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FITTING COSINES: SOME PROCEDURES AND SOME PHYSICAL EXAMPLES

ABSTRACT

The paper is concerned with a variety of time series models that in
some sense lead to the fitting of a cosine funstion of unknown frequencye
Both linear and nonlinear models are considered, including both decaying
cosines and sustained oness The discussion is illustrated with examples
from seismology (free oscillations of the Earth), geophysics (the Chandler
wobble), nuclear magnetic resonance, laser Doppler velocimetry and
oceanography (dispersion). The paper ends by surveying a variety of results
developed for specific models by various authorse A variety of open problems

are indicatede



"The aim of science is to seek the simplest explanation
of complex facts eee Beeck simplicity and distrust it."

Ae Ne Whitehead
1+ INTRODUCTION

There are a broad variety of natural phenomena that are periodic and that
have been studied since early times. Some of these, and their researchers,
are: the planets (Kepler), pendulums (Galileo), the violin string (Mersenne),
light (Huyghens), sound (Newton) and crystalss Cosines were fit numerically
to orbital data as early as 1754 (see Clairaut (1754) and Heideman et ale.
(1984) .) Several arguments may be set down for the genesis of cosiness
Linear combinations of cosines provide the general solution of differential
equations with constant coefficients - and such equations provide
effective descfiptions of many phenomenae Cosines and more general periodic
functions result from the repeated application of various operatorse. The
input to a system may be periodié, and in consequence the ouput is as
welle Finally, the experimental setup may be such that periodically varying
data is collected. |
A key property of cosines is that they persist under linear time
invariant operations. This is formalized in Lemma 2+7el of Brillinger (1975),
but may be illustrated quickly as followse Suppose
o0
Y(t) = 2 a(u) X(t-u) (1)
U==og
The operation carrying X(.) into Y(e) is linear and time invariant. If

X(t) = expfidt} , then Y(t) = A(}) expfiAt}], with

AN = = a(u) exp{-iAu} (2)
u
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Here, following de Meivre's formula, exp{iat} = cos ﬁt + i sinAt
and because of the linearity of the operation (1), the effect of the operation
on the cosine function cos At may be seene In the case that };is real-valued
it is referred te as the frequency (in radians per unit time.) Because
many naturally occurring operations are, to a good approximation, linear
and time invariant the nonentaglement of cosine waves of different frequencies
can allow one to look back to the generation process of a phenomenon of
intereste

Fourier transforms play essential roles in the study of periodic
phenomena and of linear time invariant systems. Definition (2) shows the

transfer function, A(+), to be the Fourier transform of the impulse

response, a(e+)  For the model -
Y(t) = p cos(zt +9) + e(t) (3)

t = 0,41,42,%¢¢ with €(+) a noise process, the least squares estimate
of p expgigz is approximately

2 T-1

= I Y(t) expi-iyt? (4)
0

=
when ) is known and the data Y(t), t=0,s..,T-1 are availables The values

-1 .

3 Y(t) exp{-i2nst/T} (5)

t=0

8 = O,¢¢¢,T=1 are referred to as the discrete Fourier transform of the

data stretch Y(t), t = Oyeee,T~l¢ In a variety of circumstances these values
may be computed exceedingly rapidly via a fast Fourier transform (FFT)

algorithm, Heideman et ales (1984)+« Astonishingly such an algorithm was
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known to Gauss in 1805, ibidee

This paper is a mixture of review of existing resulis, physical examples,
models and methods relating to the fitting of cosines to both linear and
nonlinear phenomenae The main sections ares Decaying Cosines, Noise

Sustained Oscillations, Dispersion and Modes, a Review of Some Particular

Results and Some Open Problemse
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2« DECAYING COSINES

2+l Some Conceptualization

Vibratory motion pervades and unifies the physical sciencese. A mathematical
conceptualization that is consistent with this observation is that a great
variety of natural systems may be described by systems of equations of the
form

ay(+)

at = ﬁY(t) + E(t) (6)

withlg(o) vector-valued input and with‘z(-) vector-valued output or perhaps
a state vectors In the case that the input is b £(t) , §(¢) the Dirac delta,

and intitial conditions are 3(0—) = 0 , then the general solution of (6)

may be written

Y(t) = expfAt] b $>0 -
N~ . ~ ~ 7
= g aj exp{ujt} Bj

where Wys By aTe the (assumed distinct) latents of the matrix 4 « Focussing
on any one of the coordinates of X(-) then,its motion has the form

