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1. Introduction and Background

In many areas, there has been a long-standing need for a multidimensional
goodness-of-fit test that is general, in the sense that the XZ and
Kolmogorov-Smirnov test are general in one dimension, and a]so, is préc-
tical in a computational sense. Of course, XZ is still available in any
number of dimensions, but its usefulness and practicality are virtually
nil in high-dimensional spaces.

Take X],...,Xn to be n points in m-dimensional Euclidean space

selected independently from a distribution with density f(x). Define the

nearest neighbor distance R,  from X. as

jn J
R:, = min iX.,-X.I
I 1<igj<n

In what follows we suppress the dependence of Rjn and related quantities
on n unless confusion is likely.

The distance d(x,y) between points does not have to be tuclidean.
But we assume that it is generated by a norm lxl, i.e. d(x,y) = Ix-yl.

This paper started with the attempt to derive the limiting distribu-
tion of a goodness of fit test for multidimensional densities based on the
nearest neighbor distances. We established a form of the invariance prin-
ciple. OQur work had two main byproducts: a central limit theorem for
sums of functions of nearest neighbor distances and 4th order moment bounds.

These two pieces were then put together to get the invariance result.

The goodness of fit test:

In Tooking for a practical goodness-of-fit test applicable to densities
in an arbitrary number of dimensions, our starting point was the observation,

essentially contained in the work by Loftsgaarden and Quesenberry (1965)



that the variables

an = exp[-n jﬂX-X.M<R-f(X)d§] , J=1,...,n
J 3J

where f(x) is the underlying density, X],...,Xn are n points sampled inde-
pendently from f(x) and Rj is the distance from xj to its nearest neighbor,
have a univariate distfibution that, in any norm .l distance

a; does not depend on f(x)

b; is approximately uniform. .
The reasoning is simple: 1let S(x,r) be the sphere with center at x and
radius r. For any Borel set A, denote

F(A) = JAf(y)dy .

Assume x] is the first point selected, then the other n-1. The set {R1.Zr]}
is equal to the event that none of the XZ"“’Xn fall in the interior of

the sphere of radius " about X]. Hence
n-1
NR13r”X1=xﬂ =[1-F6(ﬁ,rﬂ)] .

Since for fixed x, F(S(x,r)) is monotonically nondecreasing in r, write

the above as
PLF(S(Ry %)) 2F(S(ry,x ) Xy =x,] = (1= F(S(ryuxy NI

Substituting z = F(S(x1,r])) gives

]
—
—
]
N
—
3
(]
—

(1.1) P[F(S(x1,R1))iz{X1 =x1]

so that

PLF(S(X;,Ry)) 221 = (1-2)"!



Since

U-l = exp[-nF(S(X1 :R~|))] ’

we have that for log x > -n,

P(Uy <x) = (1 +1/n1og O™~ x . for x fixed.

The above suggests that a possible approach to a goodness-of-fit
test would be to take the density g(x) to be tested, compute the

statistics

exp [-nfg(x) dx]
S(X.,R.)

37
and see whether, in some sense, the cumulative distribution function of
these n variables is close tc the uniform. Wnile this is attractive
theoretically, the computations invoived in integrating anything but a
very simple density over m-dimensional spheres are uisualiy not feasidle.
We reasoned that for n large, the nearest neighbor distances were

small, on the average, and hence that we could use the approximation

fg(x) dx ~ 9(X;)V(R;)

. J
S(Xy.R;)

where

is tne volume oT an m-dimensional sohere of radius r. In this way we were

led to festing basad on the variagies

>
"
o
x
pel
—

'Ij 'ngkxj)‘l(RJ)J ’ j=1,‘..,n



An example of a measure of deviation of the wj variables from the uniform

is the statistic
s = iy -30n)
where N(j),‘j =1,...,n, are the ordered wj variables. Notice that
1. 5 .
S=n jO(H(x) - x)“dH(x)

where A(x) is the sample d.f. of the Wy

The invariance principle:

This leads us more generally to studying the stochastic process ﬁ(y):
0<y<1, and test statistics based on measures of the deviation of H from
the uniform or, more appropriately, on the deviations of H from its expec-
tation Eﬁ. We had conjectured, based on some simulation studies, that
statistics such as S were asymptotically distribution free under the null
hypothesis. More generally, we had conjectured that the limiting distribu-
tion of /F(ﬁ(t) -t) was a Gaussian process with zero mean and a covariance
not depending on f(x). Our main result, as given in Section 5, is that

this is almost true. What holds is that for the sequence of processes

Z.(t) = /n(A(t) -EA(L))

W

Zn — Z
where Z(t), 0 < t < 1, is a zero mean Gaussian process whose covariance
depends on the hypothesized density g and true density f, and indeed if
g = f, then the covariance does not depend on f. The proof of this theorem
and other results related to the goodness-of-fit test are given in Section 5.

Defining variables Djn by

_ 1/m
Djn =n Rjn ’



then wjn has the form

and, denoting the indicator function by I(:),

F £ 1
Ip() = /AR -EF(e)) = — IUIW; <) ~ET(W; < t)]
- _1_ cn .
"= [7(h(X4,04) - ER(X;,0,) ]

for an appropriate h.
This identification suggests that the appropriate tools for the
invariance principle are a central limit theorem and moment bounds and

convergence theorems for sums of functions of nearest neighbor distances.

A central 1imit theorem:

The central limit result established in Sections 3 and 4 is that for
a function h(x,d) on E(m)x[o,w)-—*E(1) such that h is uniformly bounded

and almost everywhere continuous with respect to Lebesgue measure,

2<:o

1 en
Var(;% Z]h(xj,Dj)) — g

and
L 200,040 £ n0,68)
/n I



where we maka the convention here and through the rest of the paper that

for any function h(Xj,Dj)

% s . . - I . N .
n(xj,o-) h(XJ,DJ) En(XJ.DJ)

J

This is generalized to a multidimensional central limit theorem, and used

to give the result that

g
(Zp(t))seennZy(t)) = (2(8)), 0 2(8))

Qur proof is long. We believe that this is due to the complexity
of the problem. Nearest neighbor distances are not independentT But for
large sample size the nearest neighbor distanc2 to a point in one region
of space is "almost" independent of the nearest neightor distances in
another region of spaca. The main idea for capitalizing on this large
Sca1e independence is to cut the space into a {inite number of celis. For
any point in a given cell, let its'revised nearest neighbor distance be
defined using only its neighbors in the same call. The first sta2p, then,
is to shcw that asymptotically the revised nearest neignbor distancass can
be substitutad for the original nearest neighbor distancas. MNow, given

the numter of points in each cell, the set of intarpoint discancss within
th

the J™ c¢2ll is indepencent of those within any other c21i. Therefsre,
given the total ceil populations, any sum of Functions o7 the revised
nearest neighbor distances is a sum o7 independent comconents, with each
such component being the sum of the functicns ¢f the nearest neignbor

distancas within a particular call.



However, the multinomial fluctuation of the cell population is not
asymptotically negligible. Thus, the limiting distribu;ion breaks into a
sum of two parts, one being the nearly normal sum of the independent cell
components given the expgcted value of the cell populations. The other is
an asymptotically normal contribution due to the fluctuations of the cell
populations from their expected values. The limiting form of the varianca
reflects the nature of the problem. It has one term that would be the
variance if all nearest neighbor distances were assumed independent. Then
there are a number of other, more complex, terms arising from the local

dependence.

A moment bound:

Both the central 1imit theorem and the tightness argument
required for the invariance proof rely on moment bounds. Again,
there is some difficulty in untangling the dependenc2 Cetween nearest

neighbor distances and proving bounds of the type required.

For example, we show in Section 2 that for any measurable func-

tion h on E(m)xtg,,) - g1 with
(Ih]] = sup|h(x,d)] < =

there is a constant M < = depending only, in a specifiad and useful way,

on h and the dimension m such =hat

. 4
E(Zh (xj,oj)> <,



Both the central limit theorem and the moment inequalities (which‘
improve results in Rogers (1977)) should prove generally useful in methods
employing nearest neighbor distances.

