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Abstract

In regression analysis, including generlized linear models, the scale at which the

response is to be measured to make the regression linear, is known. We consider linear

transfornation models where this scale is unknown and the transformed response variable and

the covariates satisfy a linear regression model. Such models provide a unified approach to

semiparametric models where some rate function given the covariates can be expressed as a

product of a baseline rate function and a parametric function involving the covariates. When

regarding the transformation as a nuisance parameter, a partial likelihood is useful to obtain

estimates of the regression parameters. A resampling scheme (likelihood sampler) is used to

approximate the partial likelihood and the maximum partial likelihood estimate. Counting

processes techniques are used to establish conditions under which the partial likelihood is an

approximation to the likelihood. Asymptotic and Monte Carlo methods are used to compare

the approximate maximum partial likelihood estimate with an estimate obtained from a local

approximation to the likelihood. Our limited Monte Carlo results indicate that our methods

work very well when the regression effect is small or moderate compared to the residual varia-

tion, in fact, in this case, they have mean squared errors equal to or close to that of the

parametric estimate appropriate when the transformation is known. On the other hand, our

estimates are badly biased when the regression parameter is large relative to residual variation.

The effect of misspecification of the model on the performance of the estimates is also investi-

gated and found to be very small.

Key words: partial likelihood, semiparametric transformation models, counting processes, pro-

portional hazards, odds and y-odds.



1. Introduction. We consider models where a response variable Y and p covariates

xl,... ,xp are related through an equation of the form

(1.1) - * h(Y) = iIxI+ ... +Ipxp+e.

Here h is an increasing, unknown function, pT = (1,... 4pp) are parameters and e has a known

continuous distribution function IF. Since h is unknown, it is assumed that any multiplicative

or additive constants are absorbed into h. If Y, xl,...,xp satisfy (1.1) we say that they follow

a linear transformation model with parameters I8 and h. The function h is thought of as the

scale where the transformed response variable h(Y) satisfies a linear model relationship with

the covariates xl, , xp. The usefulness of such models for data analysis has been discussed

in detail by Anscombe & Tukey (1954) and Box & Cox (1964). These authors considered

parametric functions h, while in our case h is unspecified.

When h is unknown, there has been a considerable discussion about the interpretation of

p in the model (1.1). See Bickel & Doksum (1981), Hinkley & Runger (1984), Bickel (1984),

Rubin (1984), and Doksum (1984, 1987). Here we note that P/G, where a. denotes the stan-

dard deviation of the error e, measures the amount of systematic variation relative to residual

variation on the linear model scale. Thus when testing whether certain covariates contribute to

systematic-variation, 1/OE iS the appropriate parameter. Moreover, the ratio 13/1j is a measure

of the relative importance of the covariates xi and xj in the systematic variation. Although the

controversy involving the meaning of 13 in (1.1) is interesting, there is, for a variety of cases, a

way of avoiding it. This involves reparametrizing the problem in such a way that P has a

meaning independent of the scale h. The next four examples illustrate this point.

EXAMPLE 1.1. (Proportional Hazard Model). Let Y be a nonnegative survival or

failure time with hazard function .y. The Cox (1972, 1975) proportional hazard model is

given by Xy(y) = X (y) exp (-Z 1ijxj) where x is an unknown nonnegative function on (0,.). It

was observed by Kalbfleisch (1978) and Prentice (1978) that this is a special case of the linear

transformation model. Here (1.1) is satisfied with h(y) = log X(t)dt and 'P equal to the
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extreme value distribution 1- exp (-et). The parameter f3j is the increase in the log hazard as xj

is increased- by one unit. Special cases of this model were considered earlier by Lehmann

(1953). Savage (1956, 1957), and Rao, Savage & Sobel (1960), among others.

EXAMPLE 1.2. (Proportional Odds Rate Model). For a nonnegative random variable

Y define the odds on death or odds function at time t as

ry(t) = P(Y.t)/ [1-P(Y.t)].

The proportional odds rate model (Bennett (1983), Pettitt (1984)) is given by

ry(y) = r(y)exp -(fjxj)

where r is an unknown increasing function on (0,.). The term odds rate refers to the deriva-

tive of the function ry. Thus the ratio of two odds rates corresponding to different values of

the covariates does not depend on r(y). Here (1.1) is satisfied with h(y) = log r(y) and TI equal

to the logistic distribution [1+ exp (-t)]f'. The parameter Pij is the increase in the log odds

function as xj is increased by one unit. This model was considered in the two-sample uncen-

sored case by Ferguson (1967, p. 257). In the case of dose response studies, it is the natural

extension of the logit model for binary data (Berkson (1944)) to continuous data.

EXAMPLE 1.3. (Proportional y odds Model). For Y . 0, define the y odds function at

time t>0 as

ry(t) = 1 [P Y(Y>t) ) Y>O

= -logP(Y > t), y = 0.

For y =0, ry is the integrated hazard rate, and for y = 1, ry is the odds function. If y is a

positive integer, say k, then kJry(t) is the odds that k independent individuals with the same

covariate values xi, * - *, xp will not all survive to time t. To see this, note that if y1,.* * * Yk,

are the survival times of the k individuals, then Pk(Y> t) = P(min(Y1,* 4* ,Y:)> t) and



1 Ppk(Y> t) = P(min(YI, YO* * t). For y an arbitrary rational number, a similar interpreta-

tion of yl7yt) in terms of series systems can be given. yry(t) is called the y-odds on death by

time t. The proportional y-odds model is

ry(t) = r(t)exp(- Fjxj)

where r is an unknown increasing baseline y-odds function on (O,oo). Here (1.1) is satisfied

with h(y) = logI'(y) and T equal to the log Burr (1942) distribution - (1 +yet')-l , y> 0;

1- exp(-et), y = 0. The parameter 13j is the increase in the log y-odds as xj is increased by one

unit. This model is equivalent to models considered by Hanington & Fleming (1982), Clayton

& Cuzick (1986), and Bickel (1986), among others.

EXAMPLE 1.4. (Generalized probit model). In the case of dose response studies, the

natural extension of the probit model for binary data (Bliss (1935)) to continuous data is given

by

Z)-1 (P(Y . t)) = 0-' (Fo(t)) - 1(3j xj,

where Fo is some unknown distribution function and 4D is the standard normal distribution

function. Here (1.1) is satisfied with V = <D and h(t) = ¢-l (Fo(t)).

Next we give the classical parametric transformation model and one of its most impor-

tant special cases.

EXAMPLE 1.5. (Power Transfonnation Model). Here h(y) is specified as

h(y) = 9 or h(y) = [y"-1]Ik, X * 0, = logy, X = 0, y>0

and ' is taken to be the standard normal distribution 0. Such transformations have been con-

sidered by Anscombe & Tukey (1954), Tukey (1957), Box & Cox (1964), Bickel & Doksum

(1981), and Johnson (1982), among others. When Y is a survival or failure time, the above

specifications are not compatible since h(Y) will be bounded below which is not possible when

v = 0. Thus, in this case, h(Y) should be regarded as the transform of the log of the failure
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time. Moreover, to avoid problems with roots of negative numbers, the transformation

sign(z) I z I or h(z) = [sign(z)(| zj1') -1] / X, where z = log y, should be used.

EXAMPLE 1.6. (The Accelerated Failure Time Model). This is. a special case of

Example 1.5 with h(z) = z. It has been considered by Miller (1976), Buckley & James (1979)

and Koul, Susarla & van Ryzin (1981), among others.

Note that in examples 1-3, semiparametic models are constructed by giving an equation

of the forn: (rate function I x) = (baseline rate function) (parametric function of x). Model

(1.1) unifies the various rate function approaches by defining a semiparametric model which

equates a transformation of the response variable with a parametric function of x plus an error

term.

