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Abstract

A method is given for computing estimates and confidence bounds for extreme tail

quantiles. The idea is to fit a two-parameter "quadratic tail model" to the upper tail of

the data. Extensive simulation experiments show that the method gives accurate results

over a wide range of distributions "centered at the exponential" which are neither too

heavy- nor too light-tailed.

* Work supported by Office of Naval Research under contract N00014-82-K-0054.

Key words: Tail estimates, tail models.



1. Introduction. Often, in applications, one has a limited data set and wants to

estimate some upper tail quantiles.. For instance, one might have 30 years of annual

high water levels on a river and want to estimate the 100 year flood level x.01 defined

by the requirement that the probability of an annual water level exceeding x.01 is .01.

This paper discusses a method for estimating both tail quantiles and confidence

intervals for these quantiles. Monte Carlo experiments show that the method produces

coverage probabilities that are accurate for a wide range of distributions "centered at the

exponential" which are neither too heavy- nor too light-tailed, for tail quantiles which

are not too extreme, and for moderate to large sample sizes.

Although the estimation of tail parameters is becoming an increasingly more fre-

quent practical problem, very little attention has been given to it in published statistical

research. Because of this, we give some introductory remarks more lengthy than usual.

The statistical problem of estimating central parameters, i.e. location and spread,

is analogous to interpolation of functions. That is, they are estimation problems 'inte-

rior to the data". In contrast, estimating tail parameters is analogous to extrapolation

or estimating parameters "exterior to the data".

The standard (and dangerous) method for approaching this tail estimation prob-

lem has been to assume that the data is sampled independently from a specified

parametric family, say Weibull or lognormal. Then the parameters are estimated,, usu-

ally by maximum likelihood, and the resulting distribution used to calculate the estimate

for the upper tail quantile. The danger we refer to is that, particularly for heavy-tailed

distributions, the estimates can differ drastically depending on the parametric form

assumed for the fitted distribution.

To pursue the function fitting analogy, suppose there is a function f(x), some of

whose values are known on [0,11, and we want to extrapolate f(x) into the region
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x > 1. One method, corresponding to the statistical method outlined above, is to fit

f(x) on [0,11 by a parametric family, i.e. a quadratic or cubic polynomial, and then

use the fitted function to extrapolate. It is known in numerical analysis that the results

can be disastrous.

A more accurate method is to extrapolate f(x) by estimating its behavior in the

vicinity of x = 1. For instance, one could use the known values of f(x) near

x = 1 to estimate f(l), f (1), f5 (1) and then extrapolate using the 2ad order Taylor

expansion

f(x+ 1) - f(l) + xf'(1) + x2 f"(l)
2

If f(x) is sufficiently smooth, this method will give accurate extrapolation over a lim-

ited range of x > 1.

An important aspect of the 2id order Taylor expansion and other neighborhood

extrapolation methods is that they do not depend on the global behavior of f(x) over

[0,11. The method we study is analogous to a 2 d order Taylor expansion. It fits only

the upper tail of the data. By ignoring the global behavior of the bulk of the data, it is

thus applicable to a wide range of distributions. It is intermediate between the usual

parametric and nonparametric models. It is parametric, in the sense that it is fitted to

the tail of the data by estimating some parameters. It is nonparametric in the analogous

sense thst the applicability or accuracy of a Taylor expansion does not require that f(x)

be in a specified parametric family of functions, but only have a certain degree of

smoothness around the extrapolation region. Because of these properties, we call our

procedure 'broad spectrum" in analogy with medical terminology for antibiotics.

Another point is important. As statisticians, we strongly believe that any esti-

mate of a parameter should be accompanied by an indication of its accuracy. For this

reason, the major thrust of this present work is to get accurate confidence intervals for



tail quantiles. It may be discouraging to some practitioners to see how large the

confidence intervals become for the more heavy-tailed distributions and extreme quan-

tiles studied (see Section 4.5). But evidence is provided in Section 4.8 that this is in the

nature of the problem and not a shortcoming of the method.

The layout of this paper is as follows: Section 2 discusses the tail-fitting models

and their use in deriving estimates and confidence intervals for tail quantiles. Section 3

covers the "range of extrapolation'. That is, the range of distributions, tail quantiles,

and sample sizes to which our method is applicable. Section 4 gives the results of the

Monte Carlo simulations, and Section 5 gives final remarks and conclusions.