K

kil Py exp{-ckt} cos(th + Sk) (8)
for t >0, with-ck and'xk the real and imaginary parts of one of the uj .
This has the empirical implication that one is sometimes led to model

time series data as the sum of the term (8) and a noise processe
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2¢2 Free Oscillations of the Earth

After a great earthquake, the whole Earth may oscillate for many days, see
for example Bolt (1982, Chapter 6). From these oscillations, or free
vibrations, the seismologist infers much about the structure of the Earthe
The equations of motion may be written in the form of (6), for the many
particles making up the Earthe A great earthquake may be viewed as providing
a delta funotion type inpute In consequencé a corresponding seismic record
may be viewed as having the form

K
I(t) = I p expf-o,t} cos(yt + &) + e(t) (9)

e(+) being a noise process. (It is worth noting that K may be greater than
1500 for some eventse) The seismologist is particularly interested in
estimating the Bk and %% for he is then able to compare: these observed
values ﬁith corresponding values for an Earth model that he has constructed.

A traditional procedure for estimating the Xk in a model such as (9) is

t0o look for the locations of peaks in the periodograms Specifically, let
-1
T ‘ .
ay(A) = = Y(t) expf-idef (10)
=0

denote the Fourier transform of a stretch of data, then the periodogram

is defined as
15,0 = (s Hag(W |2 (11)

It may be expected to show peaks in the neighborhood of the X%:of (9) with
their respective heights depending on the values of the other parﬁmeters

appearinge
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Figure 1 is a récord of the Great Chilean earthquake of 22 May 1960
as recorded at Trieste. The tides have been removed from the original
displacements measurede. Many oscillations are present and it is apparent
that these decaye. Figure 2 is a graph of the log periodogram,(1l), for one
frequency interval. It was based on 2548 points with a sampling interval
of 2 minutes, (hence a longer time period than that shown in Figure 1l.)
Many peaks are apparent. To gain some idea of the reality of these peaks,
it may be noted that in the case of stationary noise the distribution of
the periodogram is approximately exponential with mean the power spectrum.
Using this approximation, one computes that the width of a 953@ confidence
interval ,for the values of Figure 2, is 4.98 « The level of fluctuations

in Figure 2 is generally greater than this.

2¢3 Complex Demodulation
One particularly effective method for assessing the validity of the
model (9) and for obtaining initial estimates of the parameters appearing

is complex demodulation, see for example Brillinger (1975, Section 2.7 .)

The basic ideas are:frequency isclation by narrow band filtering to focus
on a single term in (9),followed by frequency translation to slow the
oscillations downe. The steps are: i) Y(t) —» Y(%) exp{iﬁt} , (modulation),
then ii) smooth Y(t) exp{ﬁkf} to obtain Y(t,A) , the complex demodulate

at frequency A. In the case that Y(%) =p exps_-crt} cos(xt + S) one has

Y(t, ) 2'2- p eis e Ot ei(’/\-X)t "\ near Y
(12)

0 otherwise

e
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Hence 1log |Y(%,2M)1 = 103% - ot and arggY(t,’))} a §+ O-yt .
Plots of these quantities versus t provide checks on model adequacy and
yield estimates of the parameters appearinge In the case that 'A is near 5
the phase plot will be approximétely horizontale Figures 3 and 4 provide
plots at the frequency 0945 cycles/ﬁin- (corresponding to one of the
peaks in Figure 2.) The results are consistent with an exponentially
decaying cosine componente Various other plots for this data set are

presented in Bolt and Brillinger (1979).
2+4 Estimation Via Nonlinear Regression

Estimates of parameters are insufficient without accompanying estimates
of uncertaintys Fourier inference may be employed to address this probleme.

Spppose one has a model
Y(t) = S(t;0) + e(t) (13)

with S(+;0) known up to the finite dimensional parameter @ and with e(e)
a stationary noise seriese. Let

-1

Y, = & ¥(¥) exp{-iz_njt/'r’g (14)

with similar definitions for Sj(G) and ej e« There are various central
limit theorems, (see for example Brillinger (1983)), suggesting that the
distribution of ej may be approximated by a complexnormal with mean O and

variance 28T f_ (2%3/T) and that €51 €50 9 J # j' are approximately

j'
independente Here fee()) is the power spectrum at frequency'% of the




stationary series g(.) ,
-1 @ :
f“(a) = (2?:) z cov{s(ﬁu),e(t)} exps_-ﬂu} (15)
n==co
Supposing fee(” not to vary too much for ) in a neighborhood I, & may
be estimatined by setting down a Gaussian likelihood and maximiging it.

