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1. Introduction and Background

In many areas, there has been a long-standing need for a multidimensional

goodness-of-fit test that is general, in the sense that the x2 and

Kolmogorov-Smirnov test are general in one dimension, and also, is prac-
2.tical in a computational sense. Of course, X is still available in any

number of dimensions, but its usefulness and practicality are virtually

nil in high-dimensional spaces.

Take X1,*..Xn to be n points in m-dimensional Euclidean space

selected independently from a distribution with density f(x). Define the

nearest neighbor distance Rjn from X. as

R.n = mmn iIX.-x.Itn l<i$&j<n 1i3

In what follows we suppress the dependence of Rjn and related quantities

on n unless confusion is likely.

The distance d(x,y) between points does not have to be Euclidean.

But we assume that it is generated by a norm lixii, i.e. d(x,y) = Ix-yll.

This paper started with the attempt to derive the limiting distribu-

tion of a goodness of fit test for multidimensional densities based on the

nearest neighbor distances. We established a form of the invariance prin-

ciple. Our work had two main byproducts: a central limit theorem for

sums of functions of nearest neighbor distances and 4th order moment bounds.

These two pieces were then put together to get the invariance result.

The goodness of fit test:

In looking for a pra.ctical goodness-of-fit test applicable to densities

in an arbitrary number of dimensions, our starting point was tihe observation,

essentially contained in the work by Loftsgaarden and Quesenberry (1965)
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that the variables

Ujn = exp[-n f(x)dx], j=1,...n
'11x-X.II<R1

where f(x) is the underlying density, X1)**,X6 , are n points sampled inde-

pendently from f(x) and R. is the distance from X. to its nearest neighbor,

have a univariate distribution that, in any norm 1111 distance

a; does not depend on f(x)

b; is approximately uniform.

The reasoning is simple: let S(x,r) be the sphere with center at x and

radius r. For any Borel set A, denote

F(A) = {f(y)dy
10A

Assume X1 is the first point selected, then the other n-I. The set (R1jrj}
is equal to the event that none of the X2,... ,Xn fall in the interior of

the sphere of radius r1 about X1. Hence

P(R1 >rlIX1 =xl) = [1 -F(S(xl,rl ))]n-l

Since for fixed x, F(S(x,r)) is monotonically nondecreasing in r, write

the above as

PCF(S(R1 ,xj)) >F(S(rl,x1)),X1 = [1 -F(S(r ,x))]

Substituting z = F(S(xl,r1 )) gives

(1 .1 ) PCF(S(x1,R1)))ZIX1==xJ= (l_Z)n-

so that

PCF(S(X1,R1))SzR = (l-z) 1
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Si nce

U1 = exp[-nF(S(X1,R1))]

we have that for log x > -n,

P(U1 <x) = (1 +1/n logx)n - x , for x fixed.

The above suggests that a possible approach to a goodness-of-fit

test would be to take the densitiy g(x) to be tested, compute the

stati stics

exp C-nfg(x) dx]

S(Xj,Ri)

and see whether, in some sense, the cumulative distribution funct,on of

these n variables is close to the uni-cr.. While t.his is attractive

theoratically, the computations involved in inteGrating anything but a

very simple density over m-dimensional spheres are isually not f^easible.

We reasoned that f^or n large, the nearest neighbor distances were

small, on the average, and hence that we could use the approximation

fg(x) dx . g(X4)V(X1)
S(X R,.)

where

V( r) m

is tne volume of an m-dimensional sphere of radius r. In This wav we were

led :o testino based on the variables

W. = expt -ncXj )V( Rj ) j, j-l, . . . ,,
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An example of a measure of deviation of the W. variables from the uniform

is the statistic

S = -nWj/n) 2
1 ((j ) i

where W(U)s j=l,...,n, are the ordered W. variables. Notice that

1~~~

S = n Vi((x) -x)2dH(x)

where H1(x) is the sample d.f. of the W.

The invariance principle:

This leads us more generally to studying the stochastic process H(y):

O<y<l, and test statistics based on measures of the deviation of H from

the uniform or, more appropriately, on the deviations of H from its expec-

tation EH. We had conjectured, based on some simulation studies, that

statistics such as S were asymptotically distribution free under the null

hypothesis. More generally, we had conjectured that the limiting distribu-

tion of /6(H(t) - t) was a Gaussian process with zero mean and a covariance

not depending on f(x). Our main result, as given in Section 5, is that

this is almost true. What holds is that for the sequence of processes

Zn(t) = Xn(H(t) -EH(t))

z wzn

where Z(t), 0 < t < 1, is a zero mean Gaussian process whose covariance

depends on the hypothesized density g and true density f, and indeed if

g = f, then the covariance does not depend on f. The proof of this theorem

and other results related to the goodness-of-fit test are given in Section 5.

Defining variables Djn by

D = nl/mRjn jn
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then W. has the formjn
wj = q,(X.,Djn)

and, denoting the indicator function by I(-),

Z (t) = -('F"(t) - E"F(t)) 1 yin[IW <t - Wet)]

=;LCh(XD ) -Eh(X ,D.)]
v'n

for an appropriate h.

This identification suggests that the appropriate tools for the

invariance principle are a central limit theorem and moment bounds and

convergence theorems for sums of functions of nearest neighbor distances.

A central limit theorem:

The central limit result establ ished in Sections 3 and 4 is that for

a function h(x,d) on E(m) X0,x0) -E(l) such that h is uniformly bounded

and almost everywhere continuous with respect to Lebesgue measure,

Var( 1 1nh(Xi,D)) J2 <

and

1 T^ h (Xj,D.) S N(0,32)
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where we make the convention here and through the rest of the paper that

for any function h(X ,O )

h*(iXj,D) 2 h(X.,O ) Eh(Xj,O)

This is generalized to a multidimensional central limit theorem, and used

to give the result that

(Zn(tl) . Zn(tk)) m (Z(tl)b...,Z(tk))

Our proof is long. We believe that this is due to the complexity

of the problem. Nearest neighbor distancas are not independent. But for

large sample size the nearest neighbor distance to a point in one region

of space is "almost" independent of the nearest neighbor distances in

another region of space. The main idea for capitalizing on this large

scale independence is to cut the space into a finite number of cells. or

any point in a given cell, let its revised nearest neighbor distance be

defined using only its neighbors in the same cell. The fi,rst step, then,

is to s1how that asymptotically the revised nearest neighbor distancSs can

be substituted 'for the original nearest neighbor distancas. Now, given

the number of points in each cell, the set of interpoint distances within

the Jth cell is independent of those within any other celi. Therefore,

gVIven the total cell populati1ons, any sum of functions of, t.e revised

nearest neighbor distances is a sum of independent comconents, with each

such component being the sum of the functions of the nearest leighbor

di st.ances wi thi n a parti cul ar c2ll .
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However, the rmultinomial fluctuation of the cell pcoulation is not

asymptotically negligible. Thus, the limiting distribution breaks into a.

sum of two parts, one being the nearly normal sum of the independent cell

components given the expected value of the cell populations. The other is

an asymptotically normal contribution due to the fluctuations of the cell

populations from their expected values. The limiting form of the variance

reflects the nature of the problem. It has one term that would be t,he

variance if all nearest neighbor distances were assumed independent. Then

there are a number of other, more complex, terms arising from the local

dependence.

A moment bound:

Both the central limit theorem and the tightness argument

required for the invariance proof rely on moment bounds. Again,

there is some diff^iculty in untangling the dependence between nearest

neiohbor distances and proving bounds of the type required.

For example, we show in Section 2 that for any measurable func-

tion h on E(m)xC,o) - E(l) with

Ihilh sup l h(x,d)! <

there is a constant M < X depending only, in a specified and useful way,
on h and the dimension .n such 6hat

(EK i(Xj,Oj) )
4

n
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Both the central limit theorem and the moment inequalities (which

improve results in Rogers (1977)) should prove generally useful in methods

employing nearest neighbor distances.