In addition to the references listed in Examples 1-4, the case of nonparametric h has also

been considered by Fisher (1946, Example 46.2), Kruskal (1965), and Breiman & Friedman

(1985), among others. The altemating conditional expectation (ACE) procedure of Breiman &

Friedman is more flexible in that it allows arbitrary (not necessarily monotone) trnsformations

of both the response variable and the covariates. However, even though the procedures are

hard to compare because of their somewhat different purposes, we expect our procedure to per-

form well in comparison with ACE since it is likelihood based.

Next consider n independent responses Yl,...,Yn satisfying (1.1). In this case we use

the notation

h(Y) = xyp+et, i = I...,n

where x:r = (xj1,... ,xip) are the covariates.corresponding to Yi, and .1.... n,en are independent

identically distributed with distribution T. Since all additive constants can be incorporated in

h. we assume Y'tj xjj = 09 j =, p

For the estimation of 0, we use a partial (marginal or rank) likelihood which can be

computed without knowing h. In Section 2, we show that the partial likelihood is the
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projection of the h - known likelihood onto the space of rank statistics, and we obtain a

Hoeffding (1951) type fomiula where the partial likelihood is expressed as an expected value

of relative likelihoods. In Section 3, we use this expression to construct a resampling scheme,

the likelihood sampler , to compute approximations to the partial likelihood and the maximum

parfial likelihood estimate. We refer to this estimate as the approximate maximum partial

likelihood estimate ( AMPLE ). The likelihood sampler is illustrated on the Pike (1966) cancer

data and the Stanford Heart Transplant Data (Miller & Halpem (1982)).

In Section 4, we use Aalen's (1978) counting processes approach to obtain a Le Cam

type locally asymptotically normal (LAN) representation of the h - known likelihood, and then

show that in the case of i.i.d. censoring, a likelihood defined from the censored rank vector

approximates this likelihood in a neighborhood of P = 0. This generalizes to censored data the

Le Cam - HAjek - Bidfik result (see Hljek & Sid&k (1967), pp 245 and 275) that the ranks are

asymptotically sufficient. Next we use this rank approximation to the likelihood to constuct

estimates of P called local maximum partial likelihood estimates ( LMPLE ).

One important question relates to the choice of model: If we use the estimate derived

assuming the proportional hazard model, how well will this estimate behave if the model gen-

erating the data is actually the proportional odds model? More generally, in our linear

transfonnation model framework, this question is: If we use an estimate 3 assuming error dis-

tribution I when in fact the true error distribution is T, how well will t behave? It turs out

that asymptotically, as n-+o0, the squared bias dominates the variance in the usual breakup of

the MSE (Mean Squared Error) into the sum of squared bias and vanance. In fact,

n(bias)2-oo, while n(variance) stays bounded. On the other hand, Monte Carlo simulation

shows that for moderate sample sizes and for a range of parameter values, squared bias does

not dominate the variance. In order to have an asymptotic theory that reflects the actual

behaviour of MSE for moderate sample sizes we resort to the trick of letting the parameter set

shrink as sample size increases. More precisely, we consider the parameter set
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4 = (p: y( -I2K2, ma,4t-gt =o,(1))

where gi =! j13, and K2 is an arbitrary positive constant not depending on n. This is the

usual contiguous parameter set used in asymptotic testing theory. In estimation, a similar set

has been used by Pettitt (1983) to derive approximate partial likelihood estimates and by Solo-

mon (1984) to study the performance of estimates derived from the proportional hazard model

in the accelerated life model and vice versa. It also appears to be an implicit assumption in

part of the statistical literature, e.g. Box & Tsiao (1973). Thus, if (3 e Q, the apparently con-

tradictory results of Box & Tsiao (1973, Section 10.4) and Bickel & Doksum (1981) can be

reconciled. See also Doksum & Wong (1983) and Carroll (1982).

In Section 5 we find that (- does the trick: It gives (1) good approximations to the

MSE and (2) formulae that yield insight into the properties of the estimates. It may be argued

that the model we use to achieve (1) and (2) is unrealistic since in order to keep the squared

bias and variance of the same order we must let the parameter set shrink as n tends to infinity.

But note that for the moderate sample sizes used in medical trials, our parameter set is quite

substantial, e.g. for n=40, it is [-2,2] in the two sample case. Moreover, the purpose of

asymptotic theory has always been to achieve good approximations and insight into properties

of statistical procedures since, inherently, n = co is unrealistic. Using the fln asymptotics and

Monte Carlo simulation, we find that for p = 1, using the wrong T in the estimation procedure

has a very small effect in the perfonnance of the estimates. Moreover, for ( in a substantial

neighborhood of 0, the variance dominates the squared bias and the MSE's of the rank esti-

mates are equal to or exceed by a small to moderate amount the MSE's of the optimal h-

known estimates.

I We conclude this section with some assumptions and notation. We assume that the

design matrix X = (xl,...,Xn)T is of full rank and that Yi is nonnegative. Thus our model

assumes that for some increasing function h,
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(A.1) h(Yj) = xif3+4i,i = 1,...,n, xi = O, ei-T are i.i.d., Yi>O.

(A.2) Rank (X) = p.

The Y 's are censored on the right by Y1,.. . Yn and we observe

Ti = min(Yi,Yi) and Di = I[Yi.Yil], i = 1,...*n

where I denotes the indicator function. In many instances, we need to assume

(C.1) Y1,..n.,Y, are independent random variables independent of Y1,. . . Y

(C.2) The support of Yi intersects the support of Yi, i = 1, n.

Finally, we assume

(A.3) The distribution i has probability density vj such that q(x)>O for all xe R and h

is a transformation mapping the support of Yi onto the real line.

To simplify notation we shall write gi = xiTf, f4(t) = Vi(h(t) - JXj), Fg,(t) = P(h(t)-

Fg, = I-Fg, I'= 1-T. Further, let A(t) =y(t)/(l-'I'(t)) be the hazard rate and

A(t) = -log (1-Y(t)) be the integrated hazard. Set X;ji(t) = X(h(t) - gi) and

A;(t) = A(h(t) - i).

2. Rank, marginal and partial likelihood. Suppose that h is regarded as a nuisance

parameter in H = (increasing transfornations mapping the support of Y onto R). Our model

is invariant under the group G = (increasing transformations mapping the support of Y onto

the support of Y). For the model (A. 1) with h in H, the rank likelihood, which we describe

below, is equivalent to the more general concepts of partial likelihood and marginal likelihood.

See Cox (1972, 1975), Kalbfleisch & Prentice (1973, 1980, p. 72), Kalbfleisch (1978), Prentice

(1978), Pettitt ( 1982, 1983, 1984), and Wong (1986).

Let S = (S1, ...,Sn) be the vector of ranks of Y1,.. ,Yn in the uncensored version of the

experiment. Owing to censoring, S is only partially observable, however information carried
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by the data can be used to constmct a set S of possible values of S. S can be described in

terms of Dl....,Dn and the censored rank vector R = (RI,...,Rn) defined by

n
Ri = ;DjI[Tj :5Ti], i = 1, . n.

Note that here we rank the uncensored observations among themselves and then assign to each

censored observation the same rank as to the nearest uncensored observation on the left. The

set S is now taken to be the collection of all mnk vectors (sI ... ,sn) Of Y1, . yn compatible

with the observed censored rank vector rl,... ,rn and the indicators dl,... ,dn of censoring.

Let

L(P1)=P(Se S)

be the censored rank likelihood, where P = Pp refers to the (unconditional) distribution of

yl,...,Yn in the underlying uncensored version of the experiment. The following proposition

establishes the connection between L(J3) and the likelihood

L(5) = dPp/dP, = n__v ____

appropriate when h is known and there is no censoring.

PROPOSITION 2.1. For the model (A.1), (A.2), (A.3)

Ep(L(p) S E S) = L(13)/L(O).

