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FITTING COSINES: SOME PROCEDURES AND SOME PHYSICAL EXAMPLES

ABSTRACT

The paper is concerned with a variety of time series models that in

some sense lead to the fitting of a cosine funstion of unknown frequency.

Both linear and nonlinear models are considered, including both decaying

cosines and sustained ones. The discussion is illustrated with examples

from seismology (free oscillations of the Earth), geophysics (the Chandler

wobble), huclear magnetic resonance, laser Doppler velocimetry and

oceanography (dispersion). The paper ends by surveying a variety of results

developed fQr specific models by various authors. A variety of open problems

are indicated.
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"The aim of science is to seek the simplest explanation

of complex facts ... seek simplicity and distrust it."

A. N. Whitehead

1. INTRODUCTION

There are a broad variety of natural phenomena that are periodic and that

have been studied since early times. Some of these, and their researchers,

are: the planets (Kepler), pendulums (Galileo), the violin string (Mersenne),

light (Huyghens), sound (Newton) and crystals. Cosines were fit numerically

to orbital data as early as 1754 (see Clairaut (1754) and Heideman et ale

(1984).) Several arguments may be set down for the genesis of cosines.

Linear combinations of cosines_provide the general solution of differential

equations with constant coefficients - and such equations provide

effective descriptions of many phenomena. Cosines and more general periodic

functions result from the repeated application of various operators. The

input to a system may be periodic, and in consequence the ouput is as

well. F'inally, the experimental setup may be such that periodically varying

data is collected.

A key property of cosines is that they persist under linear time

invariant operations. This is formalized in Lemma 2.7.1 of Brillinger (1975),

but may be illustrated quickly as follows. Suppose

00

y(t) - £ a(u) X(t-u) (1)
u-Vo

The operation carrying X(.) into Y(.) is linear and time invariant. If

X(t) - expfiXtj , then Y(t) = A(Q\) expfi;\t}, with

A(;) - a(u) expf-i\u3 (2)
u
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Here, following de-M*ivre's formula, expjiAtj - cos At + i sin At
and because of the linearity of the operation (1), the effect of the operation

on the cosine function cos At may be seen. In the case that > is real-valued

it is referred to as the frequency (in radians per unit time.) Because

many naturally occurring operations are, to a good approximation, linear

and time invariant the nonentaglement of cosine waves of different frequencies

can allow one to look back to the generation process of a phenomenon of

interest.

Fourier transforms play essential roles in the study of periodic

phenomena and of linear time invariant systems* Definition (2) shows the

transfer function, A(.), to be the Fourier transform of the impulse

response, a(s.) . For the model

Y(t) = p cos(t + i) + e(t) (3)

t 0O,±l,±2,... with e(.) a noise process, the least squares estimate

of p exp.ii7 is approximately

2 T-1
E Y(t) expi-iyt} 4
t=o

when 'is known and the data Y(t), t-O,.0.,T-l are available. The values

T-l
l: Y( t) expi-i2nst/T} ( 5)
t=o

s = 0,...,T-l are referred to as the discrete Fourier transform of the

data stretch Y(t), t - 0,.*.,T-l. In a variety of circumstances these values

may be computed exceedingly rapidly via a fast Fourier transform (FFT)

algorithm, Heideman et ale (1984) . Astonishingly such an algorithm was
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known to Gauss in 1805, ibid..

This paper is a mixture of review of existing results, physical examples,

models and methods relating to the fitting of cosines to both linear and

nonlinear phenomena. The main sections are: Decaying Cosines, Noise

Sustained Oscillations, Dispersion and Modes, a Review of Some Particular

Results and Some Open Problems.
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2. DECAYING COSINES

2.1 Some Conceptualization

Vibratory motion pervades and unifies the physical sciences* A mathematical

conceptualization that is consistent with this observation is that a great

variety of natural systems may be described by systems of equations of the

form

dY(t)
-A Y(t) + X(t) (6)

with X(.) vector-valued input and with Y(.) vector-valued output or perhaps

a state vector. In the case that the input is b .(t) , &(.) the Dirac delta,

and intitial conditions are Y(O-) - 0 , then the general solution of (6)

may be written

Y(t) - expfAt b t > O

- z a. expl.jt1 U;

where gj, u. are the (assumed distinct) latents of the matrix A . Focussing

on any one of the coordinates of Y(-) then,its motion has the form

K
E Pk exp{f-ktl c08(6kt + 6k) (8)
k=1

for t > O f with--k andXk the real and imaginary parts of one of the g .