The plan of the presentation is

Section 2: moment bounds

Section 3: an moment convergence

Section 4: central limit theorem

Section 5: invariance and the goodness-of-fit test

Appendix:  technical results on nearest neighbor distances
Section 2 on moment bounds is long and somewhat complex. But the

results are needed in the later proofs. The main results of statistical

interest are in Sections 4 and 5.

Assumptions on the densities:

Qur general assumptions on the density f(x) are that it be uniformly
bounded and continuous on its support. These requirements can probably
be weakened, but the price may not be worth the extra generality. The
following conditions are listed to make the requirements formal.

A: We can choose a version of f such that

(i) {f>0} is open
(ii) f is continuous on {f >0}
(iii) f is uniformly bounded.
Corresponding to A we have:
B: The given function g is nonnegative and
(i) {g>0} D2{f>0}
(ii) g is continuous on {f>0}.

Clearly essentially all situations of interest are covered by A and B.
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2. Some Useful Moment Inequalities

h order moment bound

The central result of this section is the 4t
(2.2) which is used to prove tightness via Corollary 2.5. We believe it
will prove generally useful in the study of procedures based on nearest
neighbors. Its formulation and spirit owe much to the excellent thesis
of W. R. Rogers (1977). Our method of proof is, however, different from
his and suited to the rather delicate estimates we must make.

The proof of the central limit theorem requires only the uée of the

an

order moment bounds given in Lemma 2.11 and its Corollary 2.15. The .
proofs of 2.11 and 2.15 are given early in this section and the reader
interested only in the central limit problem may wish to skip the rest of
the section.

The following notation is used:

P is the probability measure making X],...,Xn i.i.d. with common

density f.

E without subscript is expectation under P.

R. is the nearest neighbor distance to Xi'

J; 1is the index of the nearest neighbor point to Xi'
_ 1/m

D,i =n Ri

I(A) is the indicator of an event.

JAf(y)dy

S(x,r) = {y; ly-xi <r}

’n
P
b
-~
"

Si = S(Xi’Ri)
For h a measurable function on E(m) x [0,») — E(]), denote
thi = sup [h(x,d)]|
X,d
hi = h(xi’Di)
»*
h, =

i = hy -Ehy
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Throughout this section M, with or without a subscript, denotes a

finite generic constant depending only on the dimension m.
Theorem 2.1: If lhl < =, then

(2.2)  €(F; h))* < nPanaLe? hy | +ntel iy [F(s) +nTINI?T
Before giving the proof of the theorem we give two corollaries.

Corollary 2.3: Suppose u and w are bounded functions and

h(x,d) = u(x)w(x,d) .
Then there is a constant C < « depending on lull, Iwl, m such that

(2.4) e(f0., h)* < cn®e?fu(x)) | +n)

Proof: The corollary follows from

Elhy| < IWRE|u(X{)]

E|h]lF2(S1) < llelE{E|u(X])|E(F2(S.I))IX.l)} = "W"E|“(X1”n‘(nzT1)'

where the last equality follows from (1.1).

Corollary 2.5: If

h(x,d) = I(a<g(x)d" <b)

then

*.4 2
(2.6) E(Zi hi) < Mn (Gn(b) -G
where Gn(y), y > 0, is the distribution function defined by

Gy(y) = (1= exp (307 [0 [1 - expL-Be(S (x, (y/ng(x)) /M x
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Proof: Let
alx) = F(S(x: (aghp) /™)
8(x) = F(S(x (g /™)

Then, for j > 0, defining Py F(S(x,a)), Py = F(S(x,8)),

ECIhy [FI(5))[X; =x)

ECF (S0xR; )T S FIS(xR) €) [% =]

PB )
- [ -
pa
. P
<3 | Tl -2
npa
or
: . 3 np np
(2.7) E(Jhy [FI(s)[%) =%) < Msn I (exp(-—) -exp(-__rs)) ,

If we now apply Theorem 2.1 and use (2.7) for j = 0,1 the lemma follows.

The proof of Theorem 2.1 proceeds by a construction similar to one
used by Rogers and a series of lemmas.
We assume that we are given a measurable set S C Rm, F(S) < 1, and

a set of r < n points, x = <X1""’xr)’ where the x; are fixed points in

X. Let Qr(' S,x) be the probability measure on (Rm)n such that X1,...,Xn
are independent identically distributed with their common distribution

being the conditional distribution F(- s¢) and X

ner+] T Xqo 1 =1,...,r.

We write F(+|S®) as Fg. 1Its density is, of course,

F(x)/F(s€) , xest

fs(x)

0 otherwise.

We typically write Qr for Qr(-}S,x), and EQ to denote the expectation
h r
under Qr'

-r



13

On a common probability space take X],...,Xn i.i.d. F and Y1,...,Y

i.i.d. F(-ISC) and independent of the X, and define,

n

A <o s <
X; = X; if i=1,...,n-r and XiaS“

= Yi if i=1,...,n-r and XisS

= Xi_per if i=n-r+1,...,n

N~ N ’L
Clearly Xl,...,Xn have joint distribution Q_. Let Ri be the nearest
v ~\ a ~ - )
neighbor distance of Xi in the sat XI""’Xn and Di’ 31, Si be defined

similarly.

Lemma 2.8: For n > r, there is a constant MO such that

|

|8 n(xy.0p) = € R(X,00) 0 < IRTIM(E = 7(s)

| (
. | 0

-3

Proof: For r > n/2, the bound hoids trivially. For n/2 > r,

(2.9) [8q POXyBy) = € h(xyL0)10 =
-
-'! n-r - A
{n-r) ‘Z (e n(X;,0y) - £ ﬂ’:'f-.i,dl).’.
i=1
n-r
.1 - l " "‘4
<(n-r)7h £ T In(X4,04) - n(X{,54)
i=]
-1 n-r Y fv ¥ YRY
<An-r) IRHE D I(GEKg) ¢ HXgEK, RyRy)



Let
n-r n
N=2 I(xg#Xy)
i=
the number of "changed" points among the first n-r. Note that SN =
Now
Y v N o
I(Q1$Rf’ x1=X1‘) _<_ zj k I(J,‘-J9 ‘Ji-k,’\:?x‘j or Xk}'xk)
and hence
N ~, A
(2.10) > OIRAR., X.=X.) < Sr(x.#X.) T . 1(s.=5)
i LR S SIS R : it i .

< 2a(m)(N+r)

by corollary S1 of the appendix.

From (2.9) - (2.10) and the boundedness of n,

| . o | fwt ! - - . . \\l
R I {“m(m)).(s) - 2a(n) <njr |

< lin[f2(1#2a(m)) (F(s)D)

and the lemma is proved.

14

{n-r)F(S).
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Lemma 2.11: For Igl, Ihl < =, denote h; = h( ],D]) g, = g(XZ,DZ). Then

for n > 4,
|cov(hy,g,)| < Miigh(n™'Elhy | +Elh F(S;)]) .

Proof: Write

|cov(h;,g,) | 5.] ih;gzldP - hig zdP‘

[9,=2] 'l9,#2]

But
2lgll on *  4lql

(2.12) J |hyg,ldP < S0 77 j Ihyl < =S Elhy | .

Moreover,

(2.13) f h;g;dP = [ h3LE(g, X)) 5dq) - Egyldp

[9,#2] (J,72] 1

On the set J; # 2, given Xy = xy, XJ1 = X5, the {Xj, 2<jsn, J#dys X],XJ1}

are distributed according to 02(’!5(X1,|X2'X1IL(X],XZ))- By Lemma 2.8

(2.14) ~dP

* -1
i g < J thy (Mallgli(2n " +F(S,))dP
I[J1#2] B (221 1O ‘
-1
< aMglgiln™ Elhy | +ElnyF(S))1]

and the lemma follows from (2.12)-(2.14).

Corollary 2.15: For Ihil, igl < =, and for n > 4,

2)1/2

[cov(hy,9,) | < Mylgl(ERT) "%/ .

