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1. Introduction
Seismology is the branch of science concerned with the investigation of

earthquakes and related phenomena. Its goals include: learning about the
Earth's and planets' interior composition and predicting the time, size and
location of future earthquakes. In contrast, neurophysiology is the branch of
science concerned with how the elements of the nervous system develop, func-
tion and work together. Its goals include: explaining notions like memory,
emotion, learning, sleep, expectation and, less heroically, how individual neu-
rons respond to stimuli, transmit information and change with environment.
The definitions may make these two fields seem remote from each other. In
point of fact, however, they are intimately tied together through use of a com-
mon methodology - statistics.

Statistics is the science concerned with the collection and analysis of
numerical information (data) in order to answer questions wisely. It is charac-
terised by an interplay between axioms and data and, in particular, is con-
cerned: with making statements that go beyond the data collected (inferences),
with explanation and understanding, -with prediction and control, with
discovery and application, with justification and classification. These concerns
are patently common to seismology and neurophysiology - hence a connec-
tion.

Throughout much of my career I have collaborated with seismologists
and neurophysiologists. In this article I would like to present some examples
of statistical concepts and techniques that I have found myself making use of
in problems arising from both seismology and neurophysiology.

2. Some Statistical Background
"What's the use of their having names," the Gnat said, "if they won 't answer

to them? "No use to them," said Alice, "but its useful to the people that
name them, I suppose. If not, why do they have names at all?"

Alice's Adventures in Wonderland

The statistician approaches a substantive problem with knowledge and
experience concerning a particular collection of concepts and techniques.
These tools often incorporate a notion of randomness and have proven



pertinent to problems anrsing in a broad range of scientific, technological and
social fields. Brief descnptions of some of those pertinent to our examples fol-
low. In these examples, dynamics and time will be central. This has affected
the choice of the statistical apparatus highlighted.

It will be taken that the notion of a random element, @ , is given. A time
series is a random real-valued function, Y(.,w), of a real or integer-valued ran-
dom variable t, usually referred to as time. A point process is a random, non-
negative, integer-valued measure, N(.,w) . The values of these quantities, for a
particular realisation of c , are typically denoted by Y(t), Y(x,y,t), N(I) respec-
tively with I referring to a measureable set in the last case and with depen-
dence on w suppressed.

If x(w) denotes a particular random variable and if P(.) denotes the (pro-
bability) measure of w , then in what follows E(X) will denote JX(w)P(dw).
Moment functions and product densities are of substantial use in discussing
time series and random processes. When they exist, these take the forms

E{Y(t1)... Y(tK)1 = myy(t-l,..,tK)
and

E(N(dtl)...N(dtK)) = PN...N(tI, .,tK)dtl...dtK (1)

= Prob{N(dt )= 1,...,N(dtK)= 1)

respectively with the dtk distinct. Given data, typically assumed to be part of
a realisation of a random process, useful estimates may be constructed for
these quantities in a broad class of instances , particularly when the process
involved is stationary, that is when its probabilistic properties are invariant
under simple translations of time. In the stationary case, the process has a
spectral representation, eg.

Y(t)-= fexp{iXt)Z(dX)
or

N(I) = frfexp(iXt)dt]Z(dX)
z(.) being a random function with orthogonal increments. A further useful
parameter, the power spectrum, is now given by

E(Z(d*X)Z(dMu)) = 5(X-M)f(X)dxdM
xoo, when it exists. (Here a(.) denotes the Dirac delta 'function'.)

In their work statisticians make continual use of stochastic models.
These are analytic idealizations of real-world circumstances containing some
random element. They tie the observables to the phenomenon of concern and
are designed to lead to a broad variety of inferences concerning the
phenomenon. Stochastic models often take the form of systems, that is map-
pings carrying functions, measures and the like over into other functions or
measures. Stochastic models and systems usually involve unknown parame-
ters (these may be finite or infinite dimensional) and the estimation (or
identification) problem is to attach reasonable empirical values to these unk-
nowns given observational or experimental data. A central role in this
endeavour is played by the likelihood function. In simple terms, if e denotes
the unknown parameter the likelihood is the Radon-Nikodyn derivative of the
probability measure of the data relative to some known measure, viewed as a
function of e. In many circumstances one has to work with an approximation
to the likelihood, perhaps derived via an asymptotic method. One seeks a @
that is physically interpretable whenever possible.