Previous work on inference about the upper tail of a distribution has focussed on

methods of estimation that are appropriate when the tail is (I) in the domain of attrac-

tion of some extreme value distribution; (II) approximately algebraically decreasing; or

(III) approximately exponentially decreasing. These three conditions are very closely

related. For example, the upper tail of X is approximately algebraically decreasing if

and only if that of log X is approximately exponentially decreasing. In category (I)

are Maritz and Munro (1987), Pickands (1975), Weissman (1978), Boos (1984), and Davis

and Resnick (1984); in category (II) are Hill (1975), DuMouchel and Olshen (1975),

DuMouchel (1983), Hall and Welsh (1985), and Cs6rgo, et al. (1985); and in category (III)

are Breiman, et al. (1978, 1979 and 1981) and Crager (1982).
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2. The Extrapolation Method.

2.1 The exponential tail model. The problem that began our research was an EPA

funded project to find methods for estimating upper tail quantiles in air pollution (Brei-

man, Stone, and.Gins, 1978). Typically, the sample size n was about 200 to 300, and

the tail quantiles xp of interest had p in the neighborhood of 1/n.

At that time (1975-78) there were disputes among the experts as to whether daily

air pollution levels could be best fit by Weibull, lognormal, or gamma distributions. The

estimates of the upper tail quantiles differed considerably depending on the family of dis-

tributions hypothesized as truth.

The fitted distributions ranged from moderately heavy-tailed to slightly light-

tailed. For instance, if Weibulls were fitted to a large variety of air pollution data sets,

the power parameter varied from about .7 for the heavy-tailed to about 1.2 for the

light-tailed.

On closer inspection, we saw that the tails of the various distributions were similar

in shape and could be reasonably approximated by an exponential tail fit of the form

G(x) -poe , x >
x

where F (x) is the d.f., G (x) = 1 - F (x) and xp = G-1 (p). This leads to the

approximation

xp -xpo + a log (Po/ Pp < Po

and suggested the following estimation strategy: take po in the range .1 - .3; set

m = [npol, estimate xpo by x(,), the mth order statistic of the sample xl, ...xa;

estimate a by

A 1

in-i (l)XNM))



and xp by

Xp = X(m) + a log[m/(n+l)pl.

The initial 1978 study and more detailed subsequent studies (Breiman and Stone,

1979; Breiman and Stone, 1981) showed that the tail exponential fit gives tail quantile

estimates that are surprisingly accurate in a mean-squared sense over a wide spectrum of

distributions. This was particularly gratifying since the sample sizes used (n = 100

to 1000) were nowhere near the requirements for the asymptotic exponentiality of the

tails.

The next step in our investigation was an effort to construct confidence bounds for

tail quantiles. Here, we discovered that exponential tail estimates were unsuitable for

confidence interval construction. The reason is interesting. In estimating central param-

eters such as location or spread, an estimate with low mean squared error usually has

low bias, and most of the mean squared error is variance. In estimating tail parameters,

a major source of error is in the occasional large overshot. A good mean squared error

estimate will tend to have a substantial downward bias in order to reduce the overshoot-

ing. And, in fact, for long-tailed distributions, the exponential tail estimate's good mean

squared error performance went hand-in-hand with a marked downward bias.

2.2 The quadratic tail model. In the exponential tail model xp is approximated

by an expression that in linear in log p. To get a more nearly unbiased estimate we

use the tail model

xp -xpo + a log (pO/p)_ b2 (log2 po - log2 p), 0 < p < Po° (2.1)
2

which is quadratic in log p. For the exponential tail model,

xp PxPO +alog (pO/p), ° < P Po
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it was natural to estimate xpo by X1.pj and a by a linear combination of order

statistics X(i) with i > [npol. For the quadratic tail model we adopted the same

strategy, estimating xpo by X(=), m = [npol, and a, b by linear combinations of

order statistics X(i), i > m. Of course, this leads to the question of determining the

coefficients of these linear combinations. Our approach to this is to assume that (2.1)

holds exactly, and to determine coefficients such that the estimates a& b are

"unbiased and minimum variance" in a sense made more precise below. To do this,

means and variances need to be computed, so that the first order of business is to estab-

lish the distributions of the order statistics X(i), i > m, under the tail model (2.1).