PROOF. We have L(O)Epo(L(p) I S E S) = JS L()dPo = L(1).

REMARK 2.1. The above result shows that the censored rank likelihood L(p) is pro-

portional to the projection of the likelihood L(p) onto the space of functions of S which are

constant on S. Thus, in the class of functions of R and D, L(D)/L(O) is the closest (in the

L9(PO) sense) to L(p).
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The following result gives a Hoeffding (1951) type representation of the partial likeli-

n

hood. Let k = E di, be the number of uncensored observations in the sample.

PROPOSITION 2.2. For the model defined by (A.1), (A.2) and (A.3)

(2.1) k!(In, [=-E(,) |[wLvii(r-) I

where v(1) < ... <VO are the order statistics in a sample of size kfrom 'P and V(°) = .

PROOF. The proof is very similar to Kalbfleisch & Prentice's (1973) marginal likeli-

hood derivation and is omitted.

REMARK 2.2. Since the ranks are invariant under increasing transfomiations, L(p)

does not depend on h.

3. A resampling scheme for estimating the partial likelihood. Results of Section 2

imply that in the transfonnation model (A. 1), the regression parameters 3 can be estimated

without first estimating the transformation h. We shall consider now a resampling scheme,

called the likelihood sampler, for estimating the partial likelihood and the parameter 3. A

somewhat different estimation procedure will be considered in Section 4.

The likelihood sampler can be described as follows. On the computer, generate B

independent ordered samples VJ()< ... <V(k)q j =1,...,B, from T. Then approximate k!L(p)

by LB(P), where

1B(3.1) LB(P)= 4 gi(p), and
Bi-

ril| (r) -(V _Q

n W P(V
gj(p) n (r(\j
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Now, by Proposition 2.2 and the strong law of large numbers.

PROPOSITION 3.1. Under the conditions of Proposition 2.2, LB(13) converges almost

surely to k!L(P) as B-.

We estimate 1 by O3B maximizing LB(p) for B = 200 or B = 400. Experience shows

that not much accuracy is gained by going beyond B = 400 when p = 1. For p> 1 larger B

will be required but we do not have enough experience to give exact recommendations.

REMARK 3.1 Ties. Ties among the censored observations are automatically handled

by the above approach. We can easily modify our procedure to handle data sets with tied

uncensored observations. We view ties as the result of rounding off in the underlying continu-

ous model. Moreover, we take the point of view that we are trying to compute the same L(p)

as before. Suppose there are yI tied uncensored observations at t3, i = 1,...,e. At the same

time we select Vj()< ...<V ), we independently select ,yi= s uniform (4,0] variables
i=l

Wj...,Wj' and add one to each of the tied observations. 8 is chosen to equal 1/2 times the

minimum absolute difference between uncensored, untied observations. Now compute the

ranks of the new uncensored observations, the censored observations, gj(p), and proceed as

before.

EXAMPLE 3.1. We illustrate the likelihood sampler on the Pike cancer data (Pike

(1966), Kalbfleisch & Prentice (1980), pp. 2, 82). This data gives days to cancer mortality for

two groups of rats distinguished by a pretreatment regime prior to exposure to a carcinogen.

Group 1: 143, 164, 188, 188, 190, 192, 206, 209, 213, 216, 220, 227, 230, 234, 246, 265,

304, 216*, 244*

Group 2: 142, 156, 163, 198, 205, 232, 232, 233, 233, 233, 233, 239, 240, 261, 280, 280,

296, 296, 323, 204*, 344*
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Censoring times are indicated with a star. There are no ties between groups. The ties within

groups can -be broken in any way at all without changing the analysis. Let 0B denote the

value of P that maximizes LB(3).

For the normal likelihood sampler where l = (I, the estimate 13B was equal to .454,

.467, .451 and .463 for B =100, 200, 400 and 800, respectively. The corresponding LB (p B)

values were .549, .579, .595 and .62 1. The random variables used in the likelihood sampler

with B = 100 were independent of those used in the B = 200 sampler, and so on. For the

logistic likelihood sampler, the estimate B/OL was equal to .473, .479, .486 and .501 for

B = 100, 200, 400 and 800. Here GL is the standard deviation of the logistic distribution. The

corresponding LB(13B) values were .801, .901, .877 and .971. Thus the likelihood principle

suggests the logistic transformation (proportional odds) model as the better one for this data

set. For the fitted logistic model the interpretation is that the odds rate for group 2 rats is

about 40% (e79 = .4) that of group 1 rats. Note that both the logistic and the normal model

yield values of the estimates of group difference to residual variability close to .5, but

remember that the two models refer to different transformations, h. It would have been of

interest to estimate the two transformations for comparison and interpretation, but we have

chosen not to study methods for such estimation in the present paper.

To further study the effect of the random numbers used in the resampling scheme on the

value Of 0 Bg we ran 50 independent trials where in each trial we used the normal likelihood

sampler with B = 100 to compute a value for 0 B. The mean and standard deviation of the

resulting 50 values of 1 B were 0.460 and 0.020, respectively. We repeated this experiment

using B = 400. This time the mean and standard deviation of the 50 P B values were 0.457

and 0.0085, respectively. The standard deviation 0.0085 should be compared to the standard

error 0.333 of the asymptotically optimal estimate in the censored normal model (from Exam-

ple 4.3). In other words, when B = 400 the extra randomness introduced by the likelihood

sampler is very small when compared to the variability already present in the data.
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EXAMPLE 3.2. We consider the Stanford Heart Transplant Data as reported by Miller

& Halpem (1982). The response variable Y is survival time after transplant, the covariate x is

age at time of transplant and n = 184. We find that for the normal sampler with B = 400,

1B = -.093 with standard error (from Section 4) (I tx?) 2 =.0082. Thus we cannot reject

the hypothesis that 1 is zero.

REMARK 3.2. Monte Carlo sampling techniques have also been used by Diggle &

Gratton (1984) and Beran & Millar (1986) to estimate likelihood functions. The likelihood

sampler is different in that it takes advantage of Hoeffding's formula.

4. A local approximation to the likelihood. Suppose that Y1,.;. ,Y, satisfy the linear

transformation model (A. 1). In this section we shall consider conditions under which the

regression parameters 1 can be estimated adaptively when the transfornation h is unknown.

A convenient tool is provided by the theory of multivariate counting processes and stochastic

integrals. We refer to Aalen (1978), Gill (1980), Andersen et al. (1982), Andersen & Gill

(1982) and Andersen & Borgan (1985) for a detailed discussion of relevant results.

Recall that T has an absolutely continuous density v# and that x = yi/(l - '). Define

I = logX,

and assume

(A.4) I' = (Wj/4r)+ has bounded variation and 0<1I(Y) = | 2d<.

Let Gi(0) denote the distribution of the censoring variable i, i = 1,...,n. We assume

conditions (C.1) and (C.2), and

(C.3) There exist distribution functions G1,... ,Gl and G such that limGi(n)(t) = Gi(t) and

limn7iF1Gi(n)(t) = G(t), tre R.
n- i
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Define processes

n
-- Ni(t) = I(T5it,Di = 1), N(t) = ;Ni(t)

i=l

n
Zi(t) = I(Ti t) Z(t) = £ZI(t)

i-I

Ni and N are counting processes with intensity processes ZiX, and JZjXUA respectively, where

X is the hazard rate of Yi and g±i = xiTj. Then, using results of Aalen (1978),

t t

Mi(t) = Ni(t) - 7ZdAIL,9 M(t) = N(t) - I ZjdAIL

are mean zero square integrable martingales with predictable variation processes

iM,MMt)= O if i j

t

=VidAJ4 i j

t n

WM,MN() = J:Z1dA;j.

Here A 4 is tfie integrated hazard of Yi.