The plan of the presentation is

Section 2: moment bounds

Section 3: 2nd moment convergence

Section 4: central limit theorem

Section 5: invariance and the goodness-of-fit test

Appendix: technical results on nearest neighbor distances

Section 2 on moment bounds is long and somewhat complex. But the

results are needed in the later proofs. The main results of statistical

interest are in Sections 4 and 5.

Assumotions on the densities.

Our general assumptions on the density f(x) are that it be uniformly

bounded and continuous on its support. These requirements can probably

be weakened, but the price may not be worth the extra generality. The

following conditions are listed to make the requirrements formal.

A: We can choose a version of f such that

(i) {f >O} is open

(ii) f is continuous on (f >O}

(iii) f is uniformly bounded.

Corresponding to A we have:

B: The given function g is nonnegative and

(i) {g>O} D{f>O}

(ii) g is continuous on (f >O}.

Clearly essentially all situations of interest are covered by A and B.



2. Some Useful Moment Inequalities

The central result of this section is the 4th order moment bound

(2.2) which is used to prove tightness via Corollary 2.5 . We believe it

will prove generally useful in the study of procedures based on nearest

neighbors. Its formulation and spirit owe much to the excellent thesis

of W. R. Rogers (1977). Our method of proof is, however, different from

his and suited to the rather delicate estimates we must make.

The proof of the central limit theorem requires only the use of the

2nd order moment bounds given in Lemma 2.11 and its Corollary 2.15. The

proofs of 2.11 and 2.15 are given early in this section and the reader

interested only in the central limit problem may wish to skip the rest of

the section.

The following notation is used:

P is the probability measure making X ,...,Xn i.i.d. with common

density f.

E without subscript is expectation under P.

R. is the nearest neighbor distance to X .

1¾ is the index of the nearest neighbor point to Xi.
D = nl /mR

I(A) is the indicator of an event.

F(A) = f(Y)dy
.0A

S(x,r) = {y; Ily-xi <r}

Si = S(Xij,Rj )

For h a measurable function on E(m) X[ -,) E(1), denote

tIhil = sup |h(x,d)|
x,d

h. = h(X2,D.)
*

h. = h. Eh.
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Throughout this section M, with or without a subscript, denotes a

finite generic constant depending only on the dimension m.

Theorem 2.1: If lIh < o, then

(2.2) E(Zi hi)4 < Mn2UhI2EE2Ih1I +n4E2lh1IF2(Sl)+nn1h1l2]

Before giving the proof of the theorem we give two corollaries.

Corollary 2.3: Suppose u and w are bounded functions and

h(x,d) = u(x)w(x,d)

Then there is a constant C < X depending on llull, NwO, m such that

(2.4) E(~jn=1 hi)4 < C(n 2E 2u(X )I +n)

Proof: The corollary follows from

E Ih, I < OwHEIu(Xl )

Ejhl I F2(Sj) < llwiE{Eiu(X )1E(F2(S)) | X) = 2wIlElu(X ) 2
llwIEI(Xlln(n+l)T

where the last equality follows from (1.1).

Corollary 2.5: If

h(x,d) = I(a <g(x)dm <b)

then

(2.6) E(ji hi)4 < M {n2(G (b) -Gn(a))2 +n}

where Gn(y), y > 0, is the distribution function defined by

Gn(y) = (1 -exp(-n)) Jf(x) 1 -exp[ (S(x,(y/ng(x)) dx
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Proof: Let

a(x) = F(S(x, a l/m

6(x) = F(S(x,(n /x )

Then, for j > 0, defining p = F(S(x,a)), p= F(S(x,B))

E(Ih,tFi(Sl)1X1 =x) = ECF3(S(x,R1)I(pa<F(S(x,R1))<p)X =x]x

= { u3(n-l )(l-u)n du
Pa

< Mni'j wj( -w)nn-2dW
np n

or

(2.7) E(Ih1IF3(S1)fX1 =x) < Mn (e np np0

If we now apply Theorem 2.1 and use (2.7) for j = 0,1 the lemma follows.

The proof of Theorem 2.1 proceeds by a construction similar to one

used by Rogers and a series of lermnas.

We assume that we are given a measurable set S C Rm, F(S) < 1, and

a set of r < n points, x = (xl,...,xr), where the xj are fixed points in

X. Let Q (*IS,x) be the probability measure on (Rm)n such that X 1.0.,Xnr

are independent identically distributed with their common distribution

being the conditional distribution F(.ISC) and Xnr+l = x i =l,...,r.

We write F(jISc) as Fs. Its density is, of course,

f (x) = f(X)/F(SC) x E- SC

= 0 otherwise.

We typically write Qr for Qr( S,x), and E to denote the expectationforQ(
under Q,
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On a comnon probability space take X1,...,X i.i.d. F and Yle..,Yn
i.i.d. F(.ISC) and independent of the X. and define,

X. i; i=l,...,n-r and X.;S
1 1

Y if izl,...,n-r and Xj_

xi.n+r if i=n-r+l ,. ..,n

Clearly X , * Xn
neighbor dis ftance

have joint distribution Q,. Let R be the nearest

o'f Xi in the set Xi ,.**SXn and d0, S.jsi be defined

similarly.

Lemia 2.8: For n > r, there is a constant Mt such that

EQrh(XA101) - E h(X-,,) h%M (r +I(S))

Proof: For r > n/2, t.he bound holds trivially. 'or n/2 > r,

(2.9) q- h(Xl 1,) -E h(X1,D'1)=
r

1 n-r
(n-r') 7 rE h(X.i) - £ n ):

n-r£;h(X ,0j)
(n-r, hz- (XX XN

i=irl- r
(n-rV'1jE =
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Let

N = E I(X #X. )
i=1

,he number of "changed" points amona the first n-r. Note that EN =(n-r)F(S).

Now

I(Raxi-RiXi X < I ij ,k I(J.=j, J.=k, vAX or
I t w1 XI ~X )A

and hence

(2.1 0) 11\jj2 i) < Z It Xj) ii I(J4=j)

tI (Xk#Ak ) I (J -)k)
k k

< Za(m) (N+r)

by corollarv S1 of tihe appendix.

From (2.9Q) - (2.10) and the boundedness of h

QlE1hE; h < I,hl t(1+2. (m) ) (S) - 2^ (m) 77

! I2( 1--62 (m) ) (,.. ~, - I*,)

and the 1ema is proved.



Lemma 2.11: For ugh, lihil < , denote h h 1)9 g2 = 9(X2 2)

for n > 4,

Icov(h1g92)I < MIgilg(n1Elhl1 +Ejh1F(Sl)j)

Proof: Write

jcov(h1 '92)j <

fcJ =2] h1g2jdPIJ=2

f'1= h1g2|J[JhdP+ h |g2dP
EJ1i=2] 192J[ 2192J

< 2 11 1 kn h* < 41 EIh

I[J #2]h1g2dP = f h1{E(g2JX1,XJ -Eg2}dPJ10[ 2J
9

c[J1~2 (9 IXXJ19

On the set 1~2, given X1 = xi, XJ1 = x2, the (Xi. 2 < j < n, j J,; X1 Xi }

are distributed according to Q2(* S(x, Ix2 x1 1),(x1,x2)).

(2.14) h192dP
[19i1 42

By Lemma 2.8

< ! 11 0M0Ig(2n +F(S1))dP

< 4M IlghiCn 1EWh +EIh F(S )1]

and the lemma follows from (2.12)-(2.14).

Corollary 2.15: For lihhl, ilg < c, and for n > 4,

icov(h g2) < M2 lgI (Eh2)1/2/n

Proof: From (1 .1 ) it follows that EF2(S ) = 2/n(n+l ) .

Schwartz inequality.

