}‘f|D:’[<Gx.l (00)€, (2), G (B:)6x(2)>xc (2 [A]) | dz }
where K € (0,00) is independent of X\, and R > 0 is chosen so that ||6, | C|| <R, for all
X € [0,2g]. Now

DL <G ()€, (2),G (6,)6 (2)>ne = DY (1+75)1+22 1) 2, (2 )ruk (2)

= Z(l+7xcv)(l+2x'7w)—2ps’[hv: (z )¢Xuk (2 )] ’
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where the interchange of D,” and Z will be justified below. Utilizing the proof of Lemma 4.2 in

v
Cox|[9] again, we have
L1210, O Ol(z [B) | d2 < Kl | Wi(XR )P
SK|adE , b =4d/m
where Assumption C(ii) and Corollary Al.4 are used at the last step. Now by Assumptions B(i)
and D(ii), Theorem 4.3 (i) with ¢ > 3d /2m (which implies ||8, | C¢(X;R")|| is uniformly
bounded ), and Lemmas A1.3 (i) and Al.1 (c), the quantity in (A2.8) is

S Kk S (1+75)(1+237,) % (1+74/™) (A2.9)
14

~ k,\° -34/2m

In view of (A2.2), this establishes (A2.6), once the claim about interchanging differentiation and
summation is proved. In fact, we have shown that the series of derivatives ( the last expression in
(A2.8) ) is absolutely convergent in L‘(X;R'), and thus converges in L‘(X;R') to something.
A standard argument using the mean value theorem and Lebesgue’s dominated convergence
theorem can now be applied. ( The series of absolute values of the derivatives is the dominating
function. Note that each ¢,, is in C(X;R ") since ¢y, ) C W3 CC* by C(ii) and Sobolev’s

imbedding t,heoremv.)

Finally we consider the first relation in (A2.4). From Lemma A1.3(ii),

Gx-l (9x)f; (I ) = 2< Gk—l (ax)fy (z )'U(OX)%u>¢Xu
= Z(1+2X7Xv)-l¢\llj (z )¢)w

so that

G (6)[Zao8) - Zo(8I% = Il ng{‘ (6,)€, (2)¥, (2 ,6:(2 ))[PE*-Px |(dz )||%

= Y1+ 1) 1+27%.)%{[¢' Az )¥(z,0\(2 )| PEV-Px|(dz)}? .

The argument used in deriving the bound (A2.6) can be adapted to show
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| [¢' slz)0(z,6.(z) [P -Pxl(dz)| < ki, | WEXRY) -

Assumption D(vii) is used here, and the relation is uniform in A\,v. When this is substituted into

the previous relation and use is made of C(ii) and Lemma Al.1(c), one obtains
NG (8)1Z,o6) - ZoBIIE < BE B (A+mE)1+20. )2 (1+1/™)
14

~~ k.‘.' A{¢ +34/2m)

In view of (A2.3), this shows the first expression in (A2.4) is << n"IN{(c+4/2%) which establishes

(A2.4) in entirety. Q.E.D.
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