3. Example I - the Autointensity Function
A central entity in the method by which nerve cells communicate is the

spike train. If a microelectrode is inserted into the axon (that is the output
component) of a neuron, a changing voltage is recorded. This time series is
made up of essentially identical spikes, or pulses, repeating at generally irregu-
larly spaced times. Supposing these spikes to occur at times Tk , k=0,±13,±2,...
one may define a counting measure via N(I) = the number of rk in the interval
I (of the real line). In various circumstances it seems reasonable to talk of
probabilities of events such as: there is a spike (or point) in the small interval
(t,t +dt) or there is a spike in the interal (t,t +dt) and in the interval
(t+u ,t+u +du). If one is willing to view a given spike train as part of a realisa-
tion of a stochastic point process, then these probabilities correspond to pro-
duct densities as defined by (1) above. In the stationary case it is convenient
to define the rate

hN = Prob(point in(t,t+dt))/dt
and the autointensity function

hNN(u) = Prob (point in (t +u,t +u +du)point at t )/du
Given a stretch of data, these two parameters may be estimated by n /T and

#(Irk-rj-U I < b/2)/nb
respectively where b is a small bin width and where n is the number of points
-rk observed in the time period, T, of observation. The autointensity function
is an important descriptor of the behaviour of a firing neuron. For example
in the case of a pacemaker cell, the autointensity is essentially 0 except when
u is near some multiple of the (constant) interval between spikes. If the neu-
ron is firing completely at random, the autointensity will be essentially con-
stant. If bursting of firing is occurring, then hNN(u) will be high for small to
moderate I u I and drop down to hN as I u I increases. If-bursting is taking
place at regular intervals with, for example, an accelerando pattern within
bursts, then hNN(u) will show mass broadly near 0 and also for u near multiples
of the interval between bursts. From an estimate of the autointensity of a
spike train, the behaviour of a nerve cell may be described and classified. A
broad variety of experimental examples may be found in Bryant et al. (1973)
and Brillinger et al. (1976).

Earth scientists, engineers, government officials and the like are interested
in the seismicity of the habitat, that is the timing, location and strength of
earthquakes occunng in their region of interest. They are further interested in
earthquake prediction and corresponding risk assessment. The sequence of
times of earthquake occurrence in a given repon may be viewed as
corresponding to part of a realisation of a stochastic point process. The rate
of the process tells how many earthquakes may be expected in a unit time
interval. The autointensity provides a means of describing future probabili-
ties of earthquakes given the past record. For example, if earthquakes tend to
recur periodically, then the autointensity will have the pacemaker shape
described above. If earthquakes tend to occur in clusters, the shape will be as
for a nerve cell firing in bursts. If the times of earthquakes are totally ran-
dom, the h,N(u) will be essentially constant. Various empirical examples are
given in Vere-Jones (1970). Data of China for the period 1000 A.D. to the
present, is studied in Lee and Brillinger (1979) by. means of a technique
developed to handle the incompleteness of the early records.

In order that hypotheses and models may be checked, some indication of
the sampling uncertainty of the estimates is needed. Also, a parameter that



proves to be even more useful than the autointensity defined above is the
crossintensity. It gives the probability of a point of one type occurring given
that a point of another type has occurred, say u time units, earlier. Various
results related to these last ideas may be found in Brillinger (1975).

4. Example II - Probit Analysis
A conceptual model for the firing of a neuron is the following: input to

the nerve cell leads to (postsynaptic) electric current genesis. This current
flows to a trigger zone, being filtered in the course of its passage. When the
voltage level at the trigger zone exceeds a threshold value, the nerve cell fires.
This process may be specified analytically as follows. Let U(t) denote the vol-
tage (membrane potential) at the trigger zone at time t. Let B(t) denote the
time elapsed since the last firing. Let X(t) denote the (measured) input to the
cell. Then, assuming linearity and time invariance