Now apply the

15

But

(2.12)

Moreover,

(2.13)
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The bounds in Lemma 2.11 and Corollary 2.15 can clearly be made symmetric

in hI and g2. We use them primarily for

Lerna 2.16: ICOVQ (h1,h2) cov (h1,h2) < 1Ihil 3(; . )
r

, 1I IOj
Proof: Let (XJqXJ),...,(Xn*Xn) have the same joint distribution as the

vector {((X,X1 )90*1(Xn,Xn)} and be independent of that vector. Let

primes on 0,,dj,p etc. as usual denote calculations based on the

appropriate sample. Then

(2.17) cov (h1,h2) -covQ (hl,h2) E

- (h h1)(h24h2) (hj-hl)(h h7)

where

h h(X),O.),' . = h((.)O), h = h(X ,DO)

The proof proceeds by a series of steps.

Lt

Ej {hAih.}

Ei {hjh;hi}
Since

T(Et) < I( xi) 1 1 R.R)
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LeTVla A.1 and elementary arguments yield that

(2.18) max(P(E tl E.), P(Eil Ek) all i,j,k,i#j} < M(+ f2(S)

Since a a 0 on CU21(E UE'}JC, (2.18) and symmetry arguments imply

that

(2.19) ELtI' 4 1 -(h l-1)(h -h )IE E2Ecc; C£C )

2 (r2 2)

Using lemma A.1 again we bound the first tern on the right hand side

of (2.19) by,

( 2.`20) 4 1 '2 1 2 2) I ( 1 1 ) 1 1r1 j)1

+ MJilhlj + F (S)

Let - a (i : X #Xx .
lk .%

Given !, X~ifi,X1X3 ,x1,I and X 1 1 I 1e
1 VI 1 2 2

variables X1 ,. ..,Xn can be permuted to have a

Qr( ISX IR )U(1,1 ) ,X i -X1iXXJ}
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distribution with Xin the lead and r - N+I(X1zX) + I(Xi =X3 ) + I(XJ =XJ )

Conditioning on this information within the expectation 4in (2.210) and using

the independence of h2 we can apply lenma 2.8 to the difference between

the conditional expectation of h2 and Eh2 and bound the first term in

(2.20) by

(2.21) 411hI12 I¶(m) E{(I(X1+1) +

+ F(S1) + r(S1)

Estimates of the order - + F2(S) for all the terms in (2.21) are given
n

in leruna A.2. Combining (2.19) (2.21) the lemma follows.

Lemm 2.22:
72

(2.23) lEhh2h3h4J M4 h 2(1 . h 2 n1 2 3 4 < M4
n

n Ef1; cs)4

Proof: Let E12 CJ3J1J2(3,T4},]r h2 hh

Then,

(2.24) 'l2tdP z f h1h2 (covQ (h,h2)
E12 E12 r

+ (EQ hIE-h1) }dP
r

where

Q I Q(X2 }2)x A)and r < 4.
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Apply lemmnas 2.8, 2.11 and 2.16 to get,

(2.25) 2t 1 dPi < ( lh[l (n' Ejh1j + EIh11(Sj)f), x If. hhP
12 c-~~~~~~12

2 r *. 2 +fI2+ M2 fjhf I j Ih1*2!(n2 r (S1) + r (S2))dP
12

Next

(2.26) f chIh2 hZ *h2

+ 2 h h
iaf 31J ({3,4}] 1 2

Condition in the first integral on the right in (2.26) by X1 ,X3 ,j%
and apply lemna 2.8 to get the bound

(2.27) 2M0Ilhll f Ih1' (nh + F(l))dP

< 4M0 J L (nK1EIh, I + Eh1F()(SlI)

by the usual symmetry argument. Condition in the second integral by

X2 'J2 and obtain a bound as in (2.27). Conclude that

if,. h1h2f < Icov(h.,h2)1 M .11 CI Sn _)!)
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and hence that the first term in (2.25) is bounded by

2(E2 hi IMIJ1hII + E21 h F(S1 )I)

On the other hand, applying lemma 2.8 again

fIhh I (K2 + F2(Si)) . ihfIf Ih1(n- 24

4f| j{h1j(n 2 . F2(SU 2j 4 M: lhi2 (K
EJ1m & ( l T *

O 1h21( ' F(S1 ))}

The first term in (2.29) is < M lIhii 2n 3 by the usual

The second is

(2.30)

I M(E 21hIn`2 + EIh1f EDIhIF2(Sl)) r

< M(2(E2ih1In 2 + n2 E2!h |F2(S1)) 4

symmetry argument.

1i hjl 2n 03)

h 2 nK3)

and hence combining (2.28) and (2.30) we get

(E2!_14
If1 X dP I < M[IhIl 2 I h (S1 )

+ n2 E2 I h If2 (S1 ) 4I h ,.I 2n

Now consider

f 231
TrdP '- I rP 2 f

1JI3R3{vvA i rs1-3 , 1 -=z 3rj 23 7

'* -3 ,2I13 1~~~'.r ''

(2.28)

(2.29)

(2.31 )

(2.32)
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By conditioning on X1,X3,J,,J3,XJ ,XJ we can bound the first inteqral on
- I I.j

the right in (2.32) in exactly the same way as J
E12

rrdP by,

(2 .33)

+ lihil2f 3h1h3j(n'2 +

.I~~~~ h1h3dPf
r I (3,J34)2)4}]

F2(SI ) + F2(S))dP

Now use symmetry to bound

~I h1hi3lJz3 ,J3t{24}14 3
by LihI ElhE l

and the second tern in (2.33) by,

4

Hence,

v dPi < MI IhI 12
(C2! hl

--
I

t C2h F(51)

.+ IKhl 2 n'3)

(2.34) 1
4 JI:a3,tJ.t "2.141 ]( t.I "O

E I h11
I n El, h F(S ) 11 I



22

Next write,

f rrdP f
CJ1=3,J3=2=2)J2-4

Tr dP + Tr dP
[J1 a3 ,J332,32242

1 n
PCJ =3.tJ3=2,J2=4] an3 Ej PCjl=3,J3=2,J2=i]

< (n_3)'1 PCJ1 3,J3=22 < (n-3)'1 (n-2)1PCJ x3]

< M n 3

I

-3 ,J3=2 ,J =4]
TrdPfI MlIhfII n 3

Next condition on Xi,X2,X3,J1,J2,J3,Rl,R2,R3 in the first term of (2.35)

and apply lemna 2.8 to get

I ,
3lJ32 ,J24) EJl 33 1J3-2)

(2.35)

Now

(2.36)

Hence,

( 2.37)

( 2.38) IiaF(Si=1 11T dP I < MO I h 4
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Now,

Pc31=3, J3323 < Mn 2

as in (2.36) and similarly,

23IJ 22] F(Sl)dP <
[1 ~3F32

a (n-2)(n-l)] 1 EF(SM)<Mn

J F(S2)dPJ1 33J32
= (n-2) 1 f

i332]
F(S2) jII2,3r(J. =3)dP

f (S2 )dP

by corol 1 ary SI ,

Mn -3

(2.41 )
f[J=3,J =2;(S3)dP

Combining these estimates with (2.38), (2.37) and (2.35) we get,

(2.42)

(2.39)

(2.40)

(n-2)-l F(SI)dp
il=3]

.1 (n-2) -1 a(m)

012 t< C(n-2)(n-1)]4 la .M) F(S2)dp <

.1 r (,-2) (n_l ) ],,.I 1=3
i. a(m)Er(S3) < Mn

m

i-r dP < m 1 4n -3
i =3,J =2]

N I

1 3
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and hence from (2.32), (2.34) and (2.42),

(2.43) iJ rJ= *rdPI < M h2 (S1)

! 2 n3)

Next consider,

(2.44) f r dP = f r dP CdPLJ =3Jt1'3941] [J=3] EJ1=J =3]

Jf 'TTdP

Of these terms the first is bounded in (2.43). The next is written,

(2.45) J 4,IdP J dPEJI=2=; 3 1 2EJ 1= J9= .W 1 &
The second term in (2.45) is bounded by Mlfhlh n3 as in (2.40). The
first (conditioning on AX1 X2s;, etc.) is bounded by

Mfh4 f3KMlh!i L J3( + F(S ))dP

and acain bv nM3 by arguing as in (2.39) - (2.41). ?or example,

f=3F(S)dP j J (S1)- (nn-2
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Final ly,

(2.46) IfJ2TdP < I I J2II1 jh1 2h
[3J=1 32=3=4]

< (n-3) IhI JJ3 IhI vI
- [(n-3)(n-2)]Y1Ihlh2 E|hh2l

<Mn2 HhII2 (E2Ihll + cov(jhl1,1h21))

2 2 2 21< Mn (hI(lnhI - hilh n')

by lemma 2.11. By our discussion and (2.43) (2.46)

(2.47) TrdP < MlhI2 ( E2 2 F(S h2 n

Now by the Schwartz inequality,

E2hIhF(S ) < E!h1hE!h, -2(SI)

E2Ih1I
<-I 1- n2E2 -2
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The lemna, therefore, follows ,from (2.31) and (2.47).