For the moment we shall assume that the transformation h is known. For any P( Rp,

let Pp denote the probability measure induced by Tl,...,Tn and Dl,...,Dn. Further, let Bn(P)

be the pxp symmetric matrix

n
Bn(i = I(jLt,T'),cJix:T

i=l

Whelre(,G =()zA z= Fad't=(twhereI(ll,V,G) = [Z ,)z,d Z, Gi=GFS, and Il 1(t) = 1hti )

We shall assume
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(A.5) max xiT(XTX)Tlxi 0 as n-o
i

(A.6) limn irxfI(p+,P,G) = rj>0 for some il.
n

REMARK 4.1. Assumption (A.6) ensures that tfie distributions Gi of the censoring vari-

ables do not have supports disjoint with the support of F91.
REMARK 4.2. By (A.2), (A.4), (A.6), for any a* 0, a e RP we have

I(I)aTXTXa 2 aTBn(P)a > llaTXTXa > 0

so that the matrix Bn(I) is positive definite. By (A.5) and (A.6),

max x4B1-(I)xi . T'max xIrxTxFX -IX_ O.
i ni

XX

Fix (03 e RP and define a pxl vector T(t) by

I

T(t) = -B 2(0) 1(dNx-IZ dA)

n t
= -Bn12(p0)z;Xi 1 l,LdMi-Bn~~i=

THEOREM 4.1. Suppose that the conditions (A.1) - (A.5), (C.1) and (C.2) are satisfied

and let 0I3e Rp be such that (A.6) holds

(i) Let I = 0o+B 4(p0)an where (an) is a bounded sequence in RP. Then, under

PRo

log(dPp/dP) = anT(o)- anTan+ opF (1)

which converges weakly to a normal distribution N(-anTan/2, aTan).

(ii) Let u: Rp -+R be a subconvex loss function. Then

lim liminfinf sup Epu[B (I)( )] (2 "2 u(s)exp(-sTs/2)ds
k-*.. n sa.¶a5K2 n
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where K is a constant independent of n, P = Po+ B-l2(fPi)an and the infimum is

taken over sequences of estimates P that are regular at Po is the sense of Hizjek

(1972).

Part (i) of the tfieorem establishes that when the transfornation h is known, the family

of underlying distributions is locally asymptotically nonnal (LAN) in the sense of Le Cam

(1969). By the Hajek (1970) convolution theorem, asymptotically any sequence of estimates

regular at Po is at least as dispersed as N(O,B-'(PO)). Part (ii) provides the asymptotic

minimax bound for the risk associated with the loss function u. To prove (i), we sketch, in

Section 6, an argument based on Rebolledo's martingale central limit theorem (Theorem 1.2 in

Andersen & Gill (1982)). The technical details are similar to those of the two-sample case

considered in Gill (1980, pp. 118-122). An altemative proof is given by Koul & Wang (1984).

REMARK 4.3. Note that if 1 = Po3+B1-2(Po)a,, gjo
= x:'o, j = xiTB-112(po)an+pj

and a,ian . K2, then by Remark 4.3 and the Cauchy-Schwarz inequality we have

(p - o)T( _ g0) =aTB-l2(1o)XTXBn-/2(po)an < i1jK2 and

max(.i- gio)2 = max(x:B1&12(pO)an)2 < K2max xirB -(Io)xi -e 0
i i i

REMARK 4.4. Assuming that the transfonnation h is known, under conditions of

Theorem 4.1, one can construct asymptotically efficient estimates of 1 using Le Cam's (1969)

one-step maximum likelihood procedure. Under additional conditions, namely that logV and

logl are continuously twice differentiable and have negative second derivatives, Bamdorff-

Nielsen & Blaesild (1980) show that the maximum likelihood estimate exists and is unique.

Theorem 4.1 can be applied to establish its asymptotic efficiency.

We now drop the assumption that the transformation h is known. In general, the param-

eter P cannot be estimated adaptively, i.e. with the same accuracy as when h is known.
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Consider for instance the Cox proportional hazard model. In the two sample case with both

uncensored and censored data, Begun (1982) and Begun & Wellner (1983) showed that if

P1*0 then every rank estimator of 1 that is regular at Po, has a limiting distribution more

dispersed than N(O,B'1(P0)). Moreover, the optimal rank estimator (the Cox partial likelihood

estimate) is asymptotically best among all regular estimates of P. See Begun et al. (1983) for

the treatment of the general Cox proportional hazards regression model.

It is conceivable that this situation carries over to other transfornation models. The

maximum rank likelihood estimate and its likelihood sampler version is expected to be optimal

among rank estimates and asymptotically best among all regular estimates of 1. The informa-

tion contained in the data cannot be used, however, to "estimate away" the unknown transfor-

mation h and thereby estimate 1 as if h were known. To show this one needs to extend

Theorem 4.1 to a LAN and a Hljek-Le Cam asymptotic minimax result so that both com-

ponents of the model -- the parametric 1 and nonparametric h -- are taken into account This

a difficult and open problem.

We shall consider now local neighborhoods of P0 = 0 and show that equal limiting cen-

soring is a sufficient condition for adaptability of P. Define the local parameter set

nn = (1:1 = Bn12a, a UaK2)

where an is a pxl vector, K is a constant independent of n and Bn = BO(0). Note that B. can

be estimated consistently by

B,n = ;X,t1x~ 1('P'(F ))2 dNi

where F is the left continuous version of the Kaplan-Meier (1958) estimator based on the com-

bined sample.

Define a pxl vector statistic
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t

(4.1) S(t)=B n l-x'(W1(F))[dN_-(V/Z)ZidN]

where V(t) = I(Z(t) > 0) and 0/0 = 0. Note that the statistic S depends entirely on the processes

Ni and Z., in particular it does not depend on the unknown transformation h or the parameters

IP.
Let F(t) = FO(t) = '(h(t)). We assume

(A.7) I' either has a limit at x = and is bounded on (,), or altematively I' is

bounded on [x,oo) for each x >- o.

(A.8) For all e>0

t

limlimP( I' [lPCfrl(F))]2dF>) = 0.tlimlim- b1(-(t4io n-- 6

The following theorem is an extension of results obtained by Gill (1980, Chapter 5) and

Andersen et al. (1982) in the k-sample set-up. The proof is given in Section 6.

THEOREM 4.2. Suppose that the conditions (A.1) - (A.5), (A.7), (A.8), (C.1) - (C.3)

are satisfied and that (A.6) holds for I3o = 0. Let iE3 Qn and let bn be a bounded sequence in

RP. Assuming that h is known, then, under PO

(log(dPp / dPO),b TS(..))T

converges weakly to a bivariate normal distribution with mean (-l/2aTan,0)T and covariance

matrix

abna-ICn)an
=[bn-a-Cn)a, bT(I-Cn)bn J

where I is a pxp identity matrix,

Cn=n n==1



- 18 -

and zi = (1-GG)(1- F), z = (1-G)(1 -F), v(t) = I(z(t)>0).

We shall assume now that

(C.4) the limiting censoring distributions Gi are equal.

Under this assumption zi = z and

B XTX I '1,,T1(F))2ZdAoBn = X Xl62d

which can be estimated consistently by

Bn = TX)[nl ....(.))2dNI

Replacing B n by Bn in the definition of S(m) we conclude that for 3 e -4, a,S(6)L2 aIan has

the same asymptotic distrbution as log(dPp/dPO) with the transformation h being known. More

precisely, let

LR(P3) = exp(a,TS(oo)-2-ajan)2

with a. as in the definition of C4.

THEOREM 4.3 Under (C.4) and the conditions of theorem 4.2, there exists a sequence

cn depending on the data only through S(oo) such that for I re G, cnLR (0) dPo is a density,

cn - I in probability as n a , and

lim Sup I(dPp/dP) -cnLR(P)I dPo = 0.