U(t) = fBta (u)X(t - u)du

for some response function a(.). Suppose the threshold level at time t has the
form a+e(t), with e(t) a normal variate of mean 0 and variance 1. Then, given
U(t), the probability the neuron fires at time t is 4(U(t)-a), with i(.) denoting
the standard normal cumulative function. Supposing the data to be recorded
at times t=O,1,2,...,T-1 and Y(t) to be observed and defined to be l if a spike
occurred in the immediately preceding interval and to be 0 otherwise, the
likelihood of the data may be written

T-1

fII4(V, - a)Y(t)I1 - 'rV1 - a)I1Y(t)
t =O

with
B(t)-l

Vt= 3 a(u)X(t-u)
u =o

The unknowns, a(.) , a, may be estimated by maximising the likelihood. Once
the estimates have been obtained, the model may be checked to an extent by
comparing the empirical firing probability with the fitted. This is done for a
variety of inputs and neurons in Brillinger and Segundo (1979).

The generally agreed description of earthquake genesis is the following:
earthquakes are due to faulting. Specifically a crack initiates at a pointand
spreads out to form a fault plane. As the crack passes a given point, slip takes
place on the fault plane resulting in a stress drop and the radiation of seismic
waves. The ground is initially compressed and dilated around the focus of the
earthquake. The pattern of compressions and dilations is preserved in the
seismic waves radiated out and may be observed in the seismograms of sta-
tions detecting the event. Further, given the orientation of the fault plane
(usually expressed by three angles) there is a formula for the theoretical rela-
tive amplitude of the signal arrving at a given station. Data then consists of
the following: the estimated focus of an earthquake, the locations of the sta-
tions recording it, and whether each station recorded compression or dilation
(corresponding to whether the first motion noted was positive or negative).
The problem is to estimate the orientation of the fault plane. This informa-
tion is useful for understanding the physical nature of the Earth in general
and for seismic risk assessment in particular.

Let Aj denote the theoretical amplitude for stationj. Let tj denote the
arrival time of the seismic signal, sj(.). Then sj(t )=aAj for some a. Further the
seismogram may be written Yj(t)=sj(t)+ej(t) wlth cj(t) a noise series. Now the



probability that the first motion is positive, assuming E (tj) normal mean 0
variance a2, is

Prob( Yj(tj) > 0) = Prob{ej(tj) > - sj(tj)) = 4(pAj)
with p=a/a. Assuming the noises independent at different stations the likeli-
hood function is given by

J

I_,(pAj )zj[ I -,P(pAj))1 z

i-I

with Zj = 1 if the first motion is positive and = 0 if it is negative. The parame-
ters may be estimated by maximising this likelihood. Once again the model
may be checked by comparing an empirical with a fitted probability. The
details of all this are given in Brillinger et al. (1980) and illustrated by com-
putations with the great 1964 Alaskan earthquake and for some California
events.

In fact the same computer program was employed to fit the nerve firing
model and the first motion model, even though these two models had such
totally different origins.

5. Example III - Average Evoked Response
Consider the linear time invariant system with input x(t) and output Y(t)

Y(t) = a (t - u)x(u)du
Here a(.) is referred to as the impulse response, because if the input x(t) is
taken as the Dirac delta function , then the output is a (t). A broad variety of
naturally occurring systems seem to be linear and time invariant in the above
manner, to a good approximation. Prominent among these is the Earth's
transmission of seismic (acoustic) waves, be they generated by earthquakes,
explosions or other vibratory sources. This effect is highly useful in seismic
exploration. Suppose an impulse of energy is input to the Earth in a region of
interest. Part of this energy will be reflected back to the surface by subsurface
geologic structures after time delays 'proportionate' to the depth of the struc-
ture (wherever there is a difference in acoustic impedance). If Y(t) denotes
the signal recorded by a sensor on the surface, then its peaks (really peaks of
the impulse response a (.)) may be interpreted in terms of subsurface layenrng.
From estimates of such 'reflectivity functions' along lines of shots, geologically
interesting structures at depth may be inferred. In practice a single pulse at a
location rarely proves incisive. Hence prospectors are led to replicate the
pulses at times am, m = 1,...,M. One can then form the average evoked response
or stacked estimate

I 2; Y(u +am )
M-1

as an improved estimate of a (u), provided the am are sufficiently far apart that
the corresponding individual responses do not overlap. Neitzel (1958)
presents the results for some early experiments of this type.