Lerrma 2.48: For M5 < co

lEEh]2h2h31 < M5 fh[j2 nE2 Ihi IF(S1 ) +

The argument goes much as for lenma 2.22 and is sketched.

the i ntegrand by IT

h w2
n2

Ifwe

4%J 2, 33Ch.2 EI' 11Hh 3

12{ 2 2 1.SM IIh II(n'~E Ih1I + nE ih1 IF(S1) + h 12 n-2},

| hlh*IdP < Mn 1 hl h2Jj*h*jIdPCh*12h*h*dPdP< I Ihil 12

< MI Ih|I2 n-l(E2h1 -t6 n hlIhI12) arguing as in (2.46).

The I elna fol lows.

(2.49)

Proof:

denote

while

ii X2,9 31
-1'oir dP I :S M I ih I I (n E ih, I + E Ih, IIF(Sl ) )i
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Proof of Theorem: Write

E(t hi)4ji
< n EDh124 + 6n(n-1) E[h*]22hJ2

+ 6n(n-l)(n-2) fEhJ,2h h 1 + n(n-1)(n-2)(n-3)IEh4h*h*h*

We apply lemnas 2.22 and 2.48 to the last two terms of (2.50); note that the

second term is

< 6n21lhil2 (E2lh*l + Icov(!h*I,Ih*j)I)
and apply 1 emna 2.1 1 ,and bound ECh*] by 1 61
rne theorem follows.

(2.50)
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3. Second Moment Convergence

The central result of this section is the evaluation of the limit

of Var( L 1 h(Xj,D.))2 for a certain class of functions h. Starting with

the density f(x), define

y(x) = f(x)-1/r

and for any measurable function h on E(m) x [0,) X E, let

fi(x,r) = h(x,y(x)r) .

Define LO, L1, L2 as functions of bounded variation given by

(3.1) L0(r) = eV(r)

-V(r1 )-V(r2)
(3.2) L1(rl,r2) = e ) 2)V(rl) +V(r2) -V(rI)V(r2)]

-V(rl)-V(r2)V(r1,r2,z)
(3.3) L2(rl,r2) = e 1 2 IJ (e 1l2 1)dz -V(max(rl,r2))]2 2 ~~~~~~B(r1 ,r )

where

B(rl,r2) = (z; max(r.,,r2) <rzl'r+r2}

V(r1r25z) = TS(O,|r )fS(zr) dy

For any two functions h, h' define the functional L(h,h') by

(3.4) L(h,h') = h(xl5r1)h'(x25r2)f(xl)f(x2)Lj(dr,,dr2)dxldx2
+ fh(x,r1)h'(x,r2)f(x)L2(dr1,dr2)dx

The moment convergence result is
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Theorem 3.5: If h is measurable on E x(i) ,w E and satisfies

(i) Rh1 < X

(ii) the set of discontinuities of h has Lebesgue measure 0,

then

Var( 1n h(Xitoi)) a2(h)
where

(3.6) a2(h) = h2(x,r)f(x)L (dr)dx [{h(x,r)f(x)L0(dr)dx]2 + L(h,h)

As the proof will reveal, the first two terms of (3.6) would be the

limit if the R. were independent. The L(h,h) term is contributed by the

local dependence of the nearest neighbor distances.

The proof of the theorem is split into two pieces. Proposition 3.7

below shows that the diagonal terms in

1 n* 2
-(I, h (X ,D ))

converge to the first two terms of (3.6). Then proposition 3.20 gives

convergence of the off-diagonal terms to L(h,h). We assume throughout that

the conditions of the theorem hold.

Let X, 0 be a random m vector and nonnegative random variable

respectively such that X has density f and

P[D >r|X] = exp{-f(X)V(r)}

Equivalently, 0/y{(X) is independent of X and

P[D/y(X) >r] = L0(r)
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Proposition 3.7: Let f satisfy A(i)-(iii). Then, as n--co,

(X1 D1) (X,D)

where (X1,Dln) is used to stand generically for the common law of any of

the pairs (X.,D0) and denotes convergence in distribution. Therefore

(3.8) Eh(Xl,Dln) hfh(x,r)f(x)LO(dr)dx

(3.9) Var h(XlSDln) fh2(x,r)f(x)L0(dr)dx - (fh(x,r)f(x)LO(dr)dx)

Proof: Almost immediate, since

P(Dln>rXr x)x e-f(x)V(r) = P(D>rjX=x)

and the set of discontinuities of h has probability zero with respect to

the (X,D) distribution.

Proposition 3.10: For h(x,r) any function satisfying the hypothesis of

theorem 3.5

n Cov(h(X1,D1 ),h(X2,1D2 L(h,h)

Proof: It is, we assert, sufficient to show for any two functions 11 .2

of the form

(3.11) fj(x,r) = gi(x)I(r>r) , i =1, 2

with g.(x) uniformly continuous and bounded, that

(3.12) n Cov(¢1(Xl,Dl)),2(X2'D2)) L(p11p2)

To see this note that if 6 is the set of all finite linear combinations

of functions of the form (3.11) then we can get a sequence hk '-such that
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I hk11 < 211h11

and with respect to L-measure on E(r) x[O,oo), hk b-h a.e. (since h is

a.e. continuous). Now

(3.13) Cov(h(XlD1),h(X2,D2)) - Cov(hk(Xl ,Dl)q,hk(X2,D2))
= Cov(h(X1,D1 ) - hk(Xl ,D1) ,h(X2,D2) +hk(X2,D2))

Using corollary 2.15 on (3.13) gives the bound

limrCov(h(X1,D1),h(X2,D2)) -Cov(hk(Xl,Dl),hk(X2,D2)) < cilhil(Elh-hkl )1/
n

Now the bounded convergence theorem gives E(h-hk) -0, and (3.12)

implies that

Cov(hk(Xl,D1)9,hk(X29D2)) -4 L(hk,hk)

Since L(hk,hk) -L(h,h), the assertion follows.