This has the empirical implication that one is sometimes led to model

time series data as the sum of the term (8) and a noise process.
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2.2 Free Oscillations of the Earth

After a great earthquake, the whole Earth may oscillate for many days, see

for example Bolt (1982, Chapter 6) . From these oscillations, or free

vibrations, the seismologist infers much about the structure of the Earth.

The equations of motion may be written in the form of (6), for the many

particles making up the Earth. A great earthquake may be viewed as providing

a delta funotion type input. In consequence a corresponding seismic record

may be viewed as having the form

K
Y(t) = E Pk expj-.k t1 coo(6kt + + E(t) (9)

kul

e(a) being a noise process. (It is worth noting that K may be greater than

1500 for some events.) The seismologist is particularly interested in

estimating the &k and ok for he is then able to compare- these observed

values with corresponding values for an Earth model that he has constructed.

A traditional procedure for estimating the 'k in a model such as (9) is

to look for the locations of peaks in the periodogram. Specif'ically, let

T T1
d;(A) - z Y(t) expJmiAt7 (10)

t-0

denote the Fourier transform of a stretch of data, then the periodogram

is def'ined as

IyyT - (2%T) Id4(x)l2 (11)

It may be expected to show peaks in the neighborhood of the ak of (9) with

their respective heights depending on the values of the other parameters

appearing.
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Figure 1 is a record of the Great Chilean earthquake of 22 May 1960

as recorded at Trieste* The tides have been removed from the original

displacements measured. Many oscillations are present and it is apparent

that these decay. Figure 2 is a graph of the log periodogram,(ll), for one

frequency interval. It was based on 2548 points with a sampling interval

of 2 minutesi (hence a longer time period than that shown in Figure 1.)

Many peaks are apparent. To gain some idea of the reality of these peaks,

it may be noted that in the case of stationary noise the distribution of

the periodogram is approximately exponential with mean the power spectrum.

Using this approximation, one computes that the width of a 95 % confidence

interval,for the values of Figure 2, is 4.98 . The level of fluctuations

in Figure 2 is generally greater than this.

2.3 Complex Demodulation

One particularly effective method for assessing the validity of the

model (9) and for obtaining initial estimates of the parameters appearing

is complex demodulation9 see for example Brillinger (1975, Section 2.7 .)

The basic ideas are:frequency isolation by narrow band filtering to focus

on a single term in (9), followed by frequency translation to slow the

oscillations down. The steps are: i) Y(t) # Y(t) expAiAt}, (modulation),

then ii) smooth Y(t) expiiAt} to obtain Y(t,'X), the complex demodulate

at frequency A. In the case that Y(t) = p exp-ucrt3 cos(t + >) one has

Y(t,\) p2Pe1et ei-¢Jte near g

(12)
dO otherwise
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Hence log IY(t,2)l - log P - at and arg Y(t,2): i + C-.3t *

Plots of these quantities versus t provide checks on model adequacy and

yield estimates of the parameters appearing. In the case that 'his near

the phase plot will be approximately horizontal. Figures 3 and 4 provide

plots at the frequency .0945 cycles/mine (corresponding to one of the

peaks in Figure 2.) The results are consistent with an exponentially

decaying oosine component. Various other plots for this data set are

presented in Bolt and Brillinger (1979).

2.4 Estimation Via Nonlinear Regression

Estimates of parameters are insufficient without accompanying estimates

of uncertainty. Fourier inference may be employed to address this problem.

Suppose one has a model

Y(t) - S(t;@) + e(t) (13)

with S(.;G) known up to the finite dimensional parameter 0 and with e(@)

a stationary noise series. Let

T-1
Y. = YY(t) expj-i27rjt/T3 (14)
3 t=O

with similar definitions for S.(o) and e. . There are various central

limit theorems, (see for example Brillinger (1983)), suggesting that the

distribution of e may be approximated by a complexnormal with mean 0 and

variance 2inT f (2i j/T) and that e.,,jj j f j' are approximately

independent. Here f (;) is the power spectrum at frequency \ of the
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stationary series s(.) ,

f () - (2x) cov{t(t+u),e(t) ex -ilu7 (15)

Supposing fee( not to vary too much for > in a neighborhood I, e may

be estimatined by setting down a Gaussian likelihood and maximizing it.