This comes down to minimizing
2
z |YJ. - sj(o)l (16)

where the summation is over frequencies 27:3‘/'1‘ inI o For the case of
S(t;8) = p exp{-o’t}cos(xt +8) ,0= (p,o’,x,ﬁ) one finds for example
that the asymptotic variance of the estimate of x is proportional to
T“3p'24_n f“(x) o The details may be found in Bolt and Brillinger (1979)
and Hasan (1982)e For example, for the Chilean data and the frequency of
Figures 3 and 4 one finds, convertiing frequency to period, an estimated.
period of 105681 :ﬁino with an estimated standard error of 0014 mine »

Again, details may be found in Bolt and Brillinger (1979).
2+5 Estimation of Bifrequency

Suppose that the system of equations (6) is perturbed by replacing the
matrix 4 by 4 + e<§,x(t)> y with ¢ small and{ B,Y > representing a matrix
of the same dimensions as A, linear in Y . The solution of the perturbed,
now nonlinear,system contains terms in expip.jt? as at (7), but it also
contains interation terms exp{(p.kﬂ:i)t} « A simple form of solution suggested

is



3
Y(t) = I pgoos(yt+ &) + e(¥) (1)
m=]

where the Y are related by Xi + 3% + 33 = 0 o A triple of frequencies
(Xi'32'33) summing to O is referred to as a bifrequency, see Brillinger

(1980) « The biperiodogram is a statistic of use in detecting the presence

of bifrequencies. It is a direct extension of the (second-order) periodogram (11)

and is given by
It o) = (20)7207Na0( )aT(A,)as (A +A,) (18)

Its modulus may be expected to be large when the frequencies ’)l, %2, 11’*”\2
are simultaneously present in the series Y(.) .

Zadro and Caputo (1968) develop differential equations for the motion
of the Earth in a great earthquake when nonlinearities are presente. This
w§rk suggests that bifrequencies will be present in that casee Zadre and
Caputo (1968) present the results of bispectral computations for the case
of the great Alaskan earthquake of 1964+ Various suggestive peaks are
present in the biperiodograme

Figure 5 is a contour plot of tﬁe modulus of the quantity (18) for
the Chilean data and the frequency interval(.08,.12) cycles/min. Peaks
are seen to occur both on and off the diagonal ?1 = 12 « The largest
peak occurs at (09714, +10459) cycles/hin- e If one scans Table 1 in
Bolt and Currie (1975) one sees that one may have evidence for the interaction
T.. and T ¢ The results of

oT10? oT11 2% oTas
Brillinger (1980) and further computations may be employed to assess the

8f the torsional vibration modes

uncertainties of these valuese
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‘3¢ NOISE SUSTAINED OSCILLATIONS

3¢l Conceptual Background

Consider the case of incoherent lighte A model for this situation is the
followings electrons of pertinent atoms jump levels. Light of frequency
)( = E/h is released where E is the change in energy and h is Plank's
constante The time course of the light signal is a(t) = H(t) e tcos Yt
where H(t) = O for t+ < 0 and H(t) = 1 for t > O. When many atoms are
involved the light wave has the form z a(t - '.]3) , the T:] being the
points of a Poisson processe One is leg to consider a process that is a
random sum of decaying cosine waves, all waves having the same frequency )’ .
The power spectrum of this process has poles at )\ = ix_-_l-_icr o It will
show peaks for A near X. .

An analagous result obtains for the system (6) when the input process
)\(,( ) is white noise. Suppose X(+) is white noise with covariance matrix 2 .