Proof of (3.12): For i =1,2, let

Sj = S(x,rn 1/mrn) , F. = F(S
12 = F(S1 nS2

and let

A = ((xl,x2); tIx1-x2U >n /m(r1+r2)}
B = ((xl,x2); n 1/mmax(r1,r2) < IxI x11<nl1/m(r+r2)}

C = ((xl,x2), iix x2 ' n 1/mrmax(rl,r2)}
Then

[ (1-F1-F2 n-2 (x1,x2) A

P(R1 >n 1/mri, R2 n 1/mrn,X =xl9x = (1-F F2+F2)n , (x1,x2) e B
-1/rn 2R >n r21x1 X2=2I-2 12 2

0 ,(x1,x2)eC
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and

P(Ri>n M Xi xj 2 (Ip-Fi)nl1

Then, denoti ng
1 1

L(x1,x2,r9,r2)r P(Rl>n r,r,R2>n mr2IX=xi,X2=x2) - C(1-1)(-1.F2)

and gl(xl) by gji f(xa) by f.,

Cov(ol,O2) fg1(x1)92(x2)L(xl,x2,rl,r2)f(xl)f(x2)dxldx2

919i r(1n-;2) C(

)n-2
JB10g, 50( 1FT F2+F2l 2~

1-Fl) n(1-F2)n -ifIf2

(1F1-F2 ) n2]f1f2

Because nF. < I/(r.), where f is the supremnum of f, and nF. -f(x.)V(r.), for

1-1~~~~~~~~~.

fixed x1, x2
nC( -F -F n-2 (I 1(1-1)n )-in 1

m ~~~~~~ 2

fl1')n'2(1-)n-2[{ F- 12 }

C -( - (f(x1)V(rl)4'f(x2)V1(r2)-f(x tx)(x2)V(r1)/(r2)J

( i f-
-0 rl) (i -F2)
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Furthermore, the convercence is bounded. Therefore

' f r1,r1) (x2 r2)L, (dr, dr2)f(x, )f(x2)dxldx2

as can be seen by making the transformations V(r.) = f(xi)V(r.).
In I2,I3 make the transformation

+ mX2 1 n z

leading to

B = ((xi,z); max (r1,r2) zII1I< r1, r2}

C - {(X1,Z); IIzil < max (r1,r2)}

On BUC, for xi fixed

f(x2)g2(X2) - f(x1 )g2(xx)

uniformly, and

n Fi f(x, )V(r,)
n r12 f(x1)V(r1,r2'z)

wvhere

I(r,r2 ,z) fdy

!iy rl, '1y-z11 < r2
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Therefore

-fd(x)egV(r)+V((rf2)()2
- 1)dz]e l (x)g2(x)f (x)dx

A simpler argument gives

n13I- fV(max(r1 ,r2))e
-f(x)[V(r1 )+V(r

2g91(x)g2(x)f2(x)dx .

In both integrals, make the substitution V(r!) = f(x)V(r.) and add thelt
limits together to get the proposition.

nI -- Ir f(x)V(rl 2,z)n2 'J '@
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4. A Central Limit Theorem

The main result of this section is

Theorem 4.1: Suppose the set of discontinuities of h has Lebesgue measure

O in E(m) x[( ,) and

sup Ihi = lhih < c

x,d

Then if the density of the distribution satisfies A(i)-(iii),

1 n*2(4.2) l.-n h (Xj,D)Di N(O,a2(h))

2where a (h) is given in Theorem 3.5.

The proof proceeds in a series of propositions.

Notational convention:

Lower case c denotes a constant depending only on m and Ihil. The

dependence of other constants on various auxiliary parameters introduced

below will be noted as needed.

Proposition 4.3: There exists a sequence of bounded sets CN C E(m) with

CN C CN+l such that

1) diameter(CN) < N

2) inf f(x) =ON >0
xECN

3) P(XeCC)EC 0

Proof: There exist compact sets ANC AN+l such that f dx - 1. Choose

>0N> such that Nf dx -) 0. Let
fN

FN =x; f(x) >6 J
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and take CN = ANrlFN. Then

f f:f< C f < 6Nf dx
IAN CN - ANFN AN

sO f-B 1
CN

In preparation for the next step, let DN be a cube of side N such

that CN C DN. Divide 0N into L = (k)m congruent subcubes 0N,Z' Q-1,...,L,

and let

B = ua(BZ)

where a denotes boundary. The BV, Q=l,...,L provide the basic cells such

that nearest neighbor links between different cells will be cut. From now

on until the end of the string of propositions N and the B., Z=l1,...L
will be fixed.

Select dN > 0 and let

EN = (x; xeCN, d(x,B) >dN}

where d(x,B) is the distance from x to the set B. Write (X,D) for (Xl,Dln).
Note that by using f(x) < sup f(x) = f, we get

x

P(XECN, d(X,B) <dN) 2mdNLl/mNmlf

Now let

h(x,d) = I(x EEN)h(x,d)

We suppress dependence on N, L here and in the sequel except where

emphasis is needed. Denote (recalling that h = h-Eh, h h-Eh),

Zn = I 7n h(X.,D.)
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Zn(N,L) = n-: h(Xi Do))

2 1J'i2
Proposition 4.4: E(Zn -Zn (N,L))2 < c(P(XeEc))112.

Proof: This follows directly from corollary 2.15.

For the next step, define

O
Rj { inf IIX.-X.II

i Ej 1 j
X eEB

if X. Bz, no other X E B

if X. E Bz

and redefine h(x,O) = 0. Let Dj. = nl/mRj and3 3

Z' (N,L) =
1 n *

h (X.0,D'.)-3

Proposition 4.5: 2 -(n-l)SNV(dN)E(Zn(N,L) -Z'(N,L)) < cne where cN > 0

depends only on N.

E(Z (NIL) -Zn(NgL))2<21E(j Aj)2n - n

<: Ij. EA2
--3

where

A. = h(Xj,D.) - h(X.,D'.) - E(h(X.,D.) -h(X.,D'.))

E(Z (N,L)-Zn -'L)) < 7 E(h(Xj9 ) -h(X 3))

Now X E EN and d(X3IB) > R implies R = R So

E(Z (NIL) -Zn(NgL))2 < 211hil2nj P(d(RjX)R, XeEN)

< 2IIhIl nP(d(X,B) <R, XEEN)

so

Proof:
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where (X,R) stands for (Xl,Rmln) by our usual convention. Now

P(R>rIX=x) = l - F(S(x,r))]nl1

Note that d(X,B) < N/rm for X E EN. Now

inf inf_ EF(S(x,r))/V(r)] = > 0
fCN O<r</mNN

since M(r,x) = F(S(x,r))/V(r) is jointly continuous on [0,/;i N] xCN, where

CN is the closure of CN' and since M(r,x) > 0 everywhere in CN x [O,v'm N].

Therefore

RX -(n-l)ENV(d(x,B))
P(R >d(XIB) , X EN) e f(x)dx

For x E EN' d(x,B) > dN, so

P(R >d(X,IB), X EEN) < e( N()

and the proposition follows.

For the next step, put B0 = C , and denote

P(XEB ) = pI, Z =0,1 I ... IL

so )L=1 pg = 1. (Assume that for every Z, pz > 0, otherwise delete BQ.)

Let
(=X(X. BQ)

so the (n0 ...,nL) have a multinomial distribution with parameters

(pO''.pL). Consider the following construction: draw numbers n0,...,nL'
Zn, = n from a multinomial distribution with parameters ( Po.,L. ) Then

put nq points X jQ), i =1,...,nQ into B using the distributionFZ(dx) = P(X E X)z
F (dx) = P(X Edx'XEBZ)zI
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Denote by P., the joint distribution of X ),i =I,... ,ng, let R be the

nearest neighbor distance to X(Q) from the other points in B,, and

D(Z) = nl/mRRZ). Put

n ~ ~ ~ n<
( ii= h(Xt Z), D( )) nQ >1

tO ~~~~~~,ng
Then

XL=1 TZ = In= h(Xj9D%)

Proposition 4.6: There are constants Yn £Q=1,...,L such thatYnZ
and 2

E(E(TjIn,) - ETz - (n.- En,)yn ) < c(z) < X

where C(Z) is independent of n.

Proof: Define

W (rIx,n) = P (nl/mRR) >rtx(Z) =x)

= [1- Fz(S(xrn-/M))]
Note that

E(T.In.) = njh(x,r)W (drlx,n)FZ(dx)
Define

Xn(rlx) = Wz(rlx,np Z)

-1/r no~ -1[1C F
- F (1(S(x,rn m))]

and suppressing the dependence on L, let

yIn = (nz-npz,)/(np -)

Then
+1

Wz(rix,n Z) = yn
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Then
n1

W (drx1n) = X (drIx)

=(nl ) Xn d Xn

where d Xn xn(drix). This is zero for vin = -1, so we eliminate this set

in the expectations to follow. Writing nQ = (np -lh)U+npQ leads to the

expression

(4.7) E(TZInL) = np(l+hn)2|fXnndXn dPZ - 4n(l+Un) fhXn diin dP

The expectation of the square of the second term in (4.7) above is bounded

by CZOhi 2/n, and is henceforth ignored.