This comes down to minimising

z ly- s(0)12 (16)

where the summation is over frequencies 2%j/T in I . For the case of

S(t;Q) - p exp{-atjcos(yt + 5) , e - (pcr,X,S) one finds for example

that the asymptotic variance of the estimate of g is proportional to

T-3p 24n fg%() . The details may be found in Bolt and Brillinger (1979)

and Hasan (1982). For example, for the Chilean data and the frequency of

Figures 3 and 4 one finds, converting frequency to period, an estimated

period of 10.5681min. with an estimated standard error of .0014 mine .

Again, details may be found in Bolt and Brillinger (1979).

2.5 Estimation of Bifrequency

Suppose that the system of equations (6) is perturbed by replacing the

matrix A by A + s(B,Y(t)> , with c small and< B,Y > representing a matrix

of the same dimensions as A, linear in Y . The solution of the perturbed,

now nonlinear,system contains terms in expig ti as at (7), but it also

contains interation terms exp{(Lk+4)t} . A simple form of solution suggested

is
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3
Y(t) ' m PmCOs(~mt +m + e(t) (17)

where the YM are related by I(, + + - 0 * A triple of frequencies

summing to 0 is referred to as a bifrequency, see Brillinger

(1980) . The biperiodogram is a statistic of use in detecting the presence

of bifrequencies. It is a direct extension of the (second-order) periodogram (11)

and is given by

ITY.½) ' (2x) 2T T(lT (18)

Its modulus may be expected to be large when the frequencies al, 22,2+2

are simultaneously present in the series Y(.*) 9

Zadro and Caputo (1968) develop differential equations for the motion

of the Earth in a great earthquake when nonlinearities are present. This

work suggests that bifrequencies will be present in that case* Zadro and

Caputo (1968) present the results of bispectral computations for the case

of the great Alaskan earthquake of 1964. Various suggestive peaks are

present in the biperiodogram.

Figure 5 is a contour plot of the modulus of the quantity (18) for

the Chilean data and the frequency interval(.08,.12) cycles/mine Peaks

are seen to occur both on and off the diagonal -1 . The largest

peak occurs at (*09714, .10459) cycles/mine . If one scans Table 1 in

Bolt and Currie (1975) one sees that one may have evidence for the interaction

6f the torsional vibration modes 0T10 T and T The results of0lt0 11 .0 25
Brillinger (1980) and further computations may be employed to assess the

uncertainties of these values.
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3. NOISE SUSTAINED OSCILLTIONS

3.1 Conceptual Background

Consider the case of incoherent light . A model for this situation is the

followings electrons of pertinent atoms jump levels* Light of frequency

i- E/h is released where E is the change in energy and h is Plank's

constant. The time course of the light signal is a(t) - H(t) e cort ,

where H(t) - 0 for t < 0 and H(t) - 1 for t > O When many atoms are

involved the light wave has the form Z a(t - Ji) , the V. being the

points of a Poisson process. One is led to consider a process that is a

random sum of decaying cosine waves, all waves having the same frequency (.

The power spectrum of this process has poles at +- ±y'±io . It will

show peaks for A near

An analagous result obtains for the system (6) when the input process

X(g) is white noise. Suppose ,(.) is white noise with covariance matrix L

Then the spectral density matrix of the process Y(.) is given by

(A - i2I)fZ(A + iI)' (19)

Poles occur for X +i1., the Eu. being the latent values of A . The

solution of (6) may be written

00

Y(t) - J exp{Au? X(t-u) du
0

00 ~~~~~~~~~~~~(20)
V.~v fexp ~L X(t-u) du u
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(where u3,v. are the left and right latent vectors of A) and one sees

that the process Y(.) is a random sum of decaying cosine waves frequencies

corresponding to the imaginary parts of the latent values of A . Our

concern now turns to the estimation of those frequencies. We will proceed

via a particular example.