Then the spectral density matrix of the process Y(+) is given by
1 . -1 . -1
35(4 = iA1)T2(4 + i) (19)

Poles occur for ’X = 11“3- y the p.J. being the latent values of A ¢ The
Va4

solution of (6) may be written

o0
(t) = J exp{Au}/)E(t—u) du
o A
- (20)
= T v .
j'yJ .(/) exp{uJu} }(t—u) du 2
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(where‘Bj, zj are the left and right latent vectors of’é) and one sees
that the prooe-slg(o) is a random sum of decaying cosine waves frequencies
corresponding to the imaginary parts of the latent values Of,é o Our

concern now turns to the estimation of those frequencies. We will proceed

via a particular examplee
3«2 The Chandler Wobble

The point of intersection of the Earth's axis of fotation with the north
polar cap does not remain fixed, rather it wanders about and the Earth is
said to "wobble"s Figures 6 and 7 give the two coordinates (X(t),Y(%t)) of the pole
for the period 1900 = 1975 » It is convenient to set Z(t) = X(t) + iY(%),

then the equations of motion (see Munk and MacDonald (1960)) are

d_ZLEl = a z(t) + M (21)

dt at

with ®(t) corresponding to the excitation processe Supposing the process
#(+) to have stationary increments, the power spectrum of the process Z(s)

ig given by

(’k-;)z 2 £55(A) (22)

writing a = ix « o « The periodogram of the data of Figures 6,7 is given

in Figure 8 « It shows peaks near frequencies O, +071 and 083 cycles/year.

The first correspond to trend - see Figure 7+ The third corresponds to

an annual component - present in the excitation processe. The second corresponds
to the Chandler wobble - to x’of (22) « It is of interest to estimate

the Chandler period precisely and to provide a measure of uncertaintye.
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A corresponding finite parameter model is developed in Brillinger
(1973) » Specifically for seasonally adjusted first differences and

measurment error assumed present, the following parametric spectrum is

derived
02 l - 0-26 1 + 4%211 - e—iA|2 (23)
2% 20 1 -2 exp{-cr}cos(ﬁ-a) + exp{-26} 2%

This is then fit (to the data for 1902-1969) by the method of Gaussian

estimation, that is by maximizing the "Gaussian" likelihood
1 T
TY £ exp{- Ij/fj} (24)
b N

where I? denotes the periodogram at frequenocy 2nj/T and fj = f(g%i;e)
denotes the theoretical power spectrum as a function of the unknown
parameterse This method also leads to estimated standard errorse. In particular
the value % = <0706 with an estimated standard error of 0026 was found.
Further examination of the.periodogram of Figure 8 shows some power
near the frequency 15 « It was examined further with a suspicion that it
might be due to some nonlinearitye. Figures 9, 10 provide the results of
complex demodulating the series at a frequency of 153 cycles/&earo It
was found that the power was predominantly present only for the early
part of the seriese We have no explanation to present beyond remarking
that the individuals responsible for estimating the polar motion changed
.every so oftene The biperiodogram is presented in Brillinger (1973), but

it is not strongly suggestive of a nonlinearitye
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33 Nuclear Magnetic Resenance

3e3¢1 The Bloch Eguationse. Nuclear magnetic resonance relies on the
interaction between magnetically
sensitive nuclei which are exposed to both a strong magnetic field and a
radio frequency signale The nuclei "flip" at characteristic (or resonant)
frequenciese The procedure yields information related to molecular structure,
interactions and dynamicse

The phenomenon has been described by the Bloch equationse These

take the form

ay(+)
T = 2 + AX(®) + BI(t) X(¢) (25)

~s

with X(t) scalar input, with Y(t) vector output, with a a. vector and
with 4, B matrices. See, for example, Knight and Kaiser (1982) .

Various inputs havg been employed to identify molecular systems by
nuclear magnetic resonancee These include pulses, cosinusoids and noisee
The impulse response has been writfen

L p, exp{-a'kt} cos ¥ t (26)
k ~F

with the‘xk the characteristic frequencies of the substance of concern.
One common procedure is to apply a pulse and to the look for peaks in
the absolute value (periodogram) of the Fourier transform of the outpute

Peaks are assigned to particular atoms in the molecules presente.
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3¢3¢2 Stochastic Nuclear Magnetic Resonancee In stochastic NMR the

input, X(+), is taken to be random noise and the

particular realization is made use of in the analysise Blumich (1985)
provides a reviewe In the case that the input is Gaussian white noise,

coviY(t+u),X(+)} is found to be given by
~

i Py expi-o,ul expiiy uf (27)

for u > O with the i) - o, the latent values of 4 + 22/2 e The Fourier

transform of (27) is

P

28 (28)

T
The amplitude of this quantity peaks at ’A near )/k and sample-~based
quantities may be used to derive estimates. Examples may be found in
Ernst (1970) «