COROLLARY 4.1. Under the conditions of Theorem 4.3, for sequences of alternatives

in , the maxmin most powerful level a test based on the censored data ranks R1, ...., Rs,

and the indicator variables D1, ... , Dn is asymptotically maxmin most powerful in the class

of all level a tests based on the censored data min{h(Y),h(j)), I[h(Y) 5 h(Y.)]), i = l...,n,
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with h assumed known.

These results follow from Theorem 4.2 and the arguments in Hljek & Sid&k (1967, pp.

242-249).

REMARK 4.5. Theorem 4.3 extends to censored data the Le Cam-HAjek-lidgk (Hijek

& Bidak, pp. 245 and 275) result that the ranks are asymptotically sufficient. This follows

since S(°°) is easily seen to be a function of the censored ranks R1,...,R. and the indicator

variables Dl,...,Dn only.

Since LR(P) is close to the likelihood, we will use the value of P that maximizes LR(13)

as an estimate of P. LR([) is maximized by a4* = S(o) so that for Pe n- the maximum is

achieved at [- B-12S(oo). Substituting B. for Bn we obtain the estimate

(4.2) i= XX XAAI

where AT = (A1, ... ,An) and Ai is the censored rank score

(4.3) Ai= lI (' (F ))[dNi- (V/Z)ZidN]

and

(4.4) I = nl1 l'('-i (F ))2dN

REMARK 4.6. Note that [ is the least squares estimate computed from (Yi,xi),

i = 1,...,n whereYi = At/I.

COROLLARY 4.2. Under the conditions of Theorem 4.3, for P[e 4n (P- P) has an

asymptotic p-variate normal distribution N(O,Bn).

COROLLARY 4.3. Under the conditions of Theorem 4.3, for [ E ln, [ is an adaptive

estimator in the sense of having the same limiting distribution as an efficient estimator of [

with h assumed to be known.
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Here are some examples. Let C = (cj) be the pxn matrix given by C = (XTX)-IXT.

EXAMPLE 4.1. (Proportional hazards). In the case of '(t) = 1 -exp(-e') we have

1' 1, (4.3) reduces to the familiar log-rank scores and

-n n

D~D_ : cjii [dNi- (V/Z)Z,tdN].

For the Pike data of Example 3.1, i = .51 1. Moreover 13(SE = .398 with estimated standard

error aj'(Tx?(36/40))-f 2 = 0.260 and standardized score / (standard error 13) equal to 1.531.

Here aE iS the standard deviation of the extreme value distribution.

EXAMPLE 4.2. (Proportional y-odds4. The choice '(t) = 1 -(1 +yet)T"', gives

l'(t) = (1-I(t))y and leads to scores considered by Harrington & Fleming (1982) in the two-

sample problem. The estimator ( takes the form

-n cuit (1 -F)Y[dNi- (V/Z)ZidN].

t(1-F)2ydN

Recall that y = 1 yields the proportional odds rate model. In this case, for the Pike data,

(3B= .903. Moreover, 13/GL= .498 with estimated standard error (x-a(I =.308 and

standardized score 1.617. Here AL iS the standard deviation of the logistic distribution. For

the Stanford Heart Transplant Data of Example 3.2, /OL = -.015 with estimated standard error

.0076.

EXAMPLE 4.3. In the case of I = D, the standard normal distribution,

'(t)=-+-t[1- D(t)]-f'(t). If we replace the Kaplan-Meier estimator F by

F = (nF + 1)/(n+ 1) as in Gill (1980, p.. 127), then the asymptotically optimal estimate takes

the form

00 co

Cj=-n ,cji(F)[dN,- (VZ dN] / Ij2(]:)dN
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where J(u) = -l-(u)+(1 -u)-'4(0Z1(u)). For the Pike data, p = .459 with estimated standard

error (I £xi2}2 = .333 and standardized score 1.378. For the Stanford Heart Transplant Data

13= -.014 with estimated standard error .0082.

REMARK 4.7. The scores Ai in (4.3) are consistent with those proposed by Andersen

et al. (1982) and Harrington & Fleming (1982) in the context of the k-sample testing problem.

Altemative scores can be derived from Prentice (1978), Prentice & Marek (1979) or

Kalbfleisch & Prentice (1980, Chapter 6). In general, the scores can be written as

Ai= audNi+JacdNi' where N.'(t) = I(Yi:t, Di = 0). The processes a,, and ac depend on N

and Z only and satisfy Z(t)dac(t) = (ac(t) - a,,(t))dN(t). The scores which yield asymptotically

efficient estmates are derived through processes au and ak that estimate

-_(('l''j(i))/W('FI (F)) and X(W'(WF)), respectively. In particular, the processes au and ac
corresponding to estimates 3 of Examples 4.1 - 4.3, are given by

A ~~~~~~~~A

au = A -1 ac=A T=extreme value

au= (I + I /Y)(I -F )'Y- 11-f ac= [(I -F)Y- 1] Py T = log Buff

au< >-l(F) ac = -(l-F)- <(>1(F)) T = normal

where A (t) = (V/Z)dN is the Nelson-Aalen estimate of the integrated hazard function A. The

exact scores for ' = logistic and approximate scores for I = normal proposed by Prentice

(1978) have a similar form with F replaced by F and F by F where

i:(t) = n-Il(i -dN/(Z+ 1))

is an estmate close to the Kaplan-Meier estimate. We refer to Andersen et al. (1982) and

Cuzick (1985) for further discussion.

REMARK 4.8. The problem of extending Corollaries 4.2 and 4.3 to the approximate

partial likelihood estimate PB can be attacked as follows: Let ij be the value of ( that
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maximizes gj (p). Extending arguments of Bell & Doksum (1965) we can find conditions

under which4-i(P-§) converges in probability to zero, j = 1, . . ., B. Using convexity argu-

ments (Bamdorff - Nielsen & Blaesild (1980)), P B can be shown to be closer in Euclidean

norm to 0 than each IO j. Thus, if B is fixed as n -. oo,,i(jBn( ) converges to zero in proba-

bility and Corollaries 4.2 and 4.3 hold if 0 is replaced by 0 B.

5. Bias, mean squared error and Monte Carlo results. In this section, we first use

the results of Section 4 to find approximate expressions for the bias and mean squared error of

the local maximum partial likelihood estimate (LMPLE) ( of Section 4, then we compute

Monte Carlo bias and mean squared error of ( and the approximate maximum partial likeli-

hood estimate (AMPLE) i B of Section 3.

We consider the following questions:

(i) Suppose both TI and h are known. Then, presumably, we can do much better by using

the MLE obtained by maximizing the ordinary likelihood of the censored data. We

investigate how close the mean squared error of the AMPLE and the LMPLE is to the

mean squared error of the MLE, i.e. how much is lost by not knowing h.

(ii) Suppose we use the estimates f and 1 corresponding to a certain specified T. What are

the biases and mean squared errors of these estimates when the true error distribution is

To? The cases T = TPo and T * To, are both considered.

For any distribution function T let J(u) = -1'C(T'(u)) where the function I is defined as

in Section 4. Further, for distribution functions I, P0 and G set

Ih( ,'POG) = JJ(U)JO(u)G(Fu(u))dut Ih(P,G) = IhCP,'PG)

bh(P,'Po,G) = 1- Ih('P'O,G) / Ih(eO,G)

where F (t) = 'O(h(t)) and Bn = XTXIh(I,G), Bo, = XTXIh(Co,G). In Section 6, we show
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PROPOSITION 5.1. Under the conditions of Corollary 4.1, for the model A. 1 with

error distribution Tlo, (3-i)+bh(:,'O,G)(3 has an asymptotic p-variate normal distribution

N(0, B; ).