3.2 The Chandler Wobble

The point of intersection of the Earth's axis of rotation with the north

polar cap does not remain fixed, rather it wanders about and the Earth is

said to "wobble". Figures 6 and 7 give the two coordinates (X(t),Y(t)) of the pole

for the period 1900 - 1975 * It is convenient to set Z(t) - X(t) + iY(t),

then the equations of motion (see Munk and MacDonald (1960)) are

dZ(1t)
a Z(t) + d(t) (21)

dt a ,dt

with P(t) corresponding to the excitation processo Supposing the process

i(.) to have stationary increments, the power spectrum of the process Z(.)

is given by

2 2 fi(2) (22)

writing a - i9 - . The periodogram of the data of Figures 6,7 is given

in Figure 8 . It shows peaks near frequencies 0, .071 and .083 cycles/year.

The first correspond to trend - see Figure 7. The third corresponds to

an annual component - present in the excitation process. The second corresponds

to the Chandler wobble - to gof (22) . It is of interest to estimate

the Chandler period precisely and to provide a measure of uncertainty.
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A corresponding finite parameter model is developed in Brillinger

(1973). Specifically for seasonally adjusted first differences and

measurment error assumed present, the following parametric spectrum is

derived

2 -e2o 1 2 iAk2
2s2o 1 - 2 exp{-ojcos(2mW) + exp{-2&J + 2x (23)

This is then fit (to the data for 1902-1969) by the method of Gaussian

estimation, that is by maximizing the "Gaussian" likelihood

of exp{- I ./f 1 (24)

where IT denotes the periodogram at frequenoy 2nj/T and f. - f(2x ;Q)

denotes the theoretical power spectrum as a function of the unknown

parameters. This method also leads to estimated standard errors. In particular

the value X .0706 with an estimated standard error of .0026 was found.

Further examination of the periodogram of Figure 8 shows some power

near the frequency .15 . It was examined further with a suspicion that it

might be due to some nonlinearity. Figures 9, 10 provide the results of

complex demodulating the series at a frequency of .153 cycles/year. It

was found that the power was predominantly present only for the early

part of the series* We have no explanation to present beyond remarking

that the individuals responsible for estimating the polar motion changed

.every so often. The biperiodogram is presented in Brillinger (1973), but

it is not strongly suggestive of a nonlinearity.
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3.3 Nuclear Magnetic Resonance

3.3.1 The Bloch Ebuations. Nuclear magnetic resonance relies on the

interaction between magnetically

sensitive nuclei which are exposed to both a strong magnetic field and a

radio frequency signal. The nuclei "flip" at characteristic (or resonant)

frequencies. The procedure yields information related to molecular structure,

interactions and dynamics-

The phenomenon has been described by the Bloch equations. These

take the form

dY(t)
dt . a + A Y(t) + B Y(t) X(t) (25)

with X(t) scalar input, with Y(t) vector output, with a a.vector and

with A, B matrices. See, for example, Knight and Kaiser (1982)

Various inputs have been employed to identify molecular systems by

nuclear magnetic resonance. These include pulses, cosinusoids and noise.

The impulse response has been written

k Pk exP kti cos :5kt (26)

with the sk the characteristic frequencies of the substance of concern.

One common procedure is to apply a pulse and to the look for peaks in

the absolute value (periodogram) of the Fourier transform of the output.

Peaks are assigned to particular atoms in the molecules present.
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3.3.2 Stochastic Nuclear Magnetic Resonance. In stochastic NMR the

input, X(.), is taken to be random noise and the

particular realization is made use of in the analysis. Blumich (1985)

provides a review. In the case that the input is Gaussian white noise,

cov Y(t+u),X(t)j is found to be given by

E Rk exP4i.'kua exPli6kul (27)k

for u > 0 with the iyk -k the latent values of A + B2/2 . The Fourier

transform of (27) is

E Pk zk K1 (28)

The amplitude of this quantity Reaks at 2 near 2'k and sample-based

quantities may be used to derive estimates. Examples may be found in

Ernst (1970)

In many important cases second-order spectra are not sufficient to

describe structure unequivocally, higher-order spectra are needed. Because

of symmetries present, third-order spectra vanish identically. The fourth-

order spectrum, which is the Fourier transform of E (t)X(t+u1)X(t+u2)X(t+u3)7,
has peaks when the frequencies t Ykt X and zj+Yk+&P. are simultaneously

present. Examples of sections of such empirical spectra are given in

Blumich and Ziessow (1983) The use of such spectra is found to lead to

near complete assignment of protons to molecules in many substances of

concern.