In many important cases second—order spectra are not sufficient to
describe structure unequivocally,.higher-order spectra are neededs Because
of symmetries present, third-order spectra vanish identically. The fourth-
order spectrum, which is the Fourier transform of Eix(t)x(t+u1)x(t+u2)x(t+u3)},
has peaks when the frequencies 83, Xiﬂ‘xj and Jﬁ+3£+‘£ are simul taneously
presents Examples of sections of such empirical spectra are given in
Blumich and Ziessow (1983) « The use of such spectra is found to lead to
near complete assignment of protons to molecules in many substances of

concerne
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3e4 Particle Processes

Consider a circumstance in which at time t there are N(t) particles situated
in space at the locations Ej(t) y J = 1,e¢e,N(t) o If r denotes position
in space, then this particle process may be represented by
N(t)

z S(r~-r.(%)) (29)
= v
The motion of the j=th particle may be described via Ej(t) « For example
if the particle is moving with a constant (directed) velocity then r j(t) - ;;J.(o)
-V t o If the particles motion is Brownian, then Nrj(t) is a spatial
Brownian motion with independent Gaussian incrementse

With the advent of lasers, the motion of collections of particles may
be studied by analysing light scattered when the particles are illuminated
by a lasere Briefly through the Doppler effect the frequency of the incident
light is shifted slightly by a particles motion and a study of the frequency
distribution of the scattered light gives information on.lthe velocity

distribution of the particlese

3¢4.l Laser Doppler Velocimetrye The characteristic property of monochromatic

laser light is that it fluctuates very nearly as a cosine wavee Suppose
that the incident light comes from a direction 51 and has frequency co e

Then the input to the particle system may be represented as
X(t) = exp{i(EI or +at) (30)

Further the (far-field) scattered output in a direction 15 may be represented

S
as Y(t) = sK(t) X(t) where K = kg - k. and sK(t) the complex scattering

~ ~
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amplitude is given by
se(t) = I (%) exp -i‘ggsj(t)} (31)
~ J

Here X(t), Y(t) represent the incident and scattered optical fields and
aj(t) is referred to as the form factore Supposing that the particles are
independent and identical and that the aj(') are independent of thelgj(o)

one sees that the autocovariance function of the process Y(+) is given by
mYY(u) = Effg(t+u) ig(t)}
~ Efexpf-ik.(r(t+u) - r(t))}} (32)

It is essentially the characteristic function of the increments of the
motion of the particle processe Supposing one has constant (laminar) flow,
theg mYY(u)ar exp{-i gfxp}- Supposing Brownian motion, mYY(u) «—exp{-DKzu}
with D the diffusion constant and K = |K| « Other models for the motion
of the particles, ege mixtures of particles with different velocities or
different diffusion constants, lead to other functional forms for mYY(-) .
The problem now is, how to estimate mYY(u) in practicee
The nature of the situation is that the electric field, Y(.), cannot
be observed directlye What can be observed are Poisson processes with
rate the modulus—squared of an electric fielde. In one experimental setup
a Poisson process with rate I(t) = |Y(t)|2 - |sK(t)|2 is observed. The
number of particles, N, is assumed large so th;: sK(t) of (31) is approximately
~

Gaussiane From Isserlis's formula then

mpp(n) = Imyp(0)1% 4+ lmyy(u)? (33)
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and from an estimate of mII(u),an estimate of |mYY(u)|2 may be constructed.
This procedure may be employed successfully for particles moving with
Brownian motion, see for example Nishio et ale. (1983); however in the
case of laminar flow mYY(u).v exp{—i‘gfgu}, whose modulus contains no
infermation on‘g « The experimental setup has to be altered.

In Doppler-difference velocimetry: the frequency « of the input beam
is shifted slightly tew+® giving a second input X'(t) coming from a

different direction and the far~field intensity is then

I(8) = la(£)X(3) + s, (£)x1 (1) (34)

Expanding this shows
I(t) ~ exp{i(§ - E')gxt} exp{—i&t} + ooe (35)

in the case of laminar flow and the problem has again become one of
egstimating the fréquenoy of a cosinee This procedure is made use of in
Pfister et ale (1983) and Sato et al. (1978) for examplee An important
advantage of this experimental technique is that rapidly varying velocities
may be tracked and even subjected to Fourier analyses themselves (see
Pfister et ale+ (1983).)