It has long been traditional to average numbers. The novelty in the
present circumstance is that it is curves that are being averaged. Such averag-
ing has proved to be crucial in studies of brain waves because of the fact that
signals evoked by various sensory stimuli are much smaller than the ongoing
noise. The stimulus may be auditory, visual, olfactory, somatosensory or gus-
tatory in character. The data available for analysis consists of the ongoing
electrencephalogram (EEG) observed at an array of locations on the skulI and



the times of application of the stimuli. Quite a variety of questions arise con-
cerning the evoked response phenomena. These include: Does a given
stimulus in fact evoke a response? Do different stimuli elicit the same
response? Does the same response occur at different sensors? Are the
responses repeatable? If stimuli are reordered, is the response the same? Are
the effects of different stimuli additive? How does -the response depend on
the stimulus intensity? Answers to these questions are complicated by the
phenomena of: weak response, variability of response, occurrence of artifacts,
among other things. The papers Brillinger (1981a,b) review the history of
evoked response experiments and their analysis, describe a number of success
stories concerning *he technique and provide some formal answers to the
preceding questions. In particular, the following class of procedures is pro-
posed for dealing with the complications caused by the presence of artifacts.

Nowadays considerable statistical research effort is directed towards the
construction of robust/resistant techniques, that is procedures that remain
effective in the presence of bad data values or of long-tailed error distribu-
tions. The traditional average value (or sample mean) is a pnrme example of a
nonresistant sample quantity. Its value may be shifted an arbitrarily large
amount by merely shifting a single sample value. By contrast, the interquar-
tile or mid- mean, that is the mean of the central 50% of the sample values,
does not even involve the 50% most extreme sample values in explicit fashion
and hence is highly unshiftable. In Brillinger (1981a) the following class of
estimates was proposed for the evoked response case, with a discussion of
computational procedures for both the live and dead time cases. These esti-
mates may be computed automatically. Set Ym(u)=Y(u+am) and

y _oI2 =f0V y(u) _O(u)l2du
where, in this last, it is assumed that the evoked response dies off after v time
units and that am+ -am>V. As a resistant estimate consider a(.) satisfying

@(U) = Wm Ym(U)/ Wm
m m

with Wm = y,I, -e /P), V(.) being a weight function having most of its mass
near 0 and - an estimate of scale. As a generalization of the mid-mean above,
one can- consider

0(u) ='Y1(u) / OM
with ' denoting the summation over the aM smallest I Ym -e I. The statistical
properties of this last estimate are studied in the Berkeley Ph.D. thesis of Fol-
ledo (1983).

6. Example IV - Decaying Cosines
After a great earthquake the whole earth rings like a bell, with the vibra-

tions lasting for days sometimes. Because the Earth is a finite body, it can
only resonate as a whole at certain discrete frequencies. Because the medium
is dissipative, the vibrations eventually damp away. These phenomena are in
accord with the equations of motion being linear with constant coefficients
and in consequence having solutions

s(t)- cakexp{-6k1) COS(Ykt+bk)
k

t>O, assuming initial condition of a Dirac delta function at 0. An observed
seismogram will have the form Y(t) = s(t)+e(t) with e(.) denoting a noise series.
The problem ansing is how to estimate the unknown parameters, particularly



the 1k,Yk. In Bolt and Brillinger (1979) the following solution is developed.
Suppose the noise series e(.) is stationary and mixing, (that is well-separated in
time values are at most weakly dependent), then the Fourier transform values
of lengthy time segments satisfy a central limit theorem, that is are asymptot-
ically normal. In particular if

T-1

ei = 2ie(t) exp(-i2irjt/T)
t =o

the values cj for 2irj/T near x will be approximately independent complex nor-
mal variates with mean 0 and variance 2rTfff(X),fff(.) being the power spec-
trum of the series E(.) . Now one has Yj =sj+e,, with sj depending on the unk-
nown parameters of interest. If one sets down the approximate likelihood
function for the data here and works in a neighborhood of x containing only
one of the 'Yk, then obtaining (approximate) maximum likelihood estimates
comes down to minimizing

lIyj S

j 1 2

as a function of the unknown parameters. The details of this, as well as a
procedure for checking the validity of the assumed form for s(t), may be
found in Bolt and Brillinger (1979). For example, it is found there that if a
limiting process with 3k - bk/T as T-moo is employed then

var,Bk var 'k
-

T-347r-fJ(Yk)a42IoQ/k)J(Ik)
where

II+)=f0o uexp(-20u}du
and J(O) = Io(M)I2(O) - II 2. The T-3 decrease of variance is initially surpris-
ing.