- 16 -

3.4 Particle Procesqes

Consider a circumstance in which at time t there are N(t) particles situated

in space at the locations r.(t) , j - l,...,N(t) . If 6 denotes position

in space, then this particle process may be represented by

N(t)
£ 9(r - r.(t)) (29)

jml
AW' ,

The motion of the j-th particle may be described via r.(t) * For example

if the particle is moving with a constant (directed) velocity then r.(t) - r.(O)

. v t . If the particles motion is Brownian, then r (t) is a spatial

Brownian motion with independent Gaussian increments.

With the advent of lasers, the motion of collections of particles may

be studied by analysing light scattered when the particles are illuminated

by a laser. Briefly through the Doppler effect the frequency of the incident

light is shifted slightly by a particles motion and a study of the frequency

distribution of the scattered light gives information on the velocity

distribution of the particles.

3.4.1 Laser Doppler Velocimetry. The characteristic property of monochromatic

laser light is that it fluctuates very nearly as a cosine wave. Suppose

that the incident light comes from a direction k and has frequency c.o

Then the input to the particle system may be represented as

X(t) - expji(k .r + )t) (30)

Further the (far-field) scattered output in a direction k3 may be represented

as Y(t) XsK(t) X(t) where K = k k and sK( the complex scattering(t 8Kt I Kt
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amplitude is given by

s8(t) - z a.(t) exp{-i K.r.(t) (31)
~~3 VJ

Here X(t), Y(t) represent the incident and scattered optical fields and

a.(t) is referred to as the form factor. Supposing that the particles are

independent and identical and that the a.(.) are independent of the r.(.)

one sees that the autocovariance function of the process Y(-) is given by

mYy(u) - 4sK(t+u) sK(t)I

Eexp -iK(r(t+u) - r(t)) (32)

It is essentially the characteristic function of the increments of the

motion of the particle process. Supposing one has constant (laminar) flow,

then m y(u)s exp{-i K.v4u. Supposing Brownian motion, m (u) - expt-DK2uj
with D the diffusion constant and K IKI . Other models for the motion

of the particles, eg. mixtures of-particles with different velocities or

different diffusion constants, lead to other functional forms for m .yy

The problem now is, how to estimate m y(u) in practice.

The nature of the situation is that the electric field, Y(.), cannot

be observed directly. What can be observed are Poisson processes with

rate the modulus-squared of an electric field* In one experimental setup

a Poisson process with rate I(t) . Iy(t)12 . IsK(t)12 is observed. The

number of particles, N, is assumed large so that sK(t) of (31) is approximately

Gaussian. From Isserlis's formula then

mII(u) = mry(0)1)2 + im y(u)12 (33)
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and from an estimate of mII(u),an estimate of Im (u)12 may be constructed.

This procedure may be employed successfully for particles moving with

Brownian motion, see for example Nishio et al. (1983); however in the

oase of laminar flow m y(u) ~ expj-i Kvuj, whose modulus contains no

information on K . The experimental setup has to be altered*

In Doppler-difference velocimetry: the frequency cw of the input beam

is shifted slightly toG+S giving a second input X'(t) coming from a

different direction and the far-field intensity is then

I(t) . tsK(t)X(t) + sK,(t)X'(t)12 (34)

Expanding this shows

I(t) expji(K - K' )vtl exp-iStA + '0 (35)

in the case of laminar flow and the problem has again become one of

estimating the frequency of a cosine. This procedure is made use of in

Pfister et ale (1983) and Sato et ale (1978) for examples An important

advantage of this experimental technique is that rapidly varying velocities

may be tracked and even subjected to Fourier analyses themselves (see

Pfister et ale (1983).)

Cummins (1977) and Schuls-DuBois (1983) are general references to the

techniques and uses of laser velocimetry.