In what follows, we shall assume that the covariates are univanate, i.e. p = 1. In this

case, by Proposition 5.1, the bias and mean squared error of (3 are approximately

(5.1) bias(p) = bh(,Wo0G)

MSE(O) - bh2(,qWoj,G +1Ih0,G)T-X?2]-I

Note that these expressions are related to test efficiency. In fact, if the approximately standard

normal test statistic ((1x?)2 is used to test Ho : ( = 0 versus H1: (>0, the efficacy for

the model with error distribution T0 is [1-bh(C,To,G)]2Ih(Y,G)Z:x;]. In the two - sample

case, this reduces to the efficiency given by Harrington & Fleming (1982) and Cuzick (1985).

To compare the estimates (B and 1, in terms of bias and mean squared error, we shall

examine some special choices of distributions I, To and G.

5(a) The normal likelihood sampler and the normal LMPLE. Here ( B denotes the esti-

mate derived from the normal likelihood sampler of Section 3 and (3 is the normal LMPLE of

Example 4.3. In our parametrization, when 'P = N(0,1), the estimates ( and 3 are estimates of

the slope ( m a transformed regression model with Var(e) = 1. Thus, the error distribution

'0 should have variance one. The formulas (5.1) have been evaluated for T0 = logistic and no

censonng, in which case the (bias)2 in (5.1) is negligible compared to the variance for I|52

and sample sizes such that £x25 100 (see Doksum (1987)).

Our first table deals with the transformed linear regression model with xj = (i-13)/ 12,

i = 1,....,25 and h(Yi) = 3xi+et, e, - Tso. The data are either uncensored or the censoring is

extreme value. BIAS and MSE refers to Monte Carlo results over M = 500 repetitions. The

standard error (st. error) of the MSE over the M = 500 Monte Carlo trials is reported in
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parenthesis below the MSE. The AMPLE is based on a likelihood sampler with B = 100 repli-

cations.

Table 5.1 about here.

To check how much is lost in efficiency by not knowing h, we compare the MSE entries

with the asymptotically optimal MSE when h is known (ideal MSE). We see that no

efficiency is lost by using the AMPLE 13 for 1 in the range (-1.5, 1.5). However, for

1 = +2.5, 1 is quite biased in favor of 1.8, and the mean squared error is 5 times larger than

the optimal h - known mean squared error. The LMPLE 1 is more biased than 1 and its per-

formance is poor for [N> 1.5.

This table also shows that the performance of the estimates is not much affected by the

error distribution nor by the censoring here considered. Although 1 and 1 of this subsection

were designed for normal errors, they perfonn very well for logistic and extreme value enrors

for 1 in the range (-1.5, 1.5).

Our next table deals with the two sample case with xi = -1/2, i = 1,...,20; xi=/2,

i = 21,...,40. We consider the same error and censoring distributions as before.

Table 5.2 about here.

From Table 5.2 we leam that the AMPLE 13 has efficiency close to te optimal h -

known efficiency for 13 in the interval (-2,2). Thus 1 now has a larger range of adatbility

than in the regression model of Table 5.1. Again, the LMPLE also performs well but it is gen-

erally less efficient than 1. Moreover, the normal AMPLE 13 and LMPLE 13 are not sensitive

to change in the error distributions.
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5(b) The logistic likelihood sampler and the logistic LMPLE. Here we shall assume that

the estimate B is derived from the logistic likelihood sampler and [ is the logistic LMPLE of.

Example 4.2.

In Table 5.3, the performance of the logistic AMPLE and LMPLE is investigated. The

AMPLE [3 B is based on B = 50 terms in the likelihood sampler, and the number of Monte

Carlo trials in the simulation is M = 300.

Similarly to the nornal AMPLE, the logistic AMPLE (3B performs very well for (3

values in the interval (-1.5,1.5), however for values I[ > 2.0, the performance of the logistic

AMPLE is poorer than the normal AMPLE. The perfonnance of the logistic LMPLE is

remarkably close to that of the normal LMPLE for all values of [3 and for te dee error distri-

butions considered.

Again we note the robustness with respect to the error distribution T of both the

AMPLE and the LMPLE: The mean squared enror of these estimates hardly changes as the

error distribution changes from the logistic to the normal and extreme value distribution.

Table 5.3 about here.

We next give the local approximation to the bias and mean squared error of our esti-

mates based on TI = logistic when the true error distribution To is extreme value distribution

with the same variance as the logistic, i.e. ToV(t) = exp[-exp(t/I4)]. We have

1h(1; 'I'G) = JFGdF, 'h(T; G) = JF2GdF.

We will assume that the censoring distrbution satisfies G = P for some 0 > 0. This

case includes the interesting model where the failure times Yi have the Weibull distribution

F(wiy), where F(t) = exp(yaIr) and wi = exp(-f3xj). For this h, the censoring distribution is

Weibull with G(t) = exp(y4 ).
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Formula (5.1) yields

BIAS(1) [1-(0 + 3)/,I2(0 +2)]3, MSE(P3) (BIAS)2+ ( z xifl(0 + 3).
i-i

The case 0 - 0 corresponds to no censoring and in this case the approximate bias is

(1 9-8). As censoring increases so that 0-, the bias tends to [1 -(1/4F)]3. The bias is

negative for little censoring, positive for much censoring and zero at 0 = 42- 1 .41.

5(c) Estimates generated by the extreme value distribution. When v is the extreme

value distribution, the MPLE 1 is the usual Cox estimate and there is no need to use the likeli-

hood sampler. The LMPLE ( defined in Example 4.1, has a simple and intuitive expression.

It is the least squares estimate based on (Yi, xi), i = I,... ,n, where Yi = (n/k) [A (Y) -di],

A (t) = )(V/Z)dN is the Nelson-Aalen estimate of the integrated hazard. Thus when p = 1, 3

is just the slope of the least squares line to the standardized Nelson-Aalen plot (Yi,x*),

i= l,...,n.

Suppose the error distribution T0 is the logistic with the same variance as the extreme

value distribution, i.e. '(t)=[+ exp(-2t)]f1, then Ih(','Po,G) =FGdF, Ih(I,G) =GdF.

In the case G = , (5.1) yields

BIAS((3) = [- - P.(3 MSE((3)=-(BIAS) + (Ex~)F(0 +1).fi [] pp 2( 0 2)
1(s

Thus when there is no censoring, there is a positive bias of (1-21/2)p. The bias decreases

with 0, crosses zero atO = d2 and tends to (1-4) as 0 -..

5(d) Summary. To summarize the tables, we note that the mean squared error of the

partial likelihood estimates are remarkably close to the ideal h-known mean squared error when

the systematic variation is small and moderate compared to the residual variation. However,
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the bias of these estimates is large when the systematic variation dominates the residual varia-

tion. This bias effect is more severe for the local estimate LMPLE than for the AMPLE.

Further, the variances of both estimates are fairly stable and decrease slowly as the systematic

variation becomes large relative to the residual variation. These observations apply to both

uncensored and censored data and the error distributions considered. The AMPLE performs

overall better than LMPLE.

Figure 5.1, which is based on Table 5.2, presents a picture of the typical behavior of the

approximate partial likelihood estimate. Note that the curves can be extended to the left by

symmetry and that the variance can be found as the gap between the MSE and (BIAS)2 curves.

Figure 5.1 about here

6. Proofs.

tn

PROOF of Theorem 4.1. Set Wi = 2[(X,/X Q112- 1] and W(t) = WidMi. Then

(6.1) log(dPp/dPp) = W(o) 12 WZdAo+ rn26

where

r. = (2log(kg4/ 4W W,)dNi'- W;dM

Using techniques similar to those in Gill (1980), it can be shown that rn converges in PpO -

probability to 0. Further, W and aTT are mean zero square integrable martingales with

predictable variation processes given by

(W,WWt) = ,4W;iZdAL
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4T.ai Vt) - (1i. -2i (1'tQ2Z,dAgD
t

4aT,WXt) = (gi- i&)Wil'g7 i.