Proof: From (1.1) it follows that EF°(S,) = 2/n(n+1). Now apply the

Schwartz inequality.
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The bounds in Lemma 2.11 and Corollary 2.15 can clearly be made symmetric

in h1 and 95- We use them primarily for
Lemma 2.16:  |covy (Myoh,) = cov (hq,ho)| < | [n][2Ma(S + ()
emma <.10: Qr 1°M2 12 s 3?’ : \

N [ VY]
Proof: Let (X{,X;),...,(Xn,xn) have the same joint distribution as the
. N )
vector {(X],XT),...,(Xn,kn)} and be independent of that vector. Let
primes on Di,ai,Ji, etc. as usual denote calculations based on the

appropriate sample. Then

1
(2.17) cov (h1,h2) '.c°er(h1’h2) =3 E A

>

' ! 1A VA
where
' . ' t ", L) ) _ \

The proof proceeds by a series of steps.

Let
Y
E; = {hyn;}
t l"‘\; \
E; = {hyzhy!
Since
1 s” + hﬁ
I(E;) < T(Xy$X,) + T(X =X, Ry=R;)
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Lemma A.1 and elementary arguments yield that

' 2
(2.18) max{P(Eit1 Ej), ?(Eif\ Ek) :.aIT 1,J,k,1#3} < M(ﬁ? + FZ(Sb
Since A = 0 on [UjEI{E1UE;}]C, (2.18) and symmetry arguments imply
that
(2.19) €8] < 8] E(hy-R)thy-ny) T(E ESLE,1°(E,1°) ]

+ M[Inll 2<';Zz + F2(5)>

n

Using lemma A.1 again we bound the first term on the right hand side

of (2.19) by,

(2.20)  4[EC(Ny=F) (hy=hy) (1(3472,34#2,X,%%,) [L(XqAX ) #1(Xq =X, RyBR) D

2
+ Ml 2(;:7+ F2<S)>

= (i X iven 2, X,,ieS [ARTIRY
Let 2 = (i : Xi#Xi}. Given =, Xi’1‘:’x1’XJT’X1’ J}, J1 and Az-xz the

variables XT""’Xn can be permuted to have a

Q. (+ IS(X] Ry JUS (R} LR, ), X,

. i 1€ XpuX, X5 1)

1° J1’ 9
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N V]
* 0] * & = = - = “‘3’\‘
distribution with X, in the lead and r N+I(X1 X1) + ;(XJ1 XJ1) + I(XJ1 AJ1) .

Conditioning on this information within the expectation in (2.20) and using
'
the independence of h2 we can apply lemma 2.8 to the difference between

]
the conditional expectation of hz and Ehz and bound the first term in

(2.20) by

(2.21) al1nl12 M (m) €{(1(x %K) + I(xfx],R]fR])(M

Estimates of the order §) for all the terms in (2.21) are given

+ F(S.l + F(S1 ]
(
)

in lemma A.2. Comb1n1ng (2 19) - (2.21) the lemma follows.

Lemma 2.22:

2
Ehs | 2
<My [[n]12 —n-;- + n2[hF2(s,) + Fin[[% n

*

*
(2.23) Eh1h2 304

. _ * * k *
Proof: Let €, = [J1,J2§{3,4}], T = hihynah,

Then,
do
(2.24) fE ™ dp ’fs nyhy (conr(h1,h2)
12 12
N
r
wnere

= Qr('!S(X1aRl)US(XZ,Rz),{X1 ’XZ’XJ-x ,xJz}}and r< 4,
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Apply lemmas 2.8, 2.11 and 2.16 to get,

(2.25) lj; T dP| < <r1|lhu (n'1E|h1| +'Elh1F(ST)[)> x [ji h;h;dP[
12 12

* -
+ My | |2 j; [hrhol (a8 + F2(5y) + FE(3,))dP
12

Next

(2.26) J;

* %

+ z}. hihs
[3,°3 J1;{3 4}]

Condition in the first integral on the right in (2.26) by X1,XJ1,J1

and apply lemma 2.8 to get the bound

(2.27) 2 ||h Hf ]h1 (n™1 + F(sy))dP

h .
< 4 l%:+i-(n Telh, | + ElhyF(57)])

by the usual symmetry argument. Conditiaon in the second integral by

Xz,xJ ,J2 and obtain a bound as in (2.27). <Conclude that
2

1]? hihy! < [cov(hy,hy)| + M Lo (£, | am! = gln,F(s )
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and hence that the first tarm in (2.25) is bounded by

2 (Bl
(2.28) M| hi| —_—* e lh1F(S1)[
n
On the other hand, applying lemma 2.8 again

(2.29) [ingrgl (072 + #2(s;)) < [[h[[f[%zz][h;[ (0% + 72(s,)

[hyl (a2 = F(s ) CElng] + Mo IRl (07! + F(s)}

+J

The first term in (2.29) is < M||h|| 2,-3 by the usual symmetry argument.

(9,421

The second is

< M(E%|ny a2 + Eln, ][R [F3(5})) + [Infl 2n7d)

(2.30) < M(2(E8 0|02 + 02 E8n F3(s,)) + finl 207
and henca combining (2.28) and (2.30) we get

i, |

2 c
(2.31) ,famﬂ- dP| < M |h| -< — + 52|h1{.-(s1)
n

+ o2 €8 n|F3(s;) = lnll @ n‘39
Now consider

T P = o =2 [ T 4P

(2.32)
f[J1=3] [J1=3,,}3¢{2’4}] J[J]=3,J3=Z]
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By conditioning on X,,X5,Jdy,Jd4,X, ,X, we can bound the first intagral on
1773771773 9 J

3
the right in (2.32) in exactly the same way as TdP by,
E12
Elh,|
'[ * %
(2.33) M ilihl! + ElhyF(Sq)! hyh,dP|

* llhllz.[ |hyhgl (a2 + Fo(sy) + F2(53))dP}

[J1=3]
Now use symmetry to bound

d*

| hyhs]
[0=3,0,402,41] | 3

by 2/ 1hl

n- E!h1[

and the second term in (2.33) by,

M!lh|l4

n

Hence,
2 (i o
(2.34) | mdPl < M||h[] <—7—- €1, |F(sq)
Jkd1=3,J,;{2,4}] n- 1 1

-+ [in] 12 :‘9
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Next write,

(2.35) f TdP = f o TdP + f Tdp
[9123,35=2] (9723,35=2,3,%4] (9123,95%2,,24]
Now
. 1 n :
(2.36) PlI123,0572,0,%4] = — Zi’4P[J1=3,J3=2,J2=1]

< (n-3)"" PLd;=3,0522] < (n-3)7 (n-2) 7 PLdy=3]

Hence,

(2.37) wdp| < M[|n||* a3
If[J1=-3,43--'2,Jz=4] L < MRl n

Next condition on X1,X2,X3,J1,JZ,J3,R1,R2,R3 in the first term of (2.35)
and apply lemma 2.8 to get

(2.38) [ mapl < In1* ) (n” +z L Fise
[J1=3,J3=2,J2#4] LJ]=3,J3=2]



Now,
P(Jy=3, Jo=2] < Mn~2
133, J3%2] <

as in (2.36) and similarly,

23

(2.39) F(S,)dP < (n=2)"] F(S,)dp
j}J1=3,J3=21 ($1)eP < (02 jLJ]=3] ek
. -1 - -3
= [(n-2)(n-1)17" EF(S;) < Mn
(2.40) F(S,)dP = (n-2)"] F(s 1(J,=3)dP

by corollary S1,

IA

(2.41) F(S4)dP
[J123,d472]

IA

[(n-2)(n-1)]""a(m)€F(S;) < Mn™

Compining these estimates with (2.38), (2.37) and (2.35) we get,

(2.42) T < Ml 1nf]4n3

UEJ1=3,J3=2]

[(n-2)(n-1)1""e%(m) [ F(5,)eP < wn 3
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and nence from (2.32), (2.34) and (2.42),

(2.43) lj’[J]=3]TrdP| _<_M|;hH2 %;’_ + 52;:1,';?(51)
+ 11n[[% a3
Next censider,
(2.44) [ mep = [ map - et
LJ2-3,J]E{3,4}] u2=3] [J1=J2=3]

0f these terms the first is bounded in (2.43). The next is written,

(2.45) fr

o omee s T dP
3139933, J4%4]