3 *4.2 Discussions It is worth remarking that the interference procedure

made use of is intimately connected to the technique of complex demodulation

described earlier in the paper. By superposing the XV(t) signal one is

essentially bringing about multiplication by exp i(W+S)ti allowing, as
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in the case of complex demodulation, attention to be focused on components

of frequency near a.>.

In the case that the intensity I(t) is low, sampling fluctuations will

need to be taken account off.

3.4.3 B e alAnalsis. In an interesting piece of work Sato et al.

(1978) combine laser Doppler velocimetry with bispectral analysis to

obtain information concernin particles in suspension* Their approach has

the advantage of "eliminating" Gaussian noilse-

The experimental set-up involved: vibrating particles (in one case cigar

smoke, inanother water) by a known sound wave

X(t) - A1sin(%Ot + 3 + A2sin(20> t + '2) (36)

and then measuring the particle motion by a laser Doppler velocimetere

The measured signal takes the form

Y(t) - alsin@J0t + 1 + a2sin(2L%0t + J2) + £(t) (37)

with the a. functions of A1, A2, particle diameter' relative density of1 9

particle material, viscosity of the medium and other things. The series e(*)

represents noise.

The power spectrum of Y( .) is given by

4( al,(-6o + a2') 2@o) + f 7)(38)

and it should be noted that the noise spectrum appears. Supposing the

noise to be Gaussian, in contrast the amplitude of the bispectrum is

1 2llaI 0 "2 - 0) (39)321L21
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and the noise component is absent. The value a, la21 may be estimated from

the bispectral estimate and used in turn to estimate particle parameters.

Sato et al. (1978) present experimental results demonstrating that this

bispectrum based estimate can be much more sesitive than a power spectrum

based one.
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4. DISPERSION AND MODES

4.1 Background

Consider the linear-temporal process

Y(x,t) - p cos(ax + zt + (40)

It satisfies the wave equation

a2 22 (41)

with c - 5'/a, the phase velocity. In the case that there are side conditions,

following Sturm-Liouville theory, discreteness occurs. Given frequency r
only a certain number of wavenumbers a . an(6) , n - 0, 1,... are possible.

An implication of this is that for a composite wave different frequency

components will travel at different speeds# or disperse. Such a relation

between frequency-and wavenumber is referred to as a dispersion relation.

From a statistical viewpoint the following problem arises, given data

on Y(x,t) and imagining it to be a superposition of terms of the form (40)

satisfying a dispersion relation, how is that relation to be estimated?

It is instructive to consider the (two-dimensional) Fourier transform.

One has

ff ex fi(a(y)x+pt)? exp -i(k1x+t)} dx dt - S2-g) (k-ao) (42)

Mass is seen to occur on the curve k = a(A) . In the case of a composite

process, mass may be expected to occur on a family of curves k - an(7) .
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4.2 Examples

The fields of oceanography, seismology and helioseismology provide empirical

examples of the use of Fourier transforms to discern dispersion relations.

Gilbertand Dziewonski (1975) provide analyses for the free oscillations

of the earth based on seismograms from two deep earthquakes. Munk et ale

(1964) analysed sea level fluctuations as measured by a linear array of

gauges off the coast of Southern California. Estimating a wavenumber-frequency

power spectrum, they found most of the energy to be trapped in a few narrow

bands in (k,A) space,corresponding to edge waves. (These are water waves

moving sideways to the shore, rather than rolling on to it.)

The most dramatic developments have however been taking place in the

field of helioseismology, that is the branch of solar physics concerned with

the study of resonant oscillations of the Sun. The motion of the visible

portion of the Sun's surface is measured via spectrographs attached to

conventional solar telescopes. Velocity of movement is determined through

the Doppler effect. The wavenumber-frequency power spectrum is then estimated

from the data. The cover of the 6 September issue of Science provides a

striking example of such an estimate. References to this work include

Deubner and Gough (1984), Christensen-Dalsgaard et al. (1985)

4.3 Discussion

Given a model (eg. velocity as a function of depth) for the medium of

interest, implied dispersion curves may be computed (see for example

Section 7.2.2 in Aki and Richards (1980)). The empirically determined

wavenumber-frequency power spectrum may then be employed to assess the
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degree of fit of the postulated model. Further one may set up an inverse

problem and prooeed to improve the model.