Cummins (1977) and Schulz=DuBois (1983) are general references to the

techniques and uses of laser velocimetry.

3e4+2 Discussione It is worth remarking that the interference procedure
made use of is intimately connected to the technique of complex demodulation
described earlier in the papers By superposing the X'(t) signal one is

essentially bringing about multiplication by exp{i@u+3)t} allowing, as
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in the c#se of complex demodulation, atiention to be focused on components
of frequency near o>
In the case that the intensity I(t) is low, sampling fluctuations will

need to be taken account ofe

3e4.3 Bispectral Analysise In an interesting piece of work Sato et ale
(1978) combine laser Doppler velocimetry with bispectral analysis to
obtain information concernin particles in suspensione Their approach has
the advantage of “eliminating" Gaussian noisee

The experimental set-up involved: vibrating particles (in one case cigar

smoke, inanother water) by a known sound wave
X(t) = A sin(w,t + 9;) + A sin(2wyt + §2) (36)

and then measuring the particle motion by a laser Doppler velocimeter.

The measured signal takes the form
Y(t) = alsin@aot+¢l) + azsin(2wot+¢(2) + e(t) (37)

with the a, functions of Al' Az, particle diameter, relative density of
particle material, viscosity of the medium and other things. The series ()
represents noisee

The power spectrum of Y(e.) is given by
L2 2 . \
08 dh-wy) + &y S(A-2)) + £, N (38)

and it should be noted that the noise spectrum appears. Supposing the

noise to be Gaussian, in contrast the amplitude of the bispectrum is

32—1!; at layl SO =) SO\, -wy) (39)



- 20 -

and the noise comenent is absente The value af|a2| may be estimated from
the bispectral estimate and used in turn to estimate particle parameters.
Sato et ale. (1978) present experimental results demonstrating that this
bispectrum based estimate can be much more sensitive than a power spectrum

based onee
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4+ DISPERSION AND MODES

41 Background

Consider the linear—temporal process
Y(x,t) = p cos(ax + yt + S) (40)

It satisfies the wave equation

2 2
e (a2)

with ¢ = 57a, the phase velocitye In the case that there are side conditions,

following Sturm=Liouville theory, discreteness occurse. Given frequency ?r

only a certain number of wavenumbers o = an(aﬁ g N = 0, 1,ees are possibles

An implication of this is that for a composite wave different frequency

components will travel at different speeds; or disperses Such a relation

between frequency and wavenumber is referred to as a dispersion relatione
From a statistical viewpoint the following problem arises, given data

on Y(i,t) and imagining it to be a superposition of terms of the form (40)

satisfying a dispersion relation, how is that relation to be estimated?

It is instructive to consider the (two-dimensional) Fourier transforme

One has

S exp{i(a(y)x-l-zt)g exp{-i(m;\t)g ax dt = SO-y) S(x-a@p)  (42)

Mass is seen to occur on the curve k = a(Ad) « In the case of a composite

process, mass may be expected to occur on a family of curves k = an(k) .
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4 +2 Examples
The fields of oceanography, seismology and helioseismology provide empirical
examples of the use of Fourier transforms to discern dispersion relationse.
Gilbertand Dziewonski (1975) provide analyses for the free oscillations
of the earth based on seismograms from two deep earthquakes. Munk et ale.
(1964) analysed sea level fluctuations as measured by a linear array of
gauges off the coast of Southern Californiae Estimating a wavenumber—frequency
power spectrum, they found most of the energy to be trapped in a few narrow
bands in (k,A) space,corresponding to edge waves. (These are water waves
moving sideways to the shore, rather than rolling on to ite)

The most dramatic developments have however been taking place in the
field of helioseismology, that is the branch of solar physics concerned with
the study of resonant oscillati;ns of the Sune The motion of the visible
portion of the Sun's surface is measured via spectrographs attached to
conventional solar telescopess Velocity of movement is determined through
the Doppler effects The wavenumber-frequency power spe;trum is then estimated
from the datae The cover of the 6 September issue of Science provides a
striking example of such an estimate. References £o this work include

Deubner and Gough (1984), Christensen;Dalsgaard et al. (1985)

4«3 Discussion

Given a model (ege velocity as a function of depth) for the medium of
interest, implied dispersion curves may be computed (see for example
Section Te2¢2 in Aki and Richards (1980))e The empirically determined

wavenumber-frequency power spectrum may then be employed to assess the
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degree of fit of the postulated model « Further one may set up an inverse
problem and proceed to improve the modele.