In (2.1) put p = eC, getting

G1 (e-Y) -xp0 + a log po + y - b2 (log2 pO_y2)' (2.2)

for e7 < po. Let U(1) > ... > U(,l be the order statistics based on n

independent uniforms on [0,11. Then G (X(1)), . . . ,G (X(3)) have the same joint dis-

tribution as 1 - U(1),... ,1 -U(,). Let Z1,..., Z. be n independent random vari-

ables, each having an exponential distribution with mean 1, and Z(,) . ... . Z,

the corresponding order statistics. Then 1 - U(i), . . . ,1 - U(.) have the same joint dis-

tribution as e_Z(1), . . . ,eZ(), and Xe(), ... ,X(,) have the same joint distribution as

G-' (eZ()), . . . ,GG- (e z(3)). Therefore, by (2.2) the joint distribution of X(l), . .. ,X(m)

is approximately the same as that of the variables

x+ a (log Po + Z(k)) - -.b (10g2 po - Z(2)), k = 1, m. (2.3)

In particular, the variables X(k) - X(k+l), 1 < k< m- I have the same

joint distribution as

a(Z(k)-Z(k+l)) + 2(Z(k2) Z(2+l)), k = 1, ... ,m- 1 . (2.4)
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Working with these variables is made tractable by using the property that Z(1), ...Z(
have the same joint distribution as the variables

.i k= ,...,n. (2.5)
k J

Now for any integer m, and Pi = m/(n + 1) < po, and p < Pl, (2.1) can

be written as

x= xp + a(log p - log p) b (log2p - log2p). (2.8)

Then xpl can be estimated by XY(). To estimate the other terms in (2.8), note that

Pl, p are known, so we are trying to form estimates of parameters of the form

r = La + Mb,

with known L, M. Let wl, ... ,wm l be constants, set

m-i
r = S kwk (X(k)- X(k+l)),

and consider r to be an estimate of r. We will call r unbiased if

Er = La + Mb

for all values of a, b.

To see what conditions this imposes on the wk, k= 1, ... ,m - 1, note that by

(2.4) r has the same distribution as

S kwk[a (Z(k) - Z(k+l)) + 2 (Zkk()+1))J (2.7)
1

By (2.5)

Zk 1
E (Z(k) - Z(k+l)) - E k k;
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rn1
so the mean of the first term in (2.7) equals a E wk. In the second term, write

1

Z(i) - Z(+) 2Z(k+i) (Z(k) - Z(k+i)) + (Z(k) - Z(k+1)r
and use (2.5) again to get

E (Z(2)
_ Z(2+1)) 2uk
k (k ~k

where

Uk = -.

Therefore,

Er = a wWk + b uUkwk
1 1

and unbiasedness requires that

L = w,k, M = uikwk. (2.8)
1 1

The variance of r is derived by a simple but lengthy computation given in the

Appendix. To summarize, let

U (2)- 1

= j2~j
Wl, k wj .

Then

Va(r) = (awk + bWk + bukwk)2 + b2[S (42)w,) + (m-1)2uk1Wii.1J .(2.9)
1 1

We would like to kteep the vrariance as small as possible subject to (2.8), but no
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permissable choice of wk will minimize (2.9) for all a, b. Instead, we notice that for

b close to zero, Var() a2 1wI . So that for tail distributions not too far

from exponential, a reasonable procedure is to select weights wk to minimize

"m-' w2 subject to the constraints (2.8).

It is geometrically clear that there is a unique solution to this minimization prob-

lem, given by wk = X + X2Uk with XI, X2 selected to satisfy (2.8). The evalua-

tion of XI, X2 is easy and results in

S2L - SIM (m-l)M - S1L

= D D

mn-i
where S =i us, i = 1,2, and D = (m-1)S2 - Sl. Therefore

1

S2 - SlukL (m-)uk- S MWk= D D

= wlkL + W2kM

In particular, then, we take as our estimates of a and b,

m-i
a = kwlc (X(k) -X(k+l))

A r-
b = kw2k (X(k) - X(k+1))

and the estimate r of La + Mb as La + Mb. The variance of T is given by

(2.9) with wk = Lwlk + MW2k.

Thus, given a sample of size n from any distribution and given m as some

fraction of n, the above procedure leads to estimates of any quantile

xp, p < m/(n + 1), based on the quadratic tail approximation. The Monte Carlo

study in Section 4 shows that these estimates generally have low bias ov'er the ranges of
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distribution and quantiles investigated.

2.3 Setting confidence limits. In (2.8), we set Pi = m/(n + 1),

L = log pi - log p

and

M =~ 2 (log2 p _ log2ep).

Then our estimate of x,, p < PI, is

Xp -Xm + r

where

r =La +Mb.