114 n°3

The second term in (2.45) is bounded by M|lh!| as in (2.40). The

Tirst (conditioning on X35Xg, kg, etc.) is bounded by

Min® [ ("1 + T 7 F(s,))ep
LJ1=J2=3] i=1
and again oy Mi[h!§4 a3 by arguing as in (2.39) - (2.41). For example,
' q!%(ST)cF < %H%l ) 15(51)d¢ = a(m){n(n-1){n-2}]
(9y28,23] ©



Finally,

(2.46) Tdpl < ||n]l 'r.lr,n:

| f <
| /03,=3,0,=4] | [3523,d7¢]

In

(n-3)"T{In ]! |AThyny ]
[J =3] 43
2

< [(0-3)(n-2)17 | |n[ |2 Elnyhy)]
< M08 (a1 (&g | + cov(iny], ing1)

PRI TIERCATN RN LS

oy lemma 2.11. By our discussion and (2.43) - (2.46),

=2

2fEiml 5 2

(2.47) }/:c mdP| < M Ih[{¢ | ——+ EIh, IF(S)) = lhitn
i 5.12 n

-3

Now by the Schwartz inequality,

2(-

=2 1ny [F(Sy) < Elhy| Elny [72(S))

2
il

25



26

The lemma, therefore, follows from (2.31) and (2.47).

Lemma 2.48:

(2.49)

Proof:

For M, < =

5
2

E™{hy | 2
|ECh 12hohg | < M| [n] 12 <‘TL‘ + 2 [ny [F(S;) + .L.'l!.l_>
n

The argument goes much as for lemma 2.22and is sketched. If we

denote the integrand by na

while

. . .
TdP| < M||h Elh E|hy [F(S
l_[[w'ﬂ* | <Ml H{(n by |+ Elny [F(Sy)

#2203 =2
X/EJ1*2.31[h‘] S }

2
<MlIn[[? {rx'IEIh.I | + nszlh1 IF(Sq) + 1112 072},

*, 2 % *x 2 . x R ) ..
%J1’2]Eh1] hahadP| < [1h]] ./[‘J]:zllh1h3|dp <M (]| ﬁh1h2[dp

<MIn[12 a7 (e hy |+ a1 [ [%) arguing as in (2.46).

The lemma follows.
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Proof of Theorem: Write

(2.50) (%, n5)* < n EChil* + en(n-1) ECn71%0n515

-

%

+ 6n(n-1)(n-2) |EChy1%nohs| + n(n-1)(n=2)(n=3)|ENThynsny |

We apply lemmas 2.22 and 2.48 to the last two terms of (2.50); note that the
second term is
: 4 * *
< 6n?][n] 12 (8[n]] + [cav(In]],]hy0)])

crn¥iéd o 4
and apply lemma 2.11, and bound EChy]" by 16]|h||".

The theorem follows.
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3. Second Moment Convergence

The central result of this section is the evaluation of the limit

J
the density f(x), define

of Var(i: Z? h(xj,D.))2 for a certain class of functions h. Starting with
n

v(x) = £)7VM

and for any measurable function h on E(m) x[0,») —E,, Tet

‘l’
h(x,r) = h(x,y(x)r) .

Define LO’ L1, L2 as functions of bounded variation given by

(3.1) Lolr) = e Vir)
-V(r))-V(ry)
(3.2) Ly(ry,ry) = Vry) +V(r,) = V(ryV(r,)]
'V(r‘l )’V(rz) V(r],rz,Z)
(3.3) Lz(r],rz) = e [J (e -1)dz -V(max(r],rz))]
B(r],rz)

where
B(rysry) = {z; max(ry,ry) <lzl Srytrol
V(r],rz,Z) = j dy
S(0,r,)NS(z,r,)
1 2
For any two functions h, h' define the functional L(h,h') by
(3:4) LAY = [Rlxyary DR (gm0 V(g Ly sy iy dx,

# [l R () FOOL Ly sy d

The moment convergence result is
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Theorem 3.5: If h is measurable on E(m) x [0,0) — E(1) and satisfies
(i) ihl < =
(ii) the set of discontinuities of h has Lebesgue measure 0,
then
Var(== % h(X.,0.)) — o(h)
/e 1 i’H

where

(3.6) o2n) = [Rxrf(x)Lglanidx - [fftxr)f(x)Lylar)axd? + Linh) .

0

As the proof will reveal, the first two terms of (3.6) would be the
limit if the Rj were independent. The L(h,h) term is contributed by the
local dependence of the nearest neighbor distances.

The proof of the theorem is split into two pieces. Propoesition 3.7

below shows that the diagonal terms in
1,00 * 2
aldy b (%5.0,))

converge to the first two terms of (3.6). Then proposition 3.20 gives
convergence of the off-diagonal terms to L(h,h). We assume throughout that
the conditions of the theorem hold.

Let X, D be a random m vector and nonnegative random variable

respectively such that X has density f and
PO >r|X] = exp{-fF(X)V(r)} .
Equivalently, D/+(X) is independent of X and

P(D/y(X)>r] = Lo(r) .
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Proposition 3.7: Let f satisfy A(i)-(iii). Then, as n—w,

~

(X1,0q,,) <& (X,D)

where (X1,D]n) is used to stand generically for the common law of any of

the pairs (Xi’Di) and =5, denotes convergence in distribution. Therefore

(3.8) En(Xy.0y,) — [Rxar)F(x)Lg(dr)x

-~

(3.9) var h(X],D1n) — [hz(x,r)f(x)Lo(dr)dx - (Jﬁ(x,r)f(x)LO(df)dx)2 .

Proof: Almost immediate, since

-f(x)v(r)

NDH1>HX]=X)—*8 = P(D>r|X=x)

and the set of discontinuities of h has probability zero with respect to

the (X,D) distribution.

Proposition 3.10: For h(x,r) any function satisfying the hypothesis of

theorem 3.5

n Cov(h(X],Dl),h(Xz,DZ)) — L(h,h) .

Proof: It is, we assert, sufficient to show for any two functions ¢], )

of the form

(3.11) o;(x,r) = g (x)I(r>ry) . =1, 2
with gi(x) uniformly continuous and bounded, that

(3.12) n Cov(9y(X1507)599(X5,0,)) — L(#y,9,) -

To see this note that if ¥ is the set of all finite linear combinations

of functions of the form (3.11) then we can get a sequence hk € Fsuch that
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th 1 < 21

and with respect to L-measure on E(m) x [0,®), hk-—+h a.e. (since h is

a.e. continuous). Now
Using corollary 2.15 on (3.13) gives the bound

TTR| Cov(h (X0 ) sh(X5,0,)) = Cov(hy (X .0y),hy (X5,0,))| < cuni(Elh-n, [5)1/2 .
n

2

Now the bounded convergence theorem gives E(h-hk) —0, and (3.12)

implies that

Cov(hk(XT,D]),hk(Xz,Dz)) — L(hk’hk) .
Since L(hk,hk)-——L(h,h), the assertion follows.

Proof of (3.12): For i=1,2, let

- -1/m - -
and let
A = {(x],xz); ﬂx]-x2u<1n°1/m(r1+r2)}
B = {(xys%,)3 0"V Mmax(ry,r,) <1xy-xp0 <07/ M(r try))
, 12727 1272/ =" 728 = 12
C = {(x],xz), 1%7=%, 1 in']/mmax(r],rz)} .
Then
n-2
(1-F1-F2) s (x1,x2) €A
-1/m -/m oy - - - n-2
P(Ry 20" Trys Ry 20 10, [Xy=xq, Xp=xy) = 1 (1-F =Fp*F1 )%, (x1:%,) €8

{0 » (xy5%5) €C
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and

L
m

P(R;2n rolX;

n-l
j =%y = (-Fy)

Then, denoting .
1 1

L(x],xz,r],rz) = P(R13p mrl,Rzgp mr2|X1=x],X2=x2) - {(1-?1)(1-F2)]n']

and g,(x;) by g;, f(x,) by f,

Cov(ey.9,) =‘[91(X1)92(x2)L(x],x2,r],rz)f(x1)f(x2)dx1dx2

n.?