The excitement with which researchers view helioseismology is well

illustrated by the following remarks in Deubner et ale (1975):

".,. the basic mechanism responsible for the solar 5-minute oscillation is

now understood,.-." and "... the solutions in Ulrich agree with the observed

ridges in all detail to an embarassin extent."
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5. A REVIEW OF SOME PARTICULAR RESULTS

In this section the crade details of a variety of results,concerning the

fitting of cosine type signals superposed on stationary mixing noise, are presented.

5.1 Whittle (1952)

The model considered is

Y(t) - a cos('t + + e(t) (43)

t - O,...,T-l . The difficult parameter to estimate is * It may be

estimated either by ordinary least squares or more commonly by maximizing

the periodogram

>1 Y(t) e-iXt i2 (4

t=O

The estimate is found to be asymptotically normal with mean and

variance

48n f (45)
T3a2

That the variance falls off as T 3 was initially suprisings Hannan (1971,3)

and Walker (1971,3) are related papers.

5.2 Bolt and Brillinger (1979)

This work was referred to earlier in the paper. The model considered is

Y(t) = a e4jt/T cos('t + 6) + e(t) (46)
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t - Oo...o,T-1 The parameters are estimated from the (Gaussian) likelihood

of the Fourier transform values in the neighborhood of y * The estimates

and T are found to be asymptotically normal with variance

T2 e J e2udu /if f e u2e-2Pudu ,Ju-/udu 2
3- 2fee d ue47
T a 0 0 0 0

The parametrization of the decay rate in the form //T is in order to insure

that the signal does nor drop out asymptotically. It seems a plausible

manner in which to develop asymptotic results.

5.3 Hinich and Shaman (1972)

The work of these researchers is concerned with an areal-temporal process,

The model is

Y(x,y,t) - p cos(asx + y + yt + £) + e(x,y,t) (48)

for x, y, t taking on values in a latice. Ordinary least squares, maximum

likelihood and periodogram maximizing estimates are considered.

5.4 Vere-Jones (1982)

He was concerned with fitting a cyclic model to point process data. A

point process {7j7 is assumed to be Poisson with rate A ex4ia cos(-t +
a
)j

The asymptotic distributions of the maximum likelihood estimate and a

periodogram maximizing estimate are developed. The asymptotic distribution

ofA is found to be normal with mean and variance 12/[T3A aji(a)] . Here

(a) is a modified Bessel function.
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5.5 Isokawa (1983)

This author is concerned with sampled time series data, Y(Q.) , where

the T. are the points of a realization of a stationary point process

independent of the series Y(t) given by (43) . The asymptotic distribution

of the estimate of 2 maximizing the periodogram

I £ Y(QJ) exp3-i7Aj ,2 (49)
j

is determined.

5.6 Hannan (1974)

In this paper Hannan presents results for the model

Y(t) Ez akcos(klt + k + e(t) (50)
k

t - 0..o,T-1 * The import of this model is that the expected value has

period 2n/ The asymptotic distribution of the \ maximizing

Z IdT(k;) 12/f (k2) (51)
k yE

is derived. It is found to be normal with mean and variance

l/[ T3 E a2/(48n f (k )) (52)

In practice an estimate of f C.) would be inserted in (51)

5.7 Brillinger (1980)

This work was referred to earlier. The model is

3
Y(t) E£ akcos(kt + k + e(t) (53)k=lk k k)+ (t
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wi3th = or = -2y , O k n< * This is the model of

bifrequencies. The asymptotic distributions of both the ordinary least

squares estimate and the estimate (%) 2) maximizing the biperiodogram

d4(A ) dT'2) dT(l + (54)

are determined. The asymptotic distributions are found to be normal, but

to be different generally.