To find confidence intervals for xp, our first step is standard; find an estimate for

Var (x ). Now

Var(xp,) Var(XY.)) + 2 CoV(Xm),r) + Var(r). (2.10)

The variance of r is given by (2.9) as a quadratic expression in a and b. Simi-

larly, the other two terms in (2.10) are quadratics in a and b; for example, from

(2.3),

Var (X(.)) = Var (aZ(m) +
2 Z(m)

Thus

Var (xp) =o2 (a,b)

= cla2 + c2ab + c3b2

where cl, c2, C3 depend only on n, m, L and M. The terms on the right in (2.10)
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are evaluated in the Appendix. As usual, we use a2(b,b) as an estimate for the vari-

ance of rp.

Let * be the standard normal distribution function. Given a, 0 < a < 1,

define z0 by * (zn) 1-a. The usual large sample upper and lower 1 - a

confidence founds for xp are xp i zo (a&b). However, early in our Monte Carlo

explorations we found that for tail quantiles the coverage given by these bounds may not

be close to 1 - a unless m and n are surprisingly large. Even for exponential

distributions which are exactly fit by a quadratic tail model, this lack of accuracy per-

sists until very large sample sizes are used.

The main reason for this discrepancy is the positive correlation between xp and

a b). This positive correlation results in coverage probabilities of the upper bound

xp + zop (a,) that are significantly less than 1 - a and coverage probabilities for

the lower bound significantly larger than 1 - a.

Other contributing reasons are the unreliability of o2 (a,b) as an estimate of

Var (x) and, for moderate m, the error in * as an approximation to

xp - xIP
ao(a,b) J

While we suspect (but haven't bothered to prove) that the usual large sample confidence

bounds give asymptotically correct coverage, another approach is necessary to deal-with

realistic sample sizes.

After considerable experimenting, the following simple and effective remedy was

found; use the upper and lower bounds

x p + ta a lb)

xp + t,oa lb)
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where t is the upper a quantile of the distribution of (xp - xpa)/o(ab) when

the underlying variables X1,... ,X, are independent, mean 1 exponentials, and tj

is the lower a quantile of the same distribution.

While these two values are, in principle, analytically computable, as functions of

m, n, p, and a, we have not been able to produce tractable expressions for them.

Instead, we used a random number generator to repeatedly (N times) produce a sample

of size n from the exponential distribution, fitted the quadratic tail model to each

sample at m/(n+l), and computed the resulting value of (x, - x a)/o(). Then

T,t La were taken as the upper and lower a sample quantiles of these N values.

We considered constructing a table of tab k for various values of m, n, p, a but

discarded it on the ground that anyone who programmed the quadratic tail procedure

could easily derive the t-, L values desired by a procedure similar to the one we

used.
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3. The Range of Extrapolation.

3.1 What determines the accuracy? The range for which the method outlined

above gives accurate results depends on the underlying distribution, the sample size, and

how extreme the tail quantile to be estimated is. We have performed extensive simula-

tion to determine the range of accuracy, and an abbreviated summary of results is given

in Section 4. In this section we describe our basic set up for the experiment.

If one considers the exponential tail fit as a "tangent" approximation and the qua-

dratic as adding a correction for "curvature', then it is sensible that the range of distri-

butions for which our method is accurate center at the exponential and do not depart

from it too drastically.

The Monte Carlo experiment described in Section 4 uses the Weibull, lognormal

and generalized gamma distributions with choices of parameters that make them range

from moderately heavy-tailed to moderately light-tailed. More explicitly, for the Weibull

the most heavy-tailed distribution has a shape parameter of .52 and the most light-tailed

a shape parameter of 1.85. For the lognormal distribution, the coefficient of variation is

.1 for the lightest tail and 1.75 for the heaviest tailed. For distributions with tail heavi-

ness near the extremes or outside of this (vaguely defined) range, the accuracy of the

method degenerates at the sample sizes studied.

Although our Monte Carlo results are given only for the Weibull, lognormal and

gamma, other results not given show that the accuracy holds up for mixtures of these

families. There seems to be two essential requisites for accuracy. First, that the tail

heaviness be in a certain range. Second, that the tail decreases smoothly in the extrapo-

lation region.

All bets are off if nature is a trickster. For instance, there are some conjectures

that ozone levels in the lower atmosphere have an upper bound imposed by the nature
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of the chemical processes that scavenge ozone. If so, extrapolations to the neighborhood

of this bound based on the quadratic tail model will given erroneous results.

3.2 Tail heavincee. We have used the terms heavy-tailed and light-tailed above

without precise definitions. In our work we found it convenient to define a measure of

tail heaviness so that various distributions could be categorized and compared.

Furthermore, a single number characterizing tail heavines did not seem either

revealing or useful. Instead, we wanted a measure Hx (p) of heaviness of the distribu-

tion of the variable X at the quantile xp.