The decaying cosine model has also proven useful in neurophysiology. In
the work of Freeman (1972, 75, 79) the olfactory system of rabbits has been
studied via evoked response experiments. Freeman found that the averaged
response could be well-fitted by the sum of a few decaying cosine terms. He
developed a model involving spike to wave conversion, involving collections
of constant coeffiCient second-order differential equations, involving feed for-
ward and feedback and involving wave to pulse conversion. Various types of
neurons and connections were postulated. He employed nonlinear regression,
in the time domain, to estimate the unknowns. In one case involving two
cosines he was led to view the larger wave as representing intracortical nega-
tive feedback and the smaller as representing another feedback loop. Of some
interest in this type of work is what happens to the frequencies and the decay
rates when the experimental conditions are altered.

7. Example V - System Identification / Deconvolution
Regression analysis is one of the more long standing and potent tools in

the statistician's kit. There are variants, for time series and point process
data, that have proved useful in studying both neurophysiological and seismo-
logical data. Let M(.) and N(.) be two stochastic point processes whose realisa-
tions are imagined to correspond to the spike trains of two given neurons.
Consider modelling the rate of firing of one neuron as it is affected by the
other, as follows

Prob(N(dt) = I M(.)} = [a + fa(t-u)M(du)]dt



for some constant a and function a(.) . Supposing (M(.), N(.)} to be a station-
ary point process, the above relationship leads to

fNM(X)=A (X)fMM(X)

where A(.) denotes the Fourier transform of a(.) and fNM(.) denotes the cross-
spectrum of N(.) with M(.) . (In terms of the spectral representations of the two
processes it is defined via E(dZN(X)dZM(u)=6(X-u)fNM(X)dXdM , :00.) Once esti-
mates of the spectra fNM(.) and fMM(.) are at hand, the function A (.) may be
estimated and after it a(.) . There are various ways that such spectral esti-
mates may be formed, see Brillinger (1975). A variety of examples for neuro-
physiological data are presented in Brillinger et al. (1976). The strength of
the postulated 'linear' relationship may be measured by the coherence func-
tion, I RNmG\) f (X) 2/fNN(X)fMM(X) . It lies between 0 and 1. In this last
reference a variant of the coherence is employed to untangle the issue of how
some given triples of nerve cells are causally connected.

Calculations similar to the above are also extremely useful in the seismic
exploration case. We indicate how they may be employed to design an
effective probing signal there. Consider again the system

Y(t) = a (t -u)X(u)du (2)
for the time series Y(.),X(.). Let myx(.) denote the convolution of Y with x, in
some sense, and let mxx(.) denote the convolution of x with X. Then from (2)
one has

myx(u) = fa(u-v)mxx(v)dv

Suppose. one wishes an x(.) such that myx(u) is approximately a(u). Letfxx(.)
denote the Fourier transform of mxx(.), then the right-hand side above is

fexp{ixu )A (X)fxx(X)dX
and one sees that for this to be a (u) what is needed is that fxx(X) be approxi-
mately 1 on the support of A (.) . Supposing A (X) to be approximately 1 on
xo<x<x1 and 0 elsewhere, one is seeking X(.) with fxx(X) of the same character.
An example of such an x(.) is the chirp function

tX(t) = cos([x0+(x1-X0)-Jt)

for o<t <r. (This signal was first introduced formally by researchers in radar
and is employed by bats in natural flight as well). In the seismic case it is
input to the ground (for which xo and xi are known) repeatedly and the
responses averaged. It should be remarked that in actual applications, sub-
stantial further processing is carried out to handle further physical effects
present, such as wavefront spreading.

The tools of system identification are extremely powerful and may often
be used to obtain indications of the mechanisms and states underlying some
structure of interest. The above examples provide but a glimpse of the
strength of the systems approach.