5.8 Subba Rao and Yar (1982)

These researchers are concerned with the model of frequency modulation,

Y(t) aa cos(gt + 6 + '>sin(ot + ')) + e(t) (55)

Estimates of y, * are determined by maximizing

k IdY(y+ k)t) 12/f ('+ ki4) (56)
k

5.9 Brillinger (1985)

This work considers the areal-temporal process (48), but now the sensors

are irregularly distributed at locations (xj,yj), j = l,.-..J . The time

period T is thought of as large, and so Xmay be treated as known. If

Jk 11 l 2Ecj 9yI t)] exp (57)

M -yky (58)~~~kZ

the summation being over Fourier frequencies 2tk/T near and



- 28 -

- M- ()
S M Yk ' y ( 59 )

with 2xk'/T - . (This last is an estimate of the spectral density

matrix of the J noise process e(x.,yj,t)). Finally define the (steering)

vector

B = [expi(ax + Ij ] (60)

(In (57) and (60) the [.J notation denotes a J column vector.) The estimate

studied is the (atc) maximizing the 'likelihood ratio detection' statistic

-s' -l -Ber _1 ~~~~~~~~~~ 1 ~~(61)
BMB

The asymptoic distribution of the estimate is indicated.

5.10 Brillinger (1986)

The previous situation may be viewed as corresponding to a small array of

sensors. The work in this reference concerns a large array case, with the

measurements irregularly placed with respect to all coordinates. It is

convenient to alter the notation somewhat. Suppose

Y(t) = a cos(W,t) + b sin(3, t) + e(t) (62)

forW, t in RP and (w,t) =&>1t1 + 0.. +(' t . Suppose the data available

are the values4(r, Y(T.) for '. in a regionl . The parameter wis

estimated by maximizing, for ' in RP

Eexp3-i T.) Y(jj (63)
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A

and given X , (a,b) estimated by ordinary least squares. Asymptotic

distributions are obtained assuming is a realization of a stationary

mixing point process in RP with rate c and spectrum ft(>) * In particular

the estimates are found to be asymptotically normal with covariance matrix

cN2(2x)pf (0Z1(64)

where fv() ' cN fee(?A) + JfNN(-a)fee( a

Pil 0 1Jtdt

0T mlO1 -aftdt (65)
-,V

pji'tdt -a-ttttrp2ttdt

The integrals appearing are over the region 5 * The asymptotics are as

IL-.>oo.

6. SOME OPEN PROBLEMS

We end by indicating in cursory form a number of research problems related

to the topic of the paper.

1. Diagnostics, influence, robust/resistant procedures.

2. Missing values, quantization, jitter.

3. Estimation of dimension, eg. by AIC-

4. Inverse problem formulations, ridge regression.

5. Local asymptotic normality, contiguity.

6. Adaptive procedures.

7. The absorbtion model.

8. Signal dependent noise.
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9. Law of the iterated logarithm, large deviations, rates of convergence

for the estimates.

10. Random effects models.

11. Vector-valued cases.

12. Partially parametric formulations, eg. the periodic case.

13. Models for the point process and telegraph signal cases.

14. Expansions for distributions.

15. Distributions of test statistics, eg. of

sUp IT pteiAt y(t)12/ Z p2t (66)
PtA

or of

sup min IT(;) IT(22)? IT( (67)

16. Properties of the estimates when the model is untrue.

17. The broadband signal- case.

18. Parametric analysis of the quefrency case.

19. Distribution in the null case of sup over (a,,+) of (61).

20. Sampling properties of the NMR estimates.
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Legends

Figure 1.

Figure 2.

Figure 3.*

Figure 4 .

Figure 5 .

Figure 6 .

Figure 7.e

Figure 8.

Figure 9.-

Figure 10.

Record of the Chilean earthquake of 22 May 1960 recorded at

Trieste. The tides have been removed from the original seismogram.

The natural logarithm of the periodogram of the data of Figure 1.

Only part is shown.

The result of complex demodulating the record of Figure 1. The

logarithm of the running amplitude is shown. Time is time since

onset of the earthquake.

As for Figure 3 except that the running phase is plotted.

The modulus of the biperiodogram of the data of Figure 1. Only

part 'is shown.

The x-coordinate of the position of the Earth's axis of rotation

(Northern Hemisphere).

The y6-coordinate of the position of the Earth's axis of rotation

(Northern Hemisphere).

The natural logarithm of the periodogram of the data of Figures 6

and 7 . Only part is shown.

The result of complex demodulating the data of Figures 6 and 7.

The logarithm of the running amplitude is shown.

As in Figure 9 except the running phase is shown.



The Great Chilean Earthquake - Tides Removed
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Log Periodogram - Chilean Earthquake
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X-Coordinate Polar Motion
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Y-Coordinate Polar Motion
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