The excitement with which researchers view helioseismology is well
illustrated by the following remarks in Deubner et ale (1975) é
", ... the basic mechanism responsible for the solar S-minute oscillation is
now understood,e-«" and "eee the solutions in Ulrich agree with the observed

ridges in all detail to an embarassin extent."
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5¢ A REVIEW OF SOME PARTICULAR RESULTS

In this section the crude details of a variety of results,concerning the

fitting of cosine type signals superposed on stationary mixing noise, are presentede
Sel Whittle (1952)
The model considered is

Y(t) = « cos(xt +38) + €(%) (43)

t = Oyeee,T=1 ¢« The difficult parameter to estimate is Y It may be

estimated either by ordinary least squares or more commonly by maximizing

the periodogram
™1

2 Y(t) e
£=0

-t |2 (44)

The estimate g'is found to be asymptotically normal with mean B'and

variance

13—22 £eel¥) (45)

3

That the variance falls off as T - was initially suprising. Hannan (1971,3)

and Walker (1971,3) are related paperse
5¢2 Bolt and Brillinger (1979)

This work was referred to earlier in the paper+ The model considered is

X(t) = « e P/T cos(yt + §) + e(t) (46)
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t = 0yeee,T~1 « The parameters are estimated from the (Gaussian) likelihood
of the Fourier tranéform values in the neighborhood of Y The estimates

& and T are found to be asymptotically normal with variance
3

1l
3 5 ee(\6) j 3-2 du /[f o du fu2 _zfudu - f.(/) ue-z"udu}z] -(47)

The parametrization of the decay rate in the form g/T is in order to insure
that the signal does nor drop out asymptoticallyes It seems a plausible

manner in which to develop asymptotic resultse
53 Hinich and Shaman (1972)

The work of these researchers is concerned with an areal-=temporal processe

The model is

Y(xyyyt) = p cos(ax + By + yt +8) + e(x,y,t) . (48)

for x, y, t taking on values in a laticee. Ordinary least squares, maximum

likelihood and periodogram maximizing estimates are considered.
5e4 Vere-Jones (1982)

He was concerned with fitting a cyclic model to point process data- A

point process {-’)’j} is assumed to be Poisson with rate A expia cos(yt +8 )}-
The asymptotic distributions of the ma.;imum likelihood estimate and a
Periodogram maximizing estimate are developede The asymptotic distribution
of /\E is found to be normal with mean y and variance 12/[T3A «I, @)] « Here

Il(q) is a modified Bessel functione.
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S5e5 Isokawa (1983)

This author is concerned with sampled time series data, Y(')'J.) » Where
the Tj are the points of a realization of a stationary point process
independent of the series Y(t) given by (43) . The asymptotic distribution

of the estimate of )\ maximizing the periodegram
I ; ¥y expf-ido} 12 (49)
is determined.
5¢6 Hannan (1974)
In this paper Hannan presents results for the model
Y(t) = i akcos(kxt + Sk) + ¢e(t) (50)

t = Oyeee, =1 o« The import of this model is that the expected value has

period 21!/'2{ s The a.sympfotic distribution of the A maximizing
2 lag(eX /e, (6N (51)
ig derivede. It is found to be normal with mean and variance
1/0 1 & o/(a8n £, _(xy)) ] (52)
X k o T ge X
In practice an estimate of fee(°) would be inserted in (51)
57 Brillinger (1980)
This work was referred to earliere. The model is

3
Y(t) = kzl o cos(f t +8,) + e(t) (53)
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with X3 = Xl + Xz or = 2%n -)’1 -\(2 ’ O(Xk< % o This is the model of
bifrequenciese The asymptotic distributions of both the erdinary least

squares estimate and the estimate 0‘1 ,')\2) maximizing the biperiodogram

agd;) ayh,) ayA; +Ay) (54)

are determinede The asymptotic distributions are found to be normal, dbut

to be different generally.
58 Subba Rao and Yar (1982)

These researchers are concerned with the model of frequency modulation,

Y(t) = o cos(yt+ &+ M sin(¥t ++v)) + e(%) (55)

Estimates of Y, ¥ are determined by maximizing

2 lay(y+ kA 1%/2, (Y + 6P (56)