Two properties were required. First, that our reference distribution, the exponen-

tial, have zero tail heaviness. Second, that Hx (p) be invariant under changes of loca-

tion and scale, i.e. that

Hc+dX (P) -= Hx (p) .

A convenient measure satisfying these two conditions is given by

DEFINITION 3.1. The tail heaviness of a distribution is

Hx(p)= ~, d2x, dx

[ dp2 dpj

or, equivalently

Hx (p) = pG"(x) I1 - F (x) .

(GI(G(x = 1F(x)

If X is exponential, then Hx (p) = 0. In the following a distribution with

Hx (p) > 0 will be called heavy-tailed at xp and light-tailed if Hx (p) < 0.
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Suppose X has an exponential distribution. Then X1/ has a Weibull distri-

bution with shape parameter X. A short computation shows that

Hx%A(p) X logg(I/P)

Therefore a Weibull is heavy-tailed if 0 < X < 1 and light-tailed if X > 1.

Notice that if X 3 1, HXI (p) converges to zero very slowly as p - 0.

Now take X to be lognormal, X = exp(oZ), with shape parameter

a > 0, where Z is a unit normal with density * (x) and quantiles zp. By a

routine computation

Hx (p) P(Zp+) 1.

Using straightforward asymptotics, we get

lim Hx (p) (log 1)1/2 = /4 .
p--*O p

So, for p small enough, the lognormal is always heavy-tailed, but the rate of conver-

gence of Hx (p) to zero is even slower than for a Weibull.

Finally, we note that for the quadratic tail model, Hx (p) has the simple expres-

sion

Hx (p) = b p < PO
a+b log-

p

if a and b are both positive, the tail heaviness is positive, and decreases to zero as

p - 0 at the same rate as for heavy-tailed Weibulls. If a > 0, and b < 0, then

the tail heaviness is negative for large p and decreases to -oo at p = exp (a/b).

This suggests that the quadratic tail model may not provide good approximations for

extreme quantiles of light-tailed distributions.
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In the simulation described, we used the Weibull, generalized gamma, and lognor-

mal distribution with H1 (.1) ranging from -.2 to .4 in steps of .1. The generalized

gamma distributions used were of the form Xl/l with X a sum of five independent

unit exponentials.

To give an intuitive idea of the tail lengths, Table 1 below lists the values of

X.001 - X.5R -
x.1 -X.

for the distributions used. Note that R = 2.4 for a normal, and for a Cauchy,

R=103.

Table 1
Tail Length Measure R

H (.1)

Distribution -.2 -.1 0 .1 .2 .3 .4
Weibull 2.7 J 3.2 3.9 4.7 5.8 J 7.2 j 9.1
Gen. Gamma 2.7 3.2 3.9 j 4.8 8.0 7.8 9.7
Lognormal 2.7 3.3 4.0 j 5.0 8.3 8.1 T 10.5

In more standard terms, for the lognormal, the corresponding coefficients of varia-

tion were .12, .34, .50 ,.72, .99, 1.31, .1.72. For the Weibull, the shape parameters were

1.85, 1.30, 1.00, .81, .88, .59, .52. For the generalized gamma, the power parameter X

had the values 1.47, .88, .63, .49, .40, .34, .29.

3.3 Range of ample sizes, quantile esatimated, and length of tails fitted. The

minimum sample sizes for which the quadratic tail method is reasonably accurate is
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determined by a trade-off between bias and variance. For a given sample X1, . . .

we use the order statistics X(l), . . . ,Xpm to fit the tail of the distribution. If m is

too small, the estimates a ,b will be noisy. If we try to increase m by making it a

larger fraction of n, then we risk fitting too much of the bulk of the distribution and

introducing substantial bias into the tail estimates. However, our simulations show that

the accuracy holds up surprisingly well even for n as small as 50, with m = 25.

The simulation results are given for n = 50 and n = 200. Our results for other

sample sizes show that for 50 < n < 200, a good approximation to the accuracy can

be gotten by log-linear interpolation between the n = 50 and the n = 200

results. For n > 200, the accuracy, of course, increases.

The appropriate value of m/n varies with n. For n small, m/n must be

taken larger to reduce the variability of a,b. For example, at n = 50, we use

m = 25, m/n = .5. At larger values of n, m/n can be smaller, thus reducing

the bias, while keeping m large enough to keep the variance in control. At

n = 200, we found that m = 55, m/n 0.2 was a satisfactory compromise, and

at n = 800, m = 80, m/n = .1 gave good results.