« [918,L01-F1=F )% < (17" (147" O

12
. - n"z -~ n‘z
*1;91925(1'F1‘F2‘F12) - (1-Fy-FR) 000,

2

‘49192[(]“’1‘?2)%'“1"2

:I]+12'I3

Because nf; < TV(r,), where  is the supremum of f, and nF, —f(x;)V(r,), for

fixed Xy Xy

a((1-F1-F,) "8 - (1) (1-F

1772/ )n.'T] =

2

£.7 n-2

n(1-F1)”°2(1-F2)"'2[{1 - (1-?1)%]-F2)} . (1-F1)<1-F2)]

CF (> DV Cr gD U () =F (k) £ ) Y (Y1) ]
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Furthermore, the convergence is bounded. Therefore
"N ~ .
n Il ¢‘[¢(x1,r])w(xz,rz)L1(dr],drz)r(x1)f(x2)dx1dxz

).

as can be seen by making the transformations V(r;) = f(xi)V(ri

In 12,13 make the transformaticn

leading to
B = {(xq,2); max (ry,ry) < Jlzll< e+ ryt
C = {{xy:2); lzll < max (ry,ry)}
On BUC, for X1 Tixed
F(x5)95(%5) = Fx1)95(x;)
uniformly, and
n o= flxq)V(r,)
nFip f(x1)v(r1,r2,z)
where
Wﬁ,%J)=IW

Nyl < rpsily=2ll < vy
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Therefore

n%~ﬁhm

A simpler argument gives

£V Py, SFOO DV #U(ry)]
PIre2) ) e TOH g () g, (x)F (x)dx

-f(x)[V(ry)+V(r,)] 2 (4)dx
X .

nl, — Jv(max(r],rz))e g1 (x)g, (x)f

In both integrais, make the substitution V(r%) = f(x)V(ri) and add the

limits together to get the proposition.
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4. A Central Limit Theorem

The main result of this section is

Theorem 4.1: Suppose the set of discontinuities of h has Lebesgue measure
0 in £ «[0,=) and

sup |h| = Ihll <=,
X,d

Then if the density of the distribution satisfies A(i)-(iii),
1 on  * 2
4.2 —_ h .50, J&# ,
(a.2) — I3 0 (x505) = 8(0,%(h)
where oz(h) is given in Theorem 3.5.
The proof proceeds in a series of propositions.

Notational convention:

Lower case c denotes a constant depending only on m and lhll. The
dependence of other constants on various auxiliary parameters introduced

below will be noted as needed.

Proposition 4.3: There exists a sequence of bounded sets CN c E(m) with

CN c CN+1 such that

1) diameter(Cy) < N

2) inf f(x) = 8y > 0
3) P(xecﬁ) —0
Proof: There exist compact sets AN c AN+1 such that J f dx — 1. Choose
A
N

8, > 0 such that § dx — 0. Let
N N A
N
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and take C, = A, NF,. Then

N N N

f - f f < J c f < GN[ dx
Cv APy A
) [ f — 1.
Cx

In preparation for the next step, let Dl be a cube of side N such

N
that C, € Dy. Divide Dy into L = (k)™ congruent subcubes Dy g 2=k,
and let
By =Dy, NCy» 2=Th.uil
B =U2a(B,)
2 2

where 3 denotes boundary. The Bl’ 2=1,...,L provide the basic cells such
that nearest neighbor 1inks between different cells will be cut. From now

on until the end of the string of propositions N and the B,, 2=1,...,L

will be fixed.

Select dN > 0 and let

Ey = x5 x€Cy, d(x,8) 2dy}

N

where d(x,B) is the distance from x to the set B. Write (X,D) for (X1,D]n).

Note that by using f(x) < sup f(x) = f, we get
X

1/mNm-1-

P(XECy, d(X,B) <d) < 2mdyL .

N’ N)

Now let

h(x,d) = NxEENM(md).

We suppress dependence on N, L here and in the sequel except where
* *
emphasis is needed. Denote (recalling that h = h-Eh, h = h-Eh),

*
I h (X:,04)

Ly = it

Y



1/2.

Proposition 4.4: E(Z_ -Z (N,L))? < c(P(XEES))
Proof: This follows directly from corollary 2.15.
For the next step, define

if Xj € 8,, no other Xi €8,

0
Rj = l
inf IX.,-X.l if X, €8
s L
Xieaz
1/m

R! and

and redefine h(x,0) = 0. Let 03 =n 3

: - 1L en * .
Z (N,L) /521 h (X-,Dj) .

J
’ -(n=1)eyV(dy)
Proposition 4.5: E(Z (N,L) -Z[(N,L))" < cne where gy > 0
depends only on N.
Proof: E(Z(N,L) -2 (N,L))2 < S E(T, a,)°
_ n' "’ n' "’ -n Jj-J
2
<1y B8
where
A, = .,D.) - .,0!) - .,0.) -h(X.,0!)) .
3 [](XJ DJ) b(XJ DJ) E(D(XJ DJ) Q(XJ DJ))
S0

' 2 2

= .,B . impli ' = R..
Now XJ EN and d(XJ B) > RJ implies RJ RJ So

2

' 2 .
E(Z,(N,L) = Z3(N,L))S < 20m0° T P(R; #RY, X €Ey)

< 21n12nP(d(X,B) <R, X€E,)

37
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where (X,R) stands for (X1,R ) by our usual convention. Now

In

P(Riﬂx=x)=[1-F@(&PH]mJ-
Note that d(X,B) < Wm for X € Ey-  Now

inf  inf_ [F(S(x,r))/V(r)] = ey 0

x€Cy 0<r<ym N
since M(r,x) = F(S(x,r))/V(r) is jointly continuous on [0,/m N] XCN, where
EN is the closure of Cy, and since M(r,x) > 0 everywhere in CN x [0,/m NJ.
Therefore

( -(n-1)eV(d(x,B))

P(R>d(X,B), XEE,) < e £(x)dx .
I xeE

N
For x € Ey, d(x,B) > dy, so

N -(n-1)eyV(dy)
P(R>d(X,B), XEE) < e

and the proposition follows.

For the next step, put B0 Cﬁ, and denote

P(x€8,)

SO Z;=] pz = 1. (Assume that for every &, Py > 0, otherwise delete 82.)

Let

n, = #(XJ. EBZ)

so the (no,...,nL) have a multinomial distribution with parameters
(po,...,pL). Consider the following construction: draw numbers Ngs-++sNs

an = n from a multinomial distribution with parameters (po,...,pL). Then

(2)

put n, points Xi , 1=1,...,n, into Bl using the distribution

2 2

F(dx) = P(XEdx|XEBy) .
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(2)

Denote by P, the joint distribution of X;™’, i=1,...,n,, let Rgl) be the

nearest neighbor distance to xgl) from the other points in Bi’ and
pl&) o q1/me(2) oy

i i
"o 2) (%)
iy a0, ot

Then

L - tn '
et To ® Do 208500

Proposition 4.6: There are constants y_ ,, £=1,...,L such that y -y
n,% n,% 2

and 2
E(E(Tzlnl) -ET, '("Q'E"Q)Yn,z) < C(R) <=
where C(2) is independent of n.

Proof: Define

Nz(rlx,nl) = Pl(n1/mR§1) >rlx§l) =x)
= [ -FR(S(x,rn°1/m))]n£-1
Note that
£(Tylny) = ny [h0xar)u, (dr[x,n, F, (d)
Define
Xn(r1x) = Wy (rix,np,)

npz-l

-1
[1-F, (G /™)
and suppressing the dependence on L, let

u_ = (nz-npz)/(np2-1)

n
Then

Ho*
W, (rlx,n,) = x,
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Then ‘
nz-l Mo
Holdrixny) = Foy i g (ar[x)

“n
= (uptl)x, dx,

where d x_ = xn(drlx). This is zero for u = -1, so we eliminate this set
in the expectations to follow. Writing n, = (npz-1)u2-+np£ leads to the

expression
2 Hn Hn
(8.7) E(TyIng) = oy ()7 [, dx aPy = (o) [ i 0,

The expectation of the square of the second term in (4.7) abovelis bounded
by Czﬂblz/n, and is henceforth ignored.