Next, expand
2

Xn = 1 + Ia lOgXn + (log Xn)2Xn

where 0 < G < 1, and substitute into the first term of (4.7). We assert

that all terms containing a power of uin higher than one have squares whose

expectations are uniformly bounded in n. For example

(np) 2E(un fh(log Xn)dXn dP)2 < (np )211IhIEu 4 < Cllh 11 (1-pz)
and uXn) 2Xn

(np )2E{Ia2(l+I )2fh(log x2xnXd

< lIhI12(np )2EfE2n(l+u)2jn(log Xn) 2Xn ndXndP2j
< 211h1 2E42(np2[E{u4(1+U 2; -1 <u 0} + E({i4 (1+14,);

4 >O0](nZ LIn Ini n-n n

< C lhU2

Therefore

(4.8) E(T In9) = np, fh(l+Ian(2+1oa xn))dXndPZ + 02(1)
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so

(4.9) E(T.1n,) -ETQ = npe% fh(2 +log Xn)dXn dPQ + 02(1)

where 02(1) in (4.8) and (4.9) denote quantities such that

sup E(02(1))2 < *. Letting the Y of the proposition be defined by

no .

yn,£ ij h(2 +log -X)dXy dPn Z np j n n z

The proof will be completed by showing that the integral on the right above

converges. For x fixed, xn(rix) is a non-increasing function of r such

that for x E Int(BZ)

xn(rix) e- f(x)V(r) = xO(r!x)

Since h(x,r) is a.s. continuous with respect to dXo dPZ, then

{h dXndPZ fh dxo dPz

Now let

xn(rix) = (1 -log xn(rtx))Xn(rlx)

so that

x (drix) = -(log Xn(rlx))Xn(drix)nnn

For x E Int(BZ)

n (rfx) (1 +f(x)V(r))e-f(x)V(r) = x0(rlx)Xn

and so

(4.10) Jh(log Xn)dXn dPz Jhdx0 dPZ
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Proposition 4.11: - =,L[IE(Tln.)-E(TZ) I N(O cr

where

a2 l= 2 2aN,L yYP Uzpz)

Moreover, n1 E(V=L=[E(TIln,)-E(T 2 a2

Proof: Clear from the preceding proposition.

It is useful to recall the dependence of parameters on N and L at this

poi nt.

Proposition 4.12: Let

(4.13) Un =- jZ=l(T L-E(TzInZ))
Then there is a constant s2 < X such thatN,L.

E(2I ., ,n
a.s.

sE(UnInl ...,nL) L N,L

Proof: Given n = nl...,n , the terms in the sum for U are independent.

Thus
2 =1E(Un In ...nL= I Var(Ti n2

and

Var(T,ln,) = n Var(h(X(9),D0())Ing)
+ n (n )cov(h(x(Q ,D((z)),h(X(Q ))D( InR)

it is then sufficient to show that

Var(h(X(z),,D(z) )[n) aos constant

n Cov(h(X(z)9(Z))qh(Xz(2,) in)a.s. constant
-11 - 2 2 z L~~~~~~~~~~~1
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This result can be gotten through a simple modification of propositions 3.7

and 3.10.

Now we are ready for the final steps. We can write

(4.14) Z,(N,L) = U, + V

with U defined in (4.13) and

Yn /F J=l1[(T.Jnl) -ET.]
By = we mean equality in distribution when U, and Vn have the joint distribu-

tion we have implicitly given them. Denote e2 = P(X Ec).

Proposition 4.15: If a2 = lim Var(Z ), thenn n

2_ 2 2la (s L+N )I < ceN + 2a ceN

Proof: By propositions 4.4 and 4.5

(4.16) lim E(Zn -Z'(N,L)) < ceN
n

Use the inequality

(4.17) tEZn2 -EZ'n2(N,L)j < EIZn n + 2/E(Z YE(ZrrZ'(N,L))7(4.1) In n Z'(N,L)1+2/SZ n

and take n-o to get the result.

Proposition 4.18: Let a = max p and take t!3 < a Note that a depends
Q

on both N and L. Let gn(t;N,L) denote the characteristic function of Z'(N,L).

Then 2 2 2

TFm ig (t;N,L) -e (N,LNNL) /2, < cN,Ltj3
n
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it(Un+V n
Proof: gn(t;N,L) = E e

itV itU
= E(e nE(e nin)) , n = (n0,...,nL)

Given n, Un = with the A independent and havinq the conditional

distribution of T E(T|In.) given n . Hence

i tUl i tA2,
E(e flj) = 1TfQ(t) , f9(t) = E(e In.)

Applying corollary 2.3 to A...

E(A2 InQ) <Cl(n /n) , E(IA3I1n,)n) (n/n)3/2

where ck will denote constants depending only on m, lihil, and Ak will be

quantities such that |ekl < 1. Then

t 2 211 - fg | < t2E(A2|nQ)9< (c1/2)t (nt,/n)

f (t) - 1 + t-E(AQin,) |c2ttI 3(ng/n)3/2

Temporarily restrict t to the range ttIa < C-1/2/2. Define

Bn = {max(n/n) <2maxp.}

On Bns 11 - f9(t)I < 1/4, hence

log fQ(t) = logCl - (1 - f(t) ) I

= _-E(A21n.) + ect3 (n/n)3/2 + G c t4(n /n)

So

;fz(t) = exp(- t2 E(A In ) +A
z

where, since it3 jla <1
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Therefore

Anl < C2it31 Z (n /n)3/2 + c3t4 Z (nz/n)2
< c2t3la +C3t4 'a2 < C ItI3

An 3

and so, denoting a 2 = E(U2 in)n n
2 2

l ~~6 n2t2/ 2

3e n l <-lt3
holds on B for all t such that it31 c , and It!cx < c 1/2/2. Writen

g (t;N,L) = E(I(Bn )e n n) + E(I(Bc)eit(Un+Vn)

Since P(Bc) -0O, the second term goes to zero, so

n~~~~~ _ i tVn- Snt2/23

Combining this with propositions 4.11 and 4.12

(52 4+a2 )t2/2 3
limIg (;N.L)-e NL < C5It la

To complete the proof we need only remove the restriction tIa < c-1 2/2.
But this can clearly be done by increasing the constant c5.

The stage is now set for the proof of Theorem 4.1. By (4.16)

lmn 1 9n to)n ( t;N, L ) < T"imn El|exp{i t (Z -Z ' NL ) N

where gn(t) is the characteristic function of Z n So, by proposition 4.18,

(4.19) limn 22t(t)-exp2(s +a
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for ti3ct < 1. Now let N-*.o, L-X--co in such a way that ac.- O and eN-O.

By proposition 4.15, if eN--)O, uniformly in L,

1 imN (S2 +2 =a2

Since the restriction ti t3a < 1 is satisfied eventually for any fixed t,

as ax--'O we conclude that, for all t,

limn gn(t) = e-:at /2

and (4.1) follows since the equality of a2 and j2 (h) is derived from the

moment convergence theorem 3.5.

By considering linear combinations of h's it is clear how the results.

can be generalized to provide a mult-idimensional central limit theorem, and

the moment convergence theorem 3.5 can be easily modified to give the

limiting form of the covariance matrix.
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A

5. The Process H(t) and Goodness-of-Fit

First, a Glivenko-Cantelli type theorem is established for H(t).

Let

1fW ; g(x) > 0
(5.1) X(x) 2

;g(x) z Q

and define a d.f. H by,

Etx(x1), o< t < 1

(5.2) H(t)
1 , t > 1

and

(5.3) H(1) - H-) PCg(X) 0]

Note that if '=g, then c=O and H is the d.f. of the unifcrm distribution

Theorem 5.4: If A(lii) holds, as,

(5.5) sup IH(y) - H(y)f a4s. 0
y

Proof: We begin by showing,

(5.6) H(y) H(y) a.s. Y 0 < y < 1

and

(5.7) H(1-) 0 1-=- H(1-), a.s.
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To prove (5.6) note that by corollary 2.3,

PC!H(y) - EH(y) E>E O(n')

and hence by the Borel-Cantelli lemnma,

(5.8) H(y) - EH(y) 0 a.s. Y 0 < y < 1

Assertion (5.6) then follows by using (3.7) to show that

EH(y) * H(y). Next (5.7) is an immediate consequence of the S.L.L.N.