The range of quantiles that can be estimated with reasonable accuracy depends

strongly on the sample size n. Roughly speaking, the range of quantiles has to be

"within reach of the data'. For instance, X(l) is a median unbiased estimator of the

quantile xp, p (log 2)/n. Thus, quantiles xp, with np , .7, can be estimated

using more or less standard nonparametrics.

We have found that the range of quantiles that can be accurately estimated by the

tail quadratic method is also governed by the value of np. Originally, we had hoped to

be able to get as far as np =- .1. To our surprise, for the distributions studied, accu-

racy is only mildly eroded as far up as np = .01.
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We describe the results for the np values .01, .1, 1.0. In addition, some runs

were made at larger np values to compare the quadratic tail confidence intervals with

nonparametric confidence intervals.
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4. Simulation Results.

4.1 General sCt-up. Sections 4.3 - 4.5 below give summaries of the bias of the

quadratic tail estimator, the actual coverage at the computed confidence bounds, and

measures of the size of the computed bounds. Section 4.0 compares the size of the qua-

dratic bounds with nonparametric bounds.

For given values of n and np, t9 and t.9 were derived using 10,000

repetitions in the procedure described at the end of Section 2. All other measures for

given n, np tail heaviness and distribution were computed using 10,000 repetitions.

These runs were done on the Boeing CRAY I.

4.2 General format. In this section we give a number of figures in similar format

to graphically describe our simulation results. To avoid repetitions labeling, we note

that in all figures, the horizontal axis is the tail heaviness H, (.1) of the distributions.

All figures contain 3 curves giving the results for the Weibull, generalized gamma and

lognormal distributions. The distinction is made by

(Solid lines) Weibull

(Dashed lines) ---- generalized gamma

(Dotted lines) . lognormal.

4.3 Bias. The issue of bias is critical in estimating tail quantiles. In the simula-

tion, 10,000 repetitions were done for each value of n, np, tail heaviness and distribu-

tion, resulting in 10,000 estimates x p,1' ... ,x p,10000 of xp. The percent bias was

defined as

100 * Avg (XPk-XPJ
k xp
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The results are given in Figure 1.

[Figure 1 about here.]

4.4 Coverage. We describe the accuracy of the confidence bounds only for the

90% bounds. If the bounds were perfectly accurate, then 90% of the time

Xp x< + t.90(a b) (UCB)

and also 90% of the times

Xp > Xp + jgo0(a,b) (LCB).

The actual coverage percentages (in the 10,000 repetitions) achieved by these

bounds is graphed in Figure 2 for n = 50 and in Figure 3 for n = 200.

[Figures 2 and 3 about here.]

4.5 Size of the bounds. In Section 4.4 the results show that the coverage stays

fairly close to the targeted 90% going above 95% only for the short-tailed distributions

and below 80% only for the heavy-tailed lognormals. An important issue is how large

these bounds are in order to achieve the given coverages. As a measure of this for the

upper bounds, for any single run we defined the percent excess as

UCB- x
100.

xp

where UCB is the estimated 90% upper confidence bound. The overall percent excess

was taken to be the median of the above numbers, over the 10,000 runs. Similarly, for
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Figure 1

Percent Bias
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Figure 2

Percent Coverage (n =So)
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Figure 3

Percent Coverage (n = 200)
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the lower bounds, the percent excess was defined as

XP - LCB
xp

and the median over 10,000 runs computed.

The results are graphed in Figure 4 for n 50 and in Figure 5 for

n = 200.

[Figures 4 and 5 about here.]

4.8 Comparison with nonparametric bound.. Looking at the percent exces

graphed in Section 4.5, one is struck by the fact that often the upper confidence bound

is over 50% larger than the quantile being estimated. Since anyone can get good cover-

age by using large enough bounds, this raises the question of whether the large size of

these bounds is in the nature of the problem, or is reflective of inefficiency in the qua-

dratic tail bounds.

Following a suggestion due to Peter Bickel, we explored this issue as follows: for

each of n = 50, n = 200 select p such that for X(l) the largest order statis-

tic,

P (xp < X(1)) = .9.

Thus, X(1) is a nonparametric 90% upper confidence bound for xp. Over 10,000

repetitions, compute the median of

10 X(l) - Xp100

This gives the same measure of percent excess as that computed in Section 4.5. Define
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Figure 4

Percent Excess (n = 50).
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Figure 5

Percent Excess
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the efficiency of the quadratic tail bound as

100 * percent excess (nonparametric)
percent excess (quadratic tail)

This efficiency measure is graphed in Figure B. The efficiency is always at least 100%

and is frequently above 150%, doing especially well for the long-tailed distributions. The

semi-parametric character of the quadratic tail approach thus provides uniformly smaller

bounds over the range of distributions tested than the nonparametric bounds.