Next, expand

Hn “ﬁ 2 Bup
Xg =V +u, Togx, + 5{log x )7x,

’

where 0 < 6 <1, and substitute into the first term of (4.7). We assert
that all terms containing a power of My higher than one have squares whose

expectations are uniformly bounded in n. For example

2 2

(np)2€0:2 [n(10g 3, aP)? < (npy)?

4 2
IhIEL < Clh,1%(1-p,)

and ) ou 2
2 2 2
(np ) %€ [u2 (140,12 [1(108 x0) Py "tyPy)
8 2
2 2_( 2 2 2. %0, )
< Il (npl) E[un(1+un) J(]og xn) Xp dxnszJ
< 2a1m2(np)2(eCut (1 )75 -1 <uy <01 + EGA(I)s > 0]
2
< C,lnl
Therefore

(4.8) £(T,In,) = mp, 01+, (2 +108 1,))dx, 0P, + 0,(1)
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SO
(4.9) £(T, In,) - €T, = npu jr_a(z +1og x,)dy, dP, + 0,(1)

where 02(]) in (4.8) and (4.9) denote quantities such that

2 .
sgp E(Oz(l)) < =, Letting the Tn,

I} of the proposition be defined by

np,

Yn,e © -1 JQ(Z +1og x,)dx, 4P,
The proof will be completed by showing that the integral on the right above

converges. For x fixed, xn(rlx) is a non-increasing function of r such

that for x € Int(Bz)

X (rlx) — e FONV(r) xo(rlx)
Since h(x,r) is a.s. continuous with respect to dxo sz, then

Jg dy, dP, — Jp dxo dP, -

Now let

xn(r[x) (1 -1og xn(rlx))xn(r!x)

so that

in(drlg) -(Tog x,(rix))x,(dr{x) .

For x € Int(BZ)
%, (rlx) = (1+£(x)u(r))e TV 2 g

and so

(4.10) Jp(log Xy )dx,, 4P, — —dexo dp
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L L
Proposition 4.11: — Yo [E(T
Vil

where

2

-1 L 2
Moreover, n E(Z£=1[E(Tl|nl)-E(Tl)] — o\,

Proof: Clear from the preceding proposition.

[t is useful to recall the dependence of parameters on N and L at this

point.

Proposition 4.12: Let

1 L
(4.13) Uu = — Z (T, -E(T,In,)) .
n /;1- =] 2 2'2
Then there is a constant sﬁ L < @« sych that

2 a.s. .2
E(Unln],...,nL) -ET—» SNLL

Proof: Given n = Nys...,n, the terms in the sum for U are independent.

Thus
E(Uiln],...,nL) = %-%Var(Tz}nl) ,
and
Var(T,|n,) = n Var(h(x(l) D(l))ln )
e L AN I '3
+ ng(n,=1cov((x$H 01 n(x{H ,0fH) n,)

it is then sufficient to show that

Var(b(xgz),Dgz))lnl) Et?;» constant

n Cov(b(X$2),D%z)),b(xéz),Dél)){nl) iti;» constant .
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This result can be gotten through a simple modification of propositions 3.7
and 3.10.

Now we are ready for the final steps. We can write
. oS
(4.]4) Zn(N’L) = Un + Vn ’
with Un defined in (4.13) and
1 oL
v o= — 7> [E(T,In,) -ET,] .
n Ve 2=1 212 '3

& . . . . . . . .
By = we mean equality in distribution when Un and Vn have the joint distribu-

tion we have implicitly given them. Denote s = P(XEES).

Proposition 4.15: If o° = lim Var(Z,), then

lcz '(sﬁ,L+°§,L)| < cey + 2o/cey .

Proof: By propositions 4.4 and 4.5

T ' 2
(4.16) ;m E(Z, - Z,(N,L))" < cey .
Use the inequality
(4.17)  EZ2 ez 3(N,U)| < E|Z -7 (N,L) |2 + 2/ETT TN )?
’ n n?" - n "n*77 n n ntT

and take n—« to get the result.

'1. Note that a depends

Proposition 4.18: Let a = /max p, and take |t!3 <a
A
on both N and L. Let gn(t;N,L) denote the characteristic function of ZA(N,L).

Then
2 .2 .2
S CTNASRRANGS 3

Tim [g (t;N,L) -e | < caft]
i <



[}
m
o

Proof: gn(t;N,L)

"
m
—
m

3
m
—~
®
=)
3
~
~
-
3
"
—
3
o
-

..,nL) .

Given n, Un = Z% A, with the A2 independent and having the conditional

2
distribution of T, -E(Tzlnl) given n,. Hence

Ee  "n) = mf (t) ,  f,(t) = E(e

Applying corollary 2.3 to Al’

E(Ailnl) < cylng/m) E(IAil]nz) gcz(nl/n)y2

where Cy will denote constants depending only on m, Ihl, and ek will be

quantities such that |9k|.§ 1. Then

£2_, 2 2
[1-f ()] < S5E(ALIn,) < (cq/2)t7(ny/n)

2
lfz( ) -1 "'TE(Aim )| §C2|t'.|3(r'15?'/n)3/2 .

-1/2

Temporarily restrict t to the range [tf|a < c;'"7/2. Define

= {mzx(nl/n) <2 maxpz} .

B, 2

On B, a -fz(t)l < 1/4, hence

log f,(t) = Tog{1 - (1 -fz(t))]
2
= -Leadn) + 5,6,1631(n,/m) ¥ 2 4 g et (n /)%
So
£2
if, (t) = exp( T%E (A2 In,) +4.)

where, since !t3ia <1

44
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INIEEATY g("z/”) + cqt? L(n,/n)

3 4, 2
< czlt lo +c3|t la j.c4}tl3a .
Therefore

A
e ™11 < cglt|

and so, denoting g2 = £(u%|n)

-82t%/2 5
|Tf () -e | <cglt]
3 -1 -1/2 .
holds on B for all t such that |t7] <o ', and [t|a < ¢y "7/2. Write
it(u +V ) it(u +v )
g (tiN,L) = E(I(B e " M)+ E(1(BD)e M),

Since P(Bﬁ)'-*o, the second term goes to zero, so

. ity -8t%/2 3
Tim Ign(t;N,L) - Ee | < cslt la .

Combining this with propositions 4.11 and 4.12

2 2

-(sy, LN, L

— )t2/2
Tim [g (t;N,L) -e ™

' 3
| < cslt la .
To complete the proof we need only remove the restriction {tla < c;1/2/2.

But this can clearly be done by increasing the constant Cg-
The stage is now set for the proof of Theorem 4.1. By (4.16)

Tﬂﬁn lg, (t)-g, (t;N,L) ] g‘TTﬁh Elexplit(Z -2 (N,L)} -1} < tiveey s

45

where gn(t) is the characteristic function of Zn' So, by proposition 4.18,

2
(4.19) T, lg,(t) -expl-(sg ok )5 < et +]t]/ey)
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—0.

for ltl3a < 1. Now let N—w, L — in such a way that « —0 and e,

By proposition 4.15, if eN-—+0, uniformly in L,

. 2 2 _ 2
11mN (sN L+°N,L) = g° .

t]

Since the restriction !t]3a < 1 is satisfied eventually for any fixed t,
as a —0 we conclude that, for all t,
2,2
. _ -0 t7/2
Tim, gn(t) = e

and (4.1) follows since the equality of 62 and 02(

h) is derived frém the
moment convergence theorem 3.5.

By considering linear combinations of h's it is clear how the results.
can be generalized to provide a multidimensional central limit theorem, and
the moment convergence theorem 3.5 can be easily modified to give the

limiting form of the covariance matrix.



5. The Process H(t) and Goodness-of-Fit

First, a Glivenko-Cantalli type theorem is established for H(t).

Let

fx

Iix ; 9(x) >0

(5.1) A(x) =

= ;9(x) =0
and define a d.f. H by,

Etl(x‘), 0<t<]

(5.2) H(t) =
1 » t>1 )
and
(5.3) @ = H(1) - H(1-) = Plg(X;) = 0] .

Note that if f=g, then =0 and H is the d.f. of the uniform distribution .