Using Remark 4.4, Theorem 1.1 in van Zuijlen (1978), and Theorem V.1.3 in Hijek & tidAk

(1967), we can show (after some algebra) that

(aTT-W,azT-W ,(t) = opo (l)

anTT,a4TXt) = z (±i- o2t(I'))2Z,dAL +op( 1)

and

XT- W,aTT-WX) = opo(l)1

(aT,ajt,(*) = a a+ PpM)

It follows that the second term in (4.1) is asymptotically equivalent to -anTan/2.

Further, Remark 4.4 and A.4 imply that the statistic aZT satisfies the Lindeberg condi-

tion

(P~i-Pio)2 I (I ',;)2I[(l- .)2(I P)2> ea,jan]ZdA.to = oPO (1)

for all e>O. Rebolledo's Central Limit Theorem completes the proof of (i). Part (ii) follows

directly from the HAjek-Le Cam asymptotic minimax theorem for LAN families (e.g. Le Cam

(1969)).

t

PROOF of Theorem 4.2. We can write bTS(t) as bTS(t) =,UidNi where

Ui = vi1'('V'(F )) - kvl'(fY(F ))(V/Z)Lk and v n= bnB"2xi.
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By Theorem 4.1, under P0, log(dP/dPo) has the same asymptotic distribution as

aiT - aa.an and aJT is asymptotically normal N(O,aTa). Under Po, bTS is a mean zero
2

square integrable martingale. Using Gill (1980, pp. 129-130) it can be verified that the

predictable variation processes of bTS and aTT satisfy

(bn S,bnSXt) - 2;v?2 [1'('-l'(F))]2z dA0

n~~~ nI v

_; [1PTQ (F))]2(v/z)zizjdAL +op, (1)

n

(b,TS,antt) = gV[IjtC-I(F))]2z dAo
i=l

n n IL1J [j',(fI(F))]2(V/z)z2zdA4A+oPO (l)

where a± B= "Bj"2xj. Furthermore,

\bn S,bbnSXo) = bn (I-Cn)bn + 0p0( 1)

(bnTS,a4 `TX) = bnT(I- C)an+opO().

We shall verify now the Lindeberg condition

t PO

(6.2) b(I-C )b UZiIIIUI?>EbnT(I-Cn)bnIdAo + 0

for all e>0 and t such that v(t) = 1. For each i, the set [U2> ebnT(I- Cn)bn] is contained in

[(I (CfI(F )))2>eb'T(I-C.)bn/4 maxvj2]. Let I(E) be its indicator function. By the elementary

inequality la- . 2a2+ 2b,

U? .2 {v? + (:vjZjVIZ)2)(1VZI''(F )))2 < 2{v? + zvj2Z V/Z)(l''1''(F )))2.

It follows that the integral in (4.2) is bounded above by



- 30 -

4f£vZi7(l -(F )))2I(e)dA 4J' (v?2Zi/z)(I'('1 (FA )))2I(e)(F.

Remark 4.4, Assumption A.4 and Theorem 1.1 in van Zuijlen (1978) imply (4.2). The

Rebolledo's Central Limit Theorem completes the proof of the asymptotic nomiality of bTS(t),

for t such that v(t) = 1. Assumption A.8 and a similar argument as in Gill (1980, p. 130)

implies asymptotic nornality of bnTS(oo). The joint asymptotic normality of ajT and bTS fol-

lows from the Cram6r-Wold device as in HAjek & Bidfik (1967, pp. 216-218) and Gill (1980,

pp. 131-133).

PROOF of Corollary 4.1. Let 3= B-'2ane 52n and let bn be a bounded sequence in

RP. By Theorem 4.2, (log(dPp/dPo),bTS(o)) -have an asymptotic bivariate nonnal distribution

with mean (-a4 an/2,0) and covariance

a,,an bnTanFabT 1nb,
=[br=n an bbn

By Le Cam's Third Lemma (HAjek & Sidik (1967), p. 208), under Pp, bnTSn(o) has an asymp-

totic nonnal distribution N(bnTaT,bnb). Therefore, by the Cram6r-Wold device, under Pp,

S()-an has a p - variate standard normal distribution. To complete the proof it is enough to

note that an = BJl(3p, S(OO) = Bna(3 and Bn is a consistent estimate of Bn.

PROOF of Proposition 5.1. Let (3= Bon ane Qn and let S(t) be given by (4.2).

Proceeding as in the proof of Theorem 4.1, it can be verified that for any bounded sequence bn

in RP, under P0. (Iog(dPp/dPo),bTS) are jointly asymptotically normal with mean (- 2a,ian,0)
and covariance

a[a bnTanP]
$ab bLTan b Tbn

where
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p = Ih(,Po,G)In(,G)1/2h('PO,G).1/2.

By Le Cam's Third Lemma (Hajek & BidAk (1967), p. 208) and the Cram6r-Wold device,

S(e))-anp has a p-variate standard normal distribution. The conclusion follows from the rela-

tions 5() = B 1/2p and a,,p = 1/2 - B l2bh(Y o,G)P.
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TABLE 5.1. Monte Carlo results for the normal approximate maximum partial likelihood estimate 1A
and the local maximum partial likelihood estimate f3 in the transformed linear regression model.
Var(ei) = 1, E x? = 9. The data are uncensored in (a), (b) and (c). In (d), (e) and (f) the censoring is
extreme value with standard deviation equal to 1 and shift parameter equal to 1. The number of trials
in the resampling scheme is B = 100 and the number of Monte Carlo trials is M = 500.

(a)

normal

error,

ideal

9MSE=1

BIAS(P)
BIAS(O)
9 MSE(P)
(st. error)

9 MSE([3)

(st. error)

0

-.029

-.027

1.24

(.079)
1.04

(.058)

0.5

-.005

-.055
1.22

(.072)
.896

(.053)

1.0

-.016
-.172

1.02

(.059)
.795

(.055)

1.5

-.136
-.414

.904

(.059)
1.83

(.069)

2.0

-.390
-.752

1.79

(.078)
5.24

(.079)

2.5

-.737
-1.15

5.18

(.106)
11.9
(.081)

3.0

-1.14
-1.58

11.9
(.139)

22.6

(.084)

(b) BIAS(f3) -.286 .188 .020 -.111 -.378 -.736 -1.13
logistic BIAS(1) -.272 -.350 -.148 -.399 -.743 -1.15 -1.58

error, 9MSE(1) 1.24 1.26 1.08 .893 1.76 5.16 11.9

ideal (st effor) (.080) (.076) (.060) (.061) (.086) (.108) (.140)
9MSE=.912 9MSE(13) 1.05 .885 .748 1.74 5.16 11.9 22.7

(st. error) (.058) (.052) (.054) (.071) (.088) (.091) (.093)

(c) BIAS(1) -.014 .078 .064 -.074 -.353 -.714 -1.14

extreme BIAS(13) -.013 .012 -.119 -.381 -.733 -1.14 -1.58
value 9MSE(1) 1.17 1.26 1.06 .823 1.62 4.94 11.9

error, (st. error) (.076) (.084) (.063) (.059) (.085) (.119) (.151)
ideal 9MSE(13) 1.01 .814 .628 1.62 5.01 11.8 22.6

9MSE=.608 (st. error) (.060) (.052) (.050) (.071) (.088) (.099) (.103)

(d) BIAS(1) -.012 -.003 -.047 -.150 -.368 -.736 -1.14

normal BIAS(13) -.019 -.047 -.159 -.378 -.696 -1.15 -1.58
error 9MSE(P) 1.63 1.73 1.59 1.36 2.09 5.69 13.1