[Figure B about here.]
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Fi gure 6

Percent Efficiency
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S. Remarks and Conclusions. The preceding simulation helps to delineate the

range of accuracy of the quadratic tail model. At tail heaviness of .4 and -.2, the cover-

age probabilities are going awry for the more extreme quantiles. For sample size 50, the

results are not as accurate as for the larger sample sizes. However, within these boun-

daries the quadratic tail bounds have coverage probabilities fairly close to the 90% tar-

get.

The price one pays for the broad spectrum of applicability is in the large size of

the intervals. But to attempt to get shorter intervals by fitting a global parametric

model is a venture based on the magical hope that somehow, the tail distribution of a

phenomenon, concerning which one has little or no data, will suitably coincide with the

tail distribution of the selected model. Without some spectacular luck (or insight), the

results can be disastrously misleading. The "safer" confidence bounds produced by the

quadratic tail model, when applicable, make it much more preferable in practice.

The quadratic tail model can be also used to compute confidence intervals for tail

parameters other than quantiles. For example, suppose that the parameter of interest is

r = E [max (XI, ... ,XN)J, the expected maximum of N samples, where N is usu-

ally larger than the number n of observations. Now

r = foxd(FN(x)).

so substituting F (x) = 1 - p, then x = xp gives

r = xpd(I-p)N.

If the quadratic tail model holds in the range 0 < p < po, then

r = La + Mb + R,

where 0 < R < x(P - Po)N, and

L = f log (po/p)d(1-p)N(-fJ log (po/p)d (1p)N
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M - f [Joeg2po_log2 pd (I _p)N f[Jo g2po_ log2 p]d (1 _ p)N

Therefore,

N
L.1log po+ k

M _- 1log2 Po +
N NC

and neglecting the extremely small errors in the approximations, we again have the prob-

lem of constructing confidence bounds for a parameter of the form La + Mb, with L

and M known.

The quadratic tail model is not a "unique extension" of the exponential tail model.

Other two-parameter extensions have been investigated. An initially promising approach

was to take a power transformation of the data, using that power which made the tail of

the transformed data most nearly exponential. Following the transformation an

exponential tail model was used. This method was discarded because its accuracy was

inferior to that of the quadratic tail procedure.

There are two interesting questions which we leave open. The first is: how well

will exponential or quadratic tail procedures work with autocorrelated data? The one

piece of evidence we have is that the exponential tail procedure gave quite accurate esti-

mates of the expected maximum for data generated by an autoregressive scheme with a

superimposed trend (see Breiman et al., 1979).

The second question Ls more tantilizing. Workers often study many data sets

drawn from similar sources and have strong opinions regarding their tail heavines. For

instance, one EPA colleague, who has been extensively involved in automotive emissions

testing, believes that measured emissions from a sample of automobiles of the same

model will have tail heaviness about the same as that of a lognormal with coefficient
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variation equal to 1.0. This lead us to the hope that by somehow combining the infor-

mation from many data sets having similar tail heaviness, one could produce more accu-

rate coverage probabilities for the quantiles corresponding to individual data sets. How-

ever, our efforts along this line has not been successful, and we leave it as a promising

area for future research.
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APPENDIX

In this section (2.9) will be verified and formula. for the first two terms occurring

on the right side of (2.10) will be obtained. To this end, recall that Zl,...,Z1 are

independent random variables each having an exponential distribution with mean one.

The following facts are easily checked: Var (Z1) =1; Var (Z 2) - 20;

=3; CoV (Z, Z 2) = 4; Cov(Z1,Z1Z2) = 1; COV (Z 1 4;

and CoV (Z1Z2, Z1Z3) = 1. It can be ssumed that

a z.
z(s_

Also define 611 to be 1 if k = I and 0 otherwise; and define hg to be 1 if

k > I and 0 otherwise. It is easily seen that

Cov(Zk, Z,Z(,+l)) = 6klu/ + 1'kI 6k1
k

Cov(Z2, Z,Z(1+1)) 4(bklu, + k 6k)

Var(ZkZ(k+l)) = uk - 2 2+2u2) - 1;k k2

and

CoV (ZkZ(k+l), ZIZ(,+)) = Uk(2) + Uk 2
-2 , k > .k k2

In verifying (2.9) it can be assumed that

r EI kwk[a(Z(k) - Z(k+l)) + 2 (Z(k) - Z(k+1)) J = a E WkZk + b E wk 2k + ZkZ(k+l))

(with k ranging from 1 to m - 1 unless otherwise indicated). Write

Var (r ) = B1a2 + 2B2ab + B3b2. Then
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B1 = Var ( E wkZk) = E w?2
and

Z7 2
B2 = Cov ( EwkZk, Swk ( 2 + Z(k)Z(k+l)) )

W2Wk
= 2E k

Oi)+ E E wwi Pi ul + - -

= Ewk(Wk + UkWk) .