Theorem 5.4: If A(1ii) holds, as m==,

(5.5) sup [(y) = H()| %5 0
Proof: We begin by showing,

(5.6) g(y) - H(y) a.s. ¥ 0 <y <
and

(5.7) H(1-) = l-g = H(1-), 2.5,

47
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To prove (5.6) note that by corollary 2.3,

PLIR(y) - EA(Y)| > €] = o(n”9)

and hence by the Borel-Cantelli lemma,
(5.8) H(y) - EA(y) =0 a.s. Y0 <y <1

Assertion (5.6) then follows by using (3.7) to show that
Eﬁ(y) - H(y). Next (5.7) is an immediate consequence of the S.L.L.N.
To complete the proof of the theorem, let

_H(;/_l Oiy<]

A~ ?

H(1-)

1 y ¥y 21

A
and define H* similarly in relation to H. B8y (5.6) and (5.7) H converges in
law to H with probability 1. But H™ is continuous and hence by Polya's
theorem,

-~

(5.10) sup [ (y) - H ()] %50

and (5.5) follows from {5.10) and (5.7).



Define a stochastic orocess on [0,1] by,

~

(5.11) Z,(t) = ﬁ(H(t) SERe), ot

n

and 2 corresponding Gaussian process Z with mean C whose covariance function

v(s,t), s < %, is definec by
(5.12) ¥(s,¢) =f -"s'\(l-fftk) - (1og sf;\s*ff:"‘.-' + log tf}\t“\r‘fsk.-‘

+ log s 1log tftxfjskf) + log sf (st)*f +f ‘5Jk77 s,t,w)-1)dwdx
8(s,t)

(We write X, f for A(x), f(x) etc.)

where
3(s,%) = {w r. fwll < ry + rz}
iog T(s,2,w) = fdz
$(0,r;) A S{w,ry)
where

<<
—~

3
~

[

(]
)
o

[Va)
w

¥ f=g, tnen v(s,t), s < T, rsducas



(5.13) v(s,t) = s - st{l + log ¢ + log s log ) = stjv7(s,:,w;-})dw

Clearly the orocesses Zn(~) can be identified with proocability

measures on 0[0,1] and it will follow as a conseguencs of our proof tnat

T/

Z’+) can be as well., 1in fact, ife =0, 2(+) has a.s. continuous samcie

functions. OQur main result is,

Theorem 5.14: Suppose that A and B hold. Then,

VA
z -1

in the sense of weak convergence in D{G,1] where Z is as above and has 2
centinuous sample functions.
Befare civing <he prcof we stat2 and crove the coroilary of great

interest to us.

Let
] A ~
S, =n f (A(t) - ga(£))? at
v
s}
] n Z
s, e [ G- e s T K -
-~ v /

Coroilary 5.15: [f f=g and A ncids, betn 5, enc Sy zend in

covariance funciicn (5.13).

OK.\
[R2]
~
N
e
(e}
(e
z
=3
o
5
oW
>
[V
w

as
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-
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The corollary is, for'so, an immediate consequenca of Theorem 5.2. 8y
writing

1
L2
5 fo 22 (H7'(t)) at

we see that the corollary follows in this case from Theorems 5.1 and 5.2.

Notes: 1) The theorem can be extended to the case « > 0 by a conditicning
argument as in Section 2. Of course the Z process is then continuous only
on [0,1) and has a jump at 1.

2) It is not possible in Theorem 5.1 to resplace Eﬁ in the defini-
tign of any H. Although Eﬁ(t) - H(t), the difference is of the order of

n M and will not be neg]igibje for m > 3.

Proof of Theoram 5.14: We begin by establishing the tightness of the Zn
sequence using the 4th moment bound proven in Section 2. Let R],...,Rn be

as in Section 2 and recall that

1
m

0, = n" Ry, i=1,...,n

Lemma 5.16: If A(iii) and B hold, the sequence of processes {Zn} is tight in

0{0,1] and any weak limit point is in C[0,1].



Proof: We use a device due to Shorack (1973).

Note that:

1
-3 _n
Z(t) =n? )

' -log & m _ -log t
445 ot

o .

where K11 is the volume of the unit sphere in E™. Let

Q. (t) = &, <————‘12° t>

m

where Gn is given in corollary 2.5. Note that by 3 and the dominated

convergence theorem Gn is continucus. For given § > 0, let gy<e..<t Se

K
such that,
.8
Qn(t1)-Yﬁ-’ li1iK
e kS . 8
where ;?5_1<(e(+1)y=n.
Let

* = 6Vn— «\ /& b4 » )
fortif_t<ti+1,05_1’iK,t=O," = ]
* *
Zn(O) = Zn(1) = Q
An elementary application of corollary 2.5 shcows that,

(5.17) e(z

52
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where M depends on & but is independent of n. Since, under A(iii) and 8,

dominatad convergence implies that for each vy,

. F(x)K, ¥
6(v) = [ {1 -expl‘z‘—g(x'j"‘}
a continuous precbability distribution; it follows from a slight modification
of 3i1lingsley ((1968), Theorems 12.3 and 12.4) that {Z:} is tight and that
all limit points of {Z} are in C(0,1].
Next note that

(5.18) sup,|Z_(t)-2 (t)| < max{sup{|Z,(t)-Z (t)]: t; <t <t

i qt
(R i - i+1

oA

(sup{[Q (£)-Q,(t;)]: ¢y <t < tg+]})!zn(ti+])-zn(ti){: 0<ic< K}

< max {120t Zp(e) |+ VAER (8guq) =B ()

12 () Ty(t)] 021 < K]

using the monotonicity of H_(-), €4,(+), Qu(+)

Next nota that integrating (2.8) for j=0, implies that for C independent of n, 3,

‘f-f(‘-! (t 19]) Hn(ti)) < c VF(Q.'\(:';-H)-‘I.F\(ti))f- cé
Hence,
* * 4 bl -~ a
(5.19) supthn(t)-Z;(t){ <2 max{{Zn(ti+1)-zn(ti)1 10 <1 <K+ C3

3yt in view of (5.17), scme alementary inecualizies 3ive
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(5.20)  Plmax{|Zx(t; 4)-Z*(t;)|: 0<i <K} ><]

i+] n'-i

< €-4M Z]K=O(Qn(t'l+1 )‘Qn(t'

- 1 — /F
By (5.18)-(5.20) for each & > 0, C independent of 3
(5.21) P[supt|Zn(t)-Z;(t)| >2C8] — 0 .

Since {Z;} is tight for each §, (5.21) implies tightness of {Zn} and a.s.

continuity of all limit points. (See, for example, Theorem 4.2 of

Billingsley (1968). Note that the dependence of Zx on § is immaterial.)
Asymptotic normality of (Zn(tl),...,z (t_ )) follows from the represen-

n'’n
tation given in the introduction,

h*(X.,D.)
n /T 1 i?7i

with

h(x,d) = I(exp{-a(x)V(d)} <t)

and the multivariate extension of theorem 4.1. Similarly the formulae
(5.11) and (5.12) for y(s,t) may be obtained after tedious calculations

from the appropriate straightforward generalizations of prooosition 3.10.
As an immediate consequence of theorem 5.4 and corollary 5.15 we have

Theorem 5.22: The tests which reject when S, > c(a) where

1
p ([ 22(t)dt >ca)} = a
g Jo

asymptotically have level a for H: f =g and are consistant aaainst all f # g

which satisfy A and B.
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Proof: That the tests have level a is immediate from corollary 5.15. We
check consistency for SO.

Note first that if f # g

1
(5.23) J (H(t) - £)%dt > 0 .

0

If not, since H(e %) is the Laplace transform of A(X1) and equals e™° a.e.,

then Pf[A(X1) =1] = 1, implying f = g a.e. Write

1, i o o
So = | Z2(e)at + 2/0] 7 () (EAE)-ERe et + nf (EA()-E (e at .

0" 0 0 9
Then
1,
Jozn(t)dt = 0,(1)
! Sey e )
/ﬁ)ozn(t)(EfH(t) -EgH(t))dt = op(/ﬁ)

1 1
A A 2 2
n[o(EfH(t) -efe)) %t~ nf (H(e)-6)%at = o(n)

by (5.23). Therefore,

and consistency follows.