5¢9 Brillinger (1985)

Thisg work considers the areal-temporal process (48), but now the sensors
are irregularly distributed at locations (xj,yj), j=1ly0e¢,J ¢ The time

period T is thought of as large, and so ¥ may be treated as known. If

1

R -l'ftio [Y(xj,yj,t)] exp{-iz."l,;t} (517)
-7

Xo= % hik (58)

the summation being over Fourier frequencies 21tk/T near X and
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5= - Nl (59)

with 2nk'/T = X (This last is an estimate of the spectral density

4%))e Finally define the (steering)

matrix of the J noise process e(xj,yJ

vector

B = [expfi(ex; +pr,)} ] (60)

(In (57) and (60) the [+] notation denotes a J column vector.) The estimate

studied is the («,f) maximizing the 'likelihood ratio detection' statistic

-7 -1

-1 , (61)
BN B

~—

The asymptoic distribution of the estimate is indicatede.
510 Brillinger (1986)

The previous situation may be viewed as corresponding to a small array of
sensorse The work in this reference concerns a large array case, with the
measurements irregularly placed with respect to all coordinatese. It is

convenient to alter the notation somewhate. Suppose
Y(t) = a cos(w,t) + b sin(ugt) + e(t) (62)

for&, t in RP ana (e, %) =001t1 + oo +¢Uitp » Suppose the data available

are the valuesi?}, Y(GB)} for 35 in a regiongj e T™e parameter aris
estimated by maximizing, for‘) in R?

»*

l2 expl-i(d,20)} ¥(a)1® (63)
J
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A
and given W , (a,b) estimated by ordinary least squares. Asymptotic
distributions are obtained assuming{ﬂ'j? is a realization of a stationary

mixing point process in RY with rate o, and spectrum fNN(ﬂ) o In particular

N

the estimates are found to be asymptotically normal with covariance matrix
¢722(2x)Pe, (N) Zo- (64)
N . 1'A') ~T

where £._(\) = c;Zf”m + [ty (A=0)f, (a)da and

2l 0 8/tdt
Iy = 0 Al -aftas (65)
LB./‘t"dt ~afTat  |pl3/at

The integrals appearing are over the region ¥\ « The asymptotics are as

1] > «

6+« SOME OPEN PROBLEMS

We end by indicating in cursory form a number of research problems related
to the topic of the paper.

1. Diagnostics, influence, robust/resistant procedurese.

2+ Missing values, quantization, jitters

3« Estimation of dimension, ege by AIC.

4+ Inverse problem formulations, ridge regressione

S5e¢ Local asymptotic normality, contiguitye

6+ Adaptive procedurese.

T« The absorbtion modele

8+ Signal dependent noise.
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9e¢ Law of the iterated logarithm, large deviations, rates of convergence
for the estimatess

10+ Random effects modelse.

11+ Vector—valued cases.

12+ Partially parametric formulations, ege the periodic cases

13« Models for the point process and telegraph signal casese.

14+ Expansions for distributionse.

15 Distributions of test statistics, ege of

suﬁ Iz pte-iAt Y(t)|2/ ) p2t (66)
P

or of

Asug‘z min §I7(A), I7(A), T7(h+A,)} (67)

1'
16+ Properties of the estimates when the model is untruee.
17« The broadband signal casee
18+ Parametric analysis of the quefrency‘caseo
19« Distribution in the null case of sup over («,B) of (61).

20« Sampling properties of the NMR estimatese.
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Legends

Record of the Chilean earthquake of 22 May 1960 recorded at
Triestee The tides have been removed from the original seismograme
The natural logarithm of the periodogram of the data of Figure le.
Only part is showne

The result of complex demodulating the record of Figure 1. The
logarithm of the running amplitude is showne Time is time since
onset of the earthquake.

As for Figure 3 except that the running phase is plottede

The modulus of the biperiodogram of the data of Figure le. Only
part is showne

The x-coordinate of the position of the Earth's axis of rotation
(Northern Hemisphere) s

The y-coordinate of—the position of the Earth's axis of rotation
(Northern Hemisphere)s

The natural logarithm of the periodogram of the data of Figures 6
and Te Only part is showne.

The result of complex demodulating the data of Pigures 6 and Te.
The logarithm of the running amplitude is showne

As in Figure 9 except the running phase is showne
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