Also,

B3 = Var(!2.Zl + EwkZkZ(k+l)) = B4 + Bs + B6 .
2 k

Here

B I Var (E kZ 2) = 5 Wk24.1 4 k kk

Next,

Bs -= Covy(E kz 2sEwkzkz(k+l))

Wk 4f bit
k k k

UkWk Wk-Wk
= 4S- + 4E~k k

Further,

W2
- 8 : k

k2
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B = Var (E wkZkZ(k+z))

= wk (u, 2 c +2u 2) + 2Ewk(42)+ k 2 X wk -Wk)
k k2 k k2

w2 2
= EUk2Wk - 4E k

- + 3 E-k2 + 2 k k

- 4 E
w k+ 2 E ukk2wkw-k

Consequently,

B3 = 2w 2 + 2Ekuh¶2)wkWk + 2 E ukwkWk.

Observe that

E W 2 E~ (4)2) - u21) ( k W1 )2 = 2 Eku2)kWk2 - Uk(2)W U ((M_1)Wm_)2

and hence that

B E (Ukwk + Wk)2 + E uk2)w 2 + U42) ((m_)W _l)2

The last formula for B5 and the previous formulas for B1 and B2 together show

that (2.9) is valid.

We will now determine formulas for the terms Var (X(m)) and Cov (X(u), r')
appearing in the right side of (2.10). First,

Var (X(m)) = Var (aZ(3) + b2 Z )

and hence

Var (X(m)) = a2 Var(Z(m)) + abCov (Z(.), Z(2) + b4 Var (Z?m)) (A.1)

It will be shown below that

Var (Z(m)) = U m )(A.2)
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Coy (Z(3), Z(.)) = 2(u.) + u(U), (A.3)

and

Var (Z()) = 6u(4) + 8u(3)u + 2(u ())2 + 4u(2)U2(A.4)

where

u (3) s and u(4) 1
is Jm.im ~~mJ

Equations (A.1) - (A.4) together yield the desired formula for Var (X(m)). Secondly,

Cov (X(,.), )=Cov(aZ(.) + b zCo,r)Z= + 2j (m), b E kwkZ(k+l) (Z(k) - Z(k+l))

= Cov (aZ(m) + Z2) b ( k)Z(m))

and hence

b2Cov (Z(.), r') = (m-i) W,1(abVar (Z(.)) + -b Coy (Z(.), Z4M)). (A.5)

Equations (A.2), (A.3), and (A.5) together determine the desired formula for

Cov (Z(m), iT).

It remains to verify (A.2) - (A.4). To this end, let i, j, k, I range from m to

n. Then

Var(Z(,)) = Var(S.i ) =
M

-

so (A.2) holds. Observe next that
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CoV (Z(m)i Z(2)) = CoV (E 4 (.i)2)

- IssE.E-Cov (Zj,ZkZi)jk-l

-- Cov + 2- E j1:(Z;,ZjZ,)J j k#1k

- 4u(3 + 2I 1 (( 1 )

2 (U (3) + U (2)UM)

so (A.3) holds. Finally,

z.1
Var (Z(m)) = Var ( (E 'i )2) = IEY S - Cov (ZiZj, ZkZ,)

The total contribution of all terms for which i j-k I is

Var (ZI) =- 2

The total contribution of all terms for which exactly three of the four quantities

,j,ji coincide is

4Cov (Z2, Z1Z2)E U1kU- 18(u() (4))

The total contribution of all terms for which i and j are distinct and exactly one of

the pair k, I equals either i or j is

4Cov(ZIZ2,Z1Z3)EE- = 14E(UM k

distkinctjJ2kl j k&j k

- 8U(4) - 8u(3)U - 4(u (2))2 + 4um2)U 2

The total contribution of all terms for which i and j are distinct and (k,I) is
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either (i,j) or (j,i) is

2Var (Z1Z2) j2 k#7j k 2 = m((u(')2-ug')

Equation (A.4) follows by summing these four totals.