Note: In his thesis M. Schilling (1979) has made a far reaching .investigation
of the power of this and related tests against contiguous alternatives, has
constructed tables of the asymptotic null distribution of S0 form = 1 and
» and has studied the efficiency of the large m and n approximation through

simulation.
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APPENDIX

In this appendix we give the statements and proofs of several lemmas
of a technical or computational natura which are used in the previous

sections. We begin with a key lemma due to Stone (1977).

Lemma S: For each m and norm ||«|! there axists a(m) < = such that it is

possible to write R™ as the union of a(m) disjoint cones C1,...,Ca with 0

as their ccmmon peak such that if

X, ¥ € Cj,x,y#O, then [|x-y|| < max( [[x]] , |ly]l ), 3=1,...5a(m)

The following straightforward modification of Stone's argument shows

that the lemma is valid for any norm,

Proof: 3y compactness of the surface of the unit sphere 55(0,1) we can

. N "‘ 3 . 3
find C1""’Ca(m) disjoint sets such that,

. a(m) ¥
V)
(1) %, y e ¢y = |[x-y[] <1

Lat

")
¢y = {Ax : xe Cj, x> 0}, §=1,...,a(m)
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\,

Suppose x = Az, Yy =:7y, k, ? € Cj. Suppose w.2.0.9. A < 7. Then,

.

[Ixeyl | = 7113 %311 :1{(1 AR ARSI RN

The following are easy corollaries of lemma S.

Corollary S1: For any set of n distinct points, xq,...,x  in M, X, can be

the nearest neighbor of at most «(m) points.

Corollary S2: If Cl""’ca(m) are as in lemma S, Yo is arbitrary, x € Cj+y0,
then

S(x,1x=ygl) 2 S(ygslx-ygl) N(Cityy) -

The following consequence of S2 is needed for the proof of lemma A2 but

is of independent intarest.

Theorem Al: Let Y be a random m vector with distribution G, density g, and let

Yq be a fixed point,

Q = G(S(Y, [ Y-y, ] [))

Then,
(A.2) PlQ<ql <a(m) q, 0<q <1

Proof: First let Yo = 0 and let Gj be the conditional
distribution of Y]Ye:Cj and P = G(Cj), where the Cj are given by corollary
S2. Then,

(A.3) PLQzal= ¥ {pj PQ<alyeC]:p, > 0}

1 v -
-



A-3
But Y € Cj implies by corollary S2 that
6(S(Y,1Y1)) 2 p6,(S(0,1¥H) nCy)

Hence, for pj > 0.

(A.4) P[Q<qlY€C.] < P[G.(S(0,IYN)) <q/p.|YE€C.] = L

- 37 =7 RS LS R
since, given Y € C, Gj(S(O,HYﬂ)) has a uniform distribution on (0,1). (A.2)
and (A.3) imply (A.1) if Y = 0. For the general case shift everything by Yo

and apply corollary S2 in full generality.

Corollary AS: If Q is as in theorem A.1, r > 0

E(1-Q)7Q < M(r+1)72

where M depends only on m.
Proof: Since 0 < Q <1 we may w.1.0.9. take r > 2. By integration by parts

1

1
£(1-Q)7Q = Jopto <q){-(1-q)" +rq(1-q)" Vdq}

1
< a(m)rjoqz(%q)"']dq

r-1

-1
ir(r-n'%(m)[; W)

We proceed to lemmas A6 and Al0.
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Lamma A6: Lat

4 = 1.-"4 7

T DXy E X

c - v - M o) %

11-2‘ [A1 -Xi, .‘(_l- Tq1]

Fia = By =2ord;=2]
Then
(A.7) °(F1 ;] iM<% + .=(s>>, vj
. - -~ r2 92/ s <
(A.8) P[ruﬂ r]k] iM<n—2-+ c \S)),erk
Proof: All these.estimates Tollow oy symmetry arguments

as in the orooT

of lemma 2.27. We prove one of the sstimates of (A.8) as an axamole
Note that we Mmay without leoss of generality take r i n/d (say) rnhen
_1..ner n-r .
(A.9)  P[Fy, NF3] < [n-r)(n-r-1)] E[.21I(F12)k21(1(d =k) +1(J; =k))]
1: =
-2 k#1i
< 8a(m)n “E(N+r)
by corollary S1. But
2, M . 2z
8a(m)n E(N+r) i;(g‘ r\))> iM<;—2" - /S\)
.Clearly the bounds {A.7) and [A.8) ars gvarastimazes in =his case. We

nave writtien the lemma in this wayv Tor compaciness.
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Lemma A10: With the same definitions for j = 1,2,

2
(A.11) £ 1(Fy) %im<f_2.+ ;:2(5)>
n
rz 2
(A.12) £ 1(Fy ) 7(S) _<_.~1<7+ F (5))
n
A, 2
(A.13) EI(Fy4) F(Sy) 5_.‘4(%4- ;2(s>>

Proof: a) j =1

2 1(Fy,) F(S;) = P(F,) EF(s,) = Z3L
Let
N
R =m'in{[|X1-XJ.[! 1<J<ner j &
Then,

The bounds (A.11 -A.13) are immediate for r < n/4 and trivial (for large

enough M) for r > n/4.



N, r-] w(m) EN(N+r)
EI(Fp) 7 (1 - T> PR N Pyl < 2(m) Sy

<M <§ F(s) + F2(5)>

for r < n/4 and (A.11) follows.

To prove (A.12) begin by writing,

(A.14) E I(F1p) F(Sy) < € 1Ky = X1.Ry < Ry)F(Sy)

N r ~
+E (X = X{uRyg > Ry JF(Sy) + 2 E I(Xy = X{uRyg > lIXy -

J=1

where,
. ﬂ‘ m m + | . 1
Rig = rmn{HXj - 41 Xj = Xj, i#1, 1 < < n-r}
ey Y Y Ly 4 .
Rie = m1n{||Xj - %11 Xj 3 Xj, J#1, 1 < J < n-r}

Then, we bound

N A, -1l
(A.15) 0K = KRy < RR(S)) SE LG N KRGS e T (s)

-
~n

i |

1)F(Sy)



Next,

N
(A.16) E I(X; = X{uRyg > Ry JF(Sy)
N N v N ~ N
< EQPLFS(S(X]uRy0)) > Fo(SIXquRy DV INLX LRy o Xy =Xy TP (S(Xq Ry ) T(Xy =X )}

= E0(1-Fg(S (¥R, ) TR (X Ry )10 K) ]

1c

where K = n-r-\N

r
<M FF(S)

for r < n/4.

N N
The next to last inequality follows since, given X, = X and N, FS(X1’R1C) is

distributed as the minimum of N uniform (0,1) variables. Finally, arguing

as above,

(A7) EL(Xy = XpuRyg > 11X - HINIEH
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N N
Given X, = }1, we can apply corollary A.1 noting that FS(S(XT’Iixl'Xj!E))

has the distribution of Q with G = FS, xj = Yy Since conditionally XK-1

has a binomial (n-r-1, 1-F(S)) distribution, we obtain as a bound for (A.17),
(A.18) ME(K™2|%y=X,) € 3 M(1-F($)) "¥(n-r) 72

Therefore, we obtain

r 2

(A.19) Z1sx(x1=“il,am > [1Xy=x;11)F(S7) < M (5,-.+ F(S)>
j= n~

for r f_% » F(S) i}z (say)

Combining (A.15), (A.16) and (A.17) we obtain (A.12) for j =2, since the
restrictions oan r and F can be absorbed into M for the Tinal bound.

Finally,

a LYY A A A,
(A.20) E I(F12)51 <E I(X1=X1,R1 < R1)F(S1) + £ I(X1=X1,XJ1fXJ )F(S(X],R1O))

1

The First term in (A.20) has been bounded in (A.14) and (A.19). The

second is bounded as in (A.15) by

a)—

F(S) E(gixg=X) < M F(S)

3|

, F(S) <

r < n/&. (A.13) follows for j=2 and the lemma is croved.
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