(st. eror) (.112) (.111) (.098) (.098) (.112) (.118) (.155)
9MSE(5) 1.11 .996 .852 1.63 4.56 13.2 25.0

(st. error) (.067) (.062) (.060) (.073) (.088) (.100) (.102)

(e) BIAS(13) -.005 .057 .052 -.050 -.290 -.632 -1.01

logistic BIAS(P1) -.003 .002 -.098 -.334 -.669 -1.06 -1.48
error 9MSE(p) 1.49 1.47 1.43 1.07 1.55 4.23 9.8

(st. error) (.099) (.092) (.089) (.071) (.088) (.136) (.204)
9 MSE(,3) 1.02 .838 .616 1.30 4.21 10.2 19.8

(st. efror) (.057) (.051) (.044) (.059) (.082) (.09%) (.105)

- - -

I

I
-.1 -

I
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TABLE 5.1 (continued)

0 0.5 1.0 1.5 2.0 2.5 3.0

(t) BIAS((3) .018 .178 .209 .080 -.198 -.557 -.982

extreme BIAS(t) .008 .057 -.041 -.285 -.624 -1.02 -1.45

value 9MSE(13) 1.91 2.05 1.81 1.04 1.04 3.47 9.33

error (sL error) (.141) (.130) (.115) (.069) (.061) (.120) (.204)
9MSE(13) 1.15 .954 .594 1.08 3.69 9.47 19.0

(st. error) (.065) (.053) (.046) (.064) (.080) (.098) (.111)
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TABLE 5.2. Monte Carlo results for the normal approximate maximum partial likelihood estimate 0 and the
local maximum partial likelihood estimate in the transformed two-sampled shift model. Var(&;) = 1,

z x, = 10, n = 40. The data are uncensored in (a), (b) and (c). In (d), (e) and (f) the censoring is extreme

value with standard deviation equal to and shift parameter equal to 1. The number of trials in the resampling
scheme is B = 100 and the number of Monte Carlo trials is M = 500.

(a)
normal
error,

ideal
10 MSE = 1

p

BIAS(p)
BIAS(5)
1OMSE(13)
(st. error)
IOMSE(1)
(st. error)

0

.005

.005

.991
(.060)
.912
(.053)

0.5

.014
-.020

.991
(.063)
.792
(.050)

1.0

.012
-.109

.980
(.064)
.668
(.047)

1.5

-.078
-.306
.740
(.048)
1.24
(.057)

2.0

-.290
-.611
1.24
(.060)
3.87
(.069)

2.5

-.626
-1.00

4.13
(.084)
9.96
(.067)

3.0

-1.03
-1.44

10.8
(.111)

20.6
(.054)

(b) BIAS(5) .005 .033 .037 -.062 -.292 -.647 -1.05
logistic BIAS(5) .005 -.001 -.092 -.297 -.613 -1.01 -1.45
error, 10 MSE(3) 1.15 1.17 1.18 .840 1.34 4.47 11.3
ideal (st. error) (.072) (.072) (.067) (.055) (.073) (.102) (.131)

1OMSE = .912 10 MSE(1) 1.04 .901 .724 1.27 3.96 10.2 21.0
(st. error) (.062) (.053) (.048) (.065) (.084) (.092) (.088)

(c) BIAS(p) | -.005 .076 .096 -.027 -.279 -.643 -1.05
extreme BIAS(13) -.005 .033 -.051 -.276 -.606 -1.00 -1.46
value 10 MSE(P) .992 1.12 1.14 .752 1.29 4.44 11.3
error, (st. error) (.060) (.066) (.067) (.046) (.073) (.109) (.149)
ideal 10 MSE(1) .912 .822 .590 1.11 3.88 10.3 21.2

1OMSE = .608 (st. error) (.053) (.045) (0.36) (.058) (.085) (.100) (.103)

(d) BIAS(5) -.001 .008 -.005 -.088 -.280 -.585 -1.01
normal BIAS(j3) .012 -.002 -.077 -.252 -.523 -.875 -1.28
error 10 MSE(P) 1.55 1.53 1.36 1.13 1.44 3.93 10.5

(st. error) (.107) (.107) (.086) (.075) (.080) (.115) (.170)
10 MSE(3) 1.16 .986 .739 1.05 2.95 7.78 16.4
(st. error) (.073) (.060) (.050) (.061) (.077) (.089) (.095)

(e) BIAS(P) .021 .061 .077 -.014 -.225 -.578 -1.01
logistic BIAS(5) .027 .033| -.358 -.222 -.511 -.873 -1.28
error 10 MSE(,B) 1.41 1.43 1.44 1.06 1.17 3.95 10.5

(st. error) (.098) (.090) (.088) (.072) (.072) (.125) (.178)
10 MSE(3) 1.05 .965 .683 .894 2.84 7.75 16.5
(st. error) (.065) (.059) (.048) (.056) (.076) (.092) (.102)

i

i
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TABLE 5.2 (continued)

13 5 | 10 0.5 1.0 1.5 2.0 2.5 3.0

(D) BIAS(^) .002 .178 .240 .141 -.132 -.561 -1.03
extreme BIAS(p) -.008 .064 .018 -.164 -.465 -.829 -1.24
value IOMSE(13) 1.68 1.92 1.85 1.09 .762 3.62 11.1
error (st. effor) (.106) (.111) (.112) (.077) (.051) (.106) (.196)

1OMSE(13) 1.11 .951 .612 .634 2.36 7.00 15.5
(st. error) (.065) (.057) (.039) (.043) (.065) (.088) (.104)
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TABLE 5.3. Monte Carlo results for the logistic approximate maximum partial likelihood estimate and the

local maximum partial likelihood estimate in the transformed two sample shift model. Var(e) = 1,
: xl2 = 10, n = 40. The data are uncensored in all cases. The number of trials in the resampling scheme is

B = 50 and the number of Monte Carlo trials is M = 300.

(a)
logistic
error,

ideal
10 MSE = .912

POE
BIAS (1)
BIAS (a)

10 MSE (1)
(st. error)
10 MSE (1)
(st. error)

0

.012

.012

.903
(.149)
.847
(.135)

0.5

.020
-.001

.943
(.153)
.785
(.127)

1.0

.015
-.094
.928
(.141)
.671
(.119)

1.5

-.121
-.297
.777
(.137)
1.24
(.155)

2.0

-.405
-.606
2.03
(.194)
3.86
(.205)

2.5

-.799
-.992
6.65
(.268)
9.93
(.228)

3.0

-1.22
-1.43
15.2
(.348)

20.5
(.219)

(b) BIAS (1) |.012 -.013 -.043 -.164 -.421 -.799 -1.22
normal BIAS (1) .012 -.036 -.136 -.329 -.673 -.992 -1.42
error, 10 MSE (1) .903 .930 .931 .925 2.16 6.62 15.0
ideal (st. error) (.149) (.152) (.145) (.151) (.196) (.255) | (.325)

10 MSE = 1 10 MSE (13) .847 .803 .774 1.44 4.02 9.88 20.2
(st. error) (.135) (.131) (.132) (.165) (.204) (.204) (.168)

(c) BIAS (1) -.012 .023 .024 -.110 -.400 -.799 -1.23
extreme BIAS (1) -.012 -.000 -.088 -.287 -.601 -.992 -1.43
value 10 MSE (1) .907 .906 .937 .710 1.99 6.66 15.3
error, (st. error) (.150) (.130) (.128) (.117) (.179) (.258) (.349)
ideal 10 MSE (1) .847 .756 .636 1.18 3.84 9.96 20.8

10 MSE = .608 (st. error) (.135) (.115) (.100) (.145) (.201) (.233) (.230)



Figum 5.1. Monte Carlo rmsults for the nornal approximaLC marimum partial likehood csuimate 5 in

the two-sanple shift model.
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