To complete the proof of the theorem, let

(5.9)

H(l..)

(1 - )
H (y) -

Io < y < t

O~y<1-aml

* ^
and define H similarly in relation to H. By (5.6) and (5.7) H converges in

* 1

law to H with probabil ity 1. But H is continuous and hence by Polya's

theorem,

(5.10) sup fH*(y) - H*(y)! a_s. 0
y

and (5.5) follows from (5.10) and (5.7).
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Defi ne a stochasti c oroces s on

(5.11) Zn(t) = HW(H(t) EH(t))

and a corresponding Gaussian process 7 with

y(s,s), < t, is de9ined by

(5.12) y(s,t) ffs (l-fftX) (1og sfxs f

log s log tftXfjsXf) - log sfA(st) f

('ge writ X, f for (x), I(x) etc.)

where

9(sIt) - tw: rI < I'wI! < rl + r

log7(s,C,W)

by,

e or c

miean C whose cova riaz.mcz, ncr,i on

4. ,. 1 09 tJa -X
Ar;J. lo0g tfx:Aff S 7

(sr)' ,(7'(s,t,w)-i )dwdx

3(s ,t)

21

fdz
S(O,r ) C\ S(w,r2)

where

V(r, ) = -log s

V(r2) = -log t

; f=g, trnen y(S,:), s < ., reduces '3
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(5.13) y(s,z) S - st(l + log1Q9S log ) -st7wIlw )dw

3(s,t)

Clearly the processes Z (.) can be identified with proabl ityn

measures on DCo,12 and i't will follow as a consequence of our proof t-nat

Z'*) can be as well. in fact, if a = 0, ' (*) has a.s . continuous sam: e

functions. Our main result is,

Theorem 5.14: Supoose that A and B hold. Then,

Zn 2

in the sense ofI weak convergence in O1,l" whera Z is as above and has a.s.

conti nuous samole f-unctions.

BeQore giving the proof we stat and prove The zoroIary c, greates:

int'erest to us.

Let

=n f (H(t) - EH(t)) dt

0~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~0
1n l; , (t - * )) d(;2 n

nzrol iarv 5.1 5: =g and A hcol ds,sbc:hSt and S, :n in 'aw o

f _2(;)` dt wnere has covariAnce func -4cn (5.13,.
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The corollary is, for-So, an i=rmediate consequence of Theorem 5.2. By

wri ti ng

,12 1S1 f Z~(H'"(t) ) dt

we see that the corollary follows in this case from Theorems 5.1 and 5.2.

Notes: 1) The theorem can be extended to the case : > 0 by a conditioning

argument as in Section 2. Of course the Z process is then continuous only

on CO,1 ) and has a jump at 1.

2) It is not possible in Theorem 5.1 to replace E? in the defini-

tion of Znby H. Although EH(t) - H(t), the difference is of the order of
-2

n m and will not be negligible for m > 3.

Proof of Theorem 5.14: We begin by establishing the tightness of the Zn

sequence using the 4th moment bound proven in Section 2. Let Ri,...,Rn be

as in Section 2 and recall that

1

°i nm Ri. iul,,...,n

Len.na 5.16: If- A(iii) and B hold, the sequence of processes (Z } is tight in

0D0,1) and any weak limnit point is 4in CCO,1.



52

Proof: We use a device due to Shorack (1973).

Note that:

1
Z(t,, Xn I(~(.)D < I A P (gxi <12i
nf-1 i Km ( i Km

where K is the volume of the unit sphere in Em. Let

loc t
Qn(t) n Km

where Gn is given in corollary 2.5. Note that by 3 and the dominated

convergence theorem Gn is continucois. For given 6 > 0, let t1<...<tKbe

such that,

Q (t ) =2± , 1 < i < Knyn

where < 1 < (K+1))

Let

Zn(t) a Zn(ti) -6 (Qn(tQn( Zn i n

for t1 < i < K,t- 1

Note that

Zn(0) = Zn(l) = 0

An elementary application of corollary 2.5 shcws that,

7 *t~Zn(;))4 2(5.17) (n() Z() < M(Q (t>)-Q (s)) ,al' s,t
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where M depends on 6 but is independent of n. Since, under A(iii) and 3,

dominated convergence implies that for each y,

G (y) 1 f(x) (-exp .1I ) dx

a continuous probability distribution; it follows from a slight modification

of Billingsley ((1968), Theorems 12.3 and 12.4) that (Zn} is tight and that

all limit points of CZn} are in CCO,1].n

Next note that

(5a1) sutlZn(t)'ln*(t)l SUPma Iu Zn(t)-Zn(ti) ti c t < tijl

+ f0 (sup(fQ (t)Qn (ti)I tj <nt < ti+l')IZn(ti+l) Zn(ti)I: 0 <i

< mx I[Zn(ti+l -Zn(ti) + F(EHn(tvi,"l ) "mn(ti))

+ IZn(ti+iY Zn(ti)I 0 < i < K}

using the monotonicity of Hn Hn() Qn(*)
Next note that integrating (2.8) for j0O, imolies that fcr C independent of n, i,

Y E( n(ti+1)~ n(ti)) < C - ((Qn(&1il

Hence,

(5.19) suptzn(t)-Zn(t)! < 2 max Z1(tf+i)7Z (ti)7 0 < i < K} +

3ut in view of (5.17), some elementary inecua'ii:es Ive
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(5.20) P[max{iZ*(t+i )-Z*(t ) I : 0 < i < K} > ]

< C.M E=O(Qn(ti+l )-Qn(ti)) ' - 0

By (5.18)-(5.20) for each d > 0, C independent of 5

(5.21) PE5upt!|tZn(t)-Zn(t)I > 2CC 0

Since (Z*} is tight for each 6, (5.21) implies tightness of {Zn} and a.s.
nn

continuity of all limit points. (See, for example, Theorem 4.2 of

Billingsley (1968). Note that the dependence of Zn on 6 is immaterial.)

Asymptotic normality of (Zn(tl)t*.**Zn(tn)) follows from the represen-

tation given in the introduction,

zn(t) = Iy=l h (X ,D. )

with

h(x,d) = I(exp{-q(x)V(d)} <t)

and the multivariate extension of theorem 4.1. Similarly the formulae

(5.11) and (5.12) for y(s,t) may be obtained after tedious calculations

from the appropriate straightforward generalizations of prooosition 3.10.

As an innediate consequence of theorem 5.4 and corollary 5.15 we have

Theorem 5.22: The tests which reject when Sl > c(ca) where
1~~~~~~~~

Pg Z (t)dt >c(a)'}

asymptotically have level a for H: f=g and are consistant aaainst all f # g

which satisfy A and B.
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Proof: That the tests have level a is immediate from corollary 5.15. We

check consistency for SO.
Note first that if f # g

(5.23) {(H(t) -t)2dt > 0

If not, since H(e S) is the Laplace transform of \(X1) and equals e s a.e.,

then Pf[X(Xl) =1 = 1, implying f = g a.e. Write

O= j Z2(t)dt + 2'/f1 (t)(E H(t)-E H(t))dt + nf (EfH(t)-EgH(t))2dt

Then

1 2
JZn(t)dt = Op(1)

J'J Z (t)(E H(t) -E H(t))dt = 0 (/i)j0n f g p

n{ (EfH(t) -Eg H(t)) 2dt X nf (H(.t)-t)2dt = O(n)

by (5.23). Therefore,

and consistency follows.