8. Example VI - the Analysis of Array Data
Array data is collected in both the earth and neuro- sciences. By array

data is meant a collection of measurements of the form Y(xj,yj,t), j1=1,...,J and
t =0,...,T- I with the (xj,yj) , j = I,...,J the coordinates of J sensors, and given j
the measurements Y(xj,yj,t), t=0,...,T-1 a segment of a time series. In the
seismological case, the (xj,yj) refer to the locations of seismometers. In the



neurophysiological case, they refer to the grid locations of electrodes on the
skull. Such data may often be reasonably viewed as part of a realisation of a
planar-temporal (or spatial-temporal) random process Y(x,y,t).

An important use of array data is the detection of propagating waves and
the consequent estimation of their number, directions and velocities. For
example in the seismic case one might have an array of (strong-motion)
instruments located close to an earthquake fault. These instruments would be
triggered by a sufficiently large event. In this case the source of the energy
would be moving as the fault ripped. The seismologist would like to estimate
the orientation of the fault and the rupture velocity. Bolt et at. (1982) discuss
this problem and provide some elementary estimates based on data collected
during an earthquake in Taiwan. They proceed by estimating the frequency-
wavenumber spectrum of separate time segments of the data. The frequency-
wavenumber spectrum has also been employed in the analysis of visual
evoked response data, see Childers (1977). This last researcher first notes an
apparent high velocity wave. After this wave has been 'removed', in a
number of experiments he notes the occurrence of a pair of waves moving in
opposite directions. His research is directed at developing a diagnostic pro-
cedure for various visual disorders and at obtaining insight concerning how
the visual system functions.

Consider a planar-temporal wave of the form
Y(x,y,t) = p cos(ax +f3y +yt +6) + e(x ,y ,t)

with p,a,j,o unknown constants and e(x,y,t) a stationary noise process. The sig-
nal here is a lane wave propagating in direction e given by tan 0 = 8/a with
speed y/V+ . In Brillinger (1985) the following maximum likelihood pro-
cedure is developed for detecting the presence of such a wave and for estimat-
ing its parameters.

Collect the J time series into a vector Y(t) = [Y(xj,yj,t)] . Let
T-i

Yk=f 2;T Y(t)exp(i2rk/T)
t=O

and
M= ,YkYk

k

with the sum over 2rk/T near y = 2rk'/T say. Further set
S = -Ykk k'

k

and let B = [exp{i(axj+iy*))] . The value I BYk 1 2 is referred to as the conven-
tional statistic. It may be expected to be large when po 0 and it is evaluated
at the 'correct' (a,4). The matrix S provides an estimate of the spectral density
matrix of the series e(.) . Invoking a central limit theorem for the fk , an
approximation may be set down for the likelihood function based on the Yk
(with 2rk/T near y). It is found that the maximum likelihood detection statis-
tic, given (a,,), 1S

B-rSlB/BTM-lB - 1 (3)
with null distribution (K-J)-l times an F distribution with degrees of freedom
2 and 2(K-J) . It is further found that the maximum likelihood estimates of a
and , are the coordinates of the maximum of the detection statistic. It is
often convenient to prepare contour plots of the statistic (3) as a function of
(a,4). An example of this is given in Brillinger (1975).



9. Discussion
In this article we have presented a number of examples, drawn mostly

from our own experience, showing the use of the same statistical technique in
the rather separate sciences of seismology and neurophysiology. It now seems
appropriate to ask what, if anything, have the three sciences - statistics,
seismology, neurophysiology - gained from each other as a result of connec-
tions albethey indirect? Having in mind a broader class of examples then
those discussed in this paper, one can say that: i) statistics is richer for having
been led to develop and study various novel methods to handle specific prob-
lems arising in seismology or neurophysiology, ii) both seismology and neuro-
physiology are the richer for the other's field having generated a problem for
the statistician to abstract sufficiently that the result's applicability to their
field became apparent, iii) either seismology or neurophysiology benefit from a
statistical formulation because various of their problems seem necessarily to
need to be stated in terms of probabilities (eg. neither neuron firings nor
earthquakes seem predictable) and because these fields need procedures to
validate results and to fit conceptual models. The methods of statistics often
lead to important insight and understanding in substantive problems.

It may be remarked that the applicability of statistical procedures to these
two substantive fields has further grown in direct consequence of their move
to greater quantification and digital data collection.
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