Note: In his thesis M. Schilling (1979) has made a far reaching investigation

of the power of this and related tests against contiguous alternatives, has

constructed tables of the asymptotic null distribution of S0 for m = 1 and

X and has studied the efficiency of the large m and n approximation through

simulation.
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APPENO0X

In this appendix we give the statements and proofs of several lemmas

of a technical or computational nature which are used in the previous

sections. We begin with a key lemma due to Stone (1977).

Lemna S: For each m and norm 11-1! there exists a(m) < such that it is

possible to write 2m as the union of a(m) disjoint cones C1,...,Cwith 0

as their common peak such that if

x, y £ C ,x,yiO, then I!x-yll < max( lxi , IIy ), j l,...,a(m)

The following straightforward modification of Stone's argument shows

that the lemma is valid for any norm.

Proof: 3y compactness of the surface of the unit sphere 'S(0,1) we can

find C . . ,() disjoint sets such that,

(i) Uj(1 Cj as(o,l)

(ii) x, y MC. -> x_yj <

Let

C. 2 (^X : xe C,, A> 0}, j=l,... ,(m)3~~~~~~~~~~~1



A-2

Suppose x = Xx, y ='7y, x, y e Cj. Suppose w.Z.o.g. X < 7. Then,

IIx-YI I =171 X-'I I 1( )IIYIIi AI+ YII < IIYII

The following are easy corollaries of lemma S.

Corollary SI: For any set of n distinct points, xl,...,x in Re, xi can be

the nearest neighbor of at most a(m) points.

Corollary S2: If C I,...,Ca(m) are as in lemrmna S, yo is arbitrary, x e C.+yO,
then

S(x.Ilx-yoJ) D S(yo,IIx-yo0) nl(Cj+YO)

The following consequence of S2 is needed for the proof of lenna A2 but

is of independent interest.

Theorem Al: Let Y be a random m vector with distribution G, density g, and let

YO be a fixed point,

Q G(S(Y,IrIY-Y!I))

Then,

(A.2) PCQ 'q]J <a(m) q, 0 < q <I

Proof: First let yo = 0 and let G. be the conditional

distribution of YjYeC1 and p1 = G(Cj), where the Cj are given by corollary

S2. Then,

(A.3) PCQ < q] 7 P j Q ' qJY CiJi >o
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But Y E C. implies by corollary S2 that

G(S(Y, 1YI ) ) > piGj (S(O,1IIY11 ) nCj

Hence, for pi > 0.

(A.4) PCQ<qiYE=C < P[G (S(0O,Yi)) <q/pj|YC:Cj] =
3 3 3 pi

since, given Y E C., G.(S(O,IIYI)) has a uniform distribution on (0,1). (A.2)

and (A.3) imply (A.1) if yo = 0. For the general case shift everything by yo
and apply corollary S2 in full generality.

Corollary A5: If Q is as in theorem A.l, r > 0

E(l-Q)rQ < M(r+l)2

where M depends only on m.

Proof: Since 0 < Q < 1 we may w.l.o.g. take r > 2. By integration by parts

E(l Q)rQ = {P[Q<q]{-(l-q)r+rq(l-q)r dq}
0

< a(m)r q2(l-q)rldq

3 r-l 2 w r-1

< 2a(m)r(r-l)-3
< M(r+l)-2

We proceed to lemmas A6 and A10.
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Lerna A6: Let

i 2 Cv X,'ii

i3 [J 2 orJi=2

Then

(A.7) P[F1J3 ' + F(S)) ,

(A.23) ~~~CI j el 1 k] < M (X+'(9t>

Proof: All these estimates f-ollow by symmetry arguments as in the proof

of lemma 2.27. We prove one of the estimates of (A.8) as an examole.

Noze that we may wi thout loss of g3enerality take r < n/4 (say). Then

n-r n-r
) P[F12nF13 <S [(n-r)(n-r-1)] EC jiI(Fi2) I( (I i k)+I(iki=l ~k=l

2 kEi< 8a(m)n E(N+r)

by corollary SI. But

8ax(m) c(-)'n( S? < M (,--('

.Ci arlv the bounds (A.7) and (A . 8) arz overesstima.ezs n th s case. c

aver-wrttn t e einmra in this wav -or czmoactness-



A-5

Lemma A10: With the same definitions for j = 1 ,2,

(A.11 )

(A .12)

(A.13)

(r2
'7 + F2(S))

+ r ( S))

Proof: a) j = I

(1 nr )

E I(Fll) F(Sl) = P(Fll) EF(S1) =

Let

=R_ min(H _ XiI! : I < j < n-r, j i}

Then,

< (n-r) 1 F(S) (1(S)) + F2(S)

The bounds (A.11 -A.13) are immediate for r < n/' and tri/ial (for large

enough M) for r > n/4

) N e
2

E I(F ,
M r

ii n - n2

E I ( "rol j ) F( S, ) < m

+ F2 (S)

\ 11

I I
< m r-

2
n

114
E I(F ii ) F(Sl )

E I(F ) N
= F(S) +

11 n

1%j 1%
11)1-(Sl) < C T(FllE I(F r

-
4- 4. )F(S(XIIRJ))



E I(F2) n (I nr) P:F12 r, 21J < 2_ () EN(N+r)n(nrv-r2

< M r F(S) + F (S))

for r < n/4 and (A.ll) follows.

To prove (A.12) begin by writing,

(A.14) E I( F12) F (S1 ) < E I(X1 = Xj ,R1 < RI )F(Sl )

+ E I(X1 a Xl,R10 > Rlc)F(SI) +
r

I E I(Xij=l
a X ,R0 X'

I I )F(S1)

R10 a min{lI I -X1

x Xi,

j,l, 1 < j < n-r}

j- 1, 'I < j < n-r}

Then, we bound

E I(X1 = A1,R1 < .R)F(SI) < E L(xI
s "'i Is1 1 ii~~~~~~~X )F(1 ) = n1 (S)

A-6

b) i = 2

where,

(A. 1 5)
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Next,

(A.1 6) E I (X1 = Xl ,R > R

< ECPtFS(S(Xl q,Rl ) > F (S(Y1 gR )N 9Xi 9R Cxl ax,]FS(S(XR1'C)) I 1X:I

= E(l-FS(S(Xl,Rlc)))K-lFS(S(XlRlC))I(XlXl)J

where K n-r-N

< E N | (-w) ~~w dw a C(n-r)(n-r-1)] tlE
0

< M r F(S)

for r < n/4.

The next to last inequality 'ollows since, given X1 = and N, Fs(X1 R) is

distributed as the minimum of N uniform (0,1) variables. Finally, arguing

as above,

(A.17) E I(X1 J,R10 > IX1i x.Jj)F(S,)

< -(lF5(S(^X X xvH) )lFs( ( ! l-x.x ) x_ ((l Ii Si 1 j
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Given X= X, we can apply corollary A.1 noting that F (S(X1,jXI-x1'I))
has the distribution of Q with G = Fs, x* 2 y0* Since conditionally K-1

has a binomial (n-r-l, l-F(S)) distribution, we obtain as a bound for (A.17),

(A.18) ME(K 2 X ) ' 2M(l-F(S)) 2(n-r) 2

Therefore, we obtain

(A.19) EI(XI Xl R1 > lx1-xil)F(SI) < M + F(S)

for ,F(S) < (say).

Combining (A.15), (A.16) and (A.17) we obtain (A.12) for j =2, since the

restrictions on r and F can be absorbed into M for the final bound.

Finally,

I~~~~~~~~~~~~~~~~~~~~j~~~~~ ~~~'
(A.20) E ( SI ' E I(X1-D ,Rl < R)F(S ) + E I(x1 ux lpx J1 1F 10

The first term in (A.20) has been bounded in (A.14) and (A.19). The

second is bounded as in (A.15) by

( ) E(K1 X1 ) ' lM ;(S ) n sFF(S-) T(L x zX41, < M F(S) , (SKi n

r < n/4. (A.13) follows for j=2 and the lemma is rcoved.
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