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SLrMIMARY

The first concern of this work is the development of approximations to

the distributions of crude mortality rates, age-specific mortality rates,

age-standardized rates, standardized mortality ratios and the like, for

the case of an open population. It is found that assuming Poisson birth

times and independent lifetimes implies that the number of deaths and

the mid-year population have a bivariate Poisson distribution. The Lexis

diagram is seen to make the result immediate. It is suggested that in

a variety of cases, it will be satisfactory to approximate the distribution

of the number of deaths given the population size, by a Poisson with mean

proportional to the population sizes. It is further suggested that situations

in which explanatory variables are present may be modeled via a doubly

stochastic Poisson distribution for the number of deaths, with mean proportional

to the population size and an exponential function of a linear combination

of the explanatoriese. Such a model is fit to mortality data for Canadian

females classified by age and year and a dynamic variant of the model is further

fit to the time-series of total female deaths by year. The models with

extra-Poisson variation are found to lead to substantially improved fits.

Key words: age-adjusted death rate, dynamic model, extra-Poisson variation,

point process, Poisson regression, standardized mortality ratio, uncertainty

estimation, vital statistics, weights
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1. Introduction

Vital statistics are data on the fundamental events of human lives such

as births, deaths, marriages and the like. They usually take the form
often

of counts or rates and arW/collected via censuses and legally required

registrations. They are used for: summarization, comparison, forecasting,

detection of change, hypothesis generation, surveillance and studying

public health generally.

A continual presence is a wish to make comparisons; comparisons between

regions,(comparisons between)time periods,(comparisons)between social

groups,and so on. Now, in many circumstance the data are virtually complete

so that it is a fact that say death ratesdiffer for two counties or

two years or two racesb Jhat is more likely of concern then is; do two death rates

differ by more than some level of natural fluctuations? The purpose of

this study is the conceptualizationand formalization of the natural variability

of vital statistics to support their use in comparisons and other

analyses. The particular cases of mortality and of groups specifically

delineated in age and time will be emphasized; however results for a

broad variety of other cases should be apparent.

Quite a number of distinct vital statistics are in common use. These

include counts, rates and ratios , the emphasis being on the latter two.

Counts. One sets down the total number of deaths in a given time period for

a population of interest,perhaps separately by age, region or cause. Figure 1, middl1
fe

gives this data for the population of Canadia4Vmales annually for the

time period 1926 to 1982. An issue that arises,always, in mortality studies

is whether the population whose deaths have been recorded is closed or
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case
open. In the former/, the group of individuals whose deaths are recorded

is unchanging- In the latter case, the group membership changes because of

birthdays, emigration, immigration and the like. This is the circumstance

for the Canadian data. This paper is concerned with open populations.

Rates. Rates are relative frequencies. For example the crude death rate

is the number of deaths in a population of interest during a specified

time period, divided by the number of person-years lived by the population

during the time period. A complication that often arises is that person-years

lived has to be estimated. In the case of annual rateslan estimate of the

mid-year population is often used. Figure 1 gives the Canadian 1 June

population estimate and the corresponding annual crude death rate.(The

three figures display rising numbers of deaths and population members,

but a falling death rate. The kink in the population series in 1949 resulted

from Newfoundland's entering the country*) In the case that a death rate

is given for a specified age group, it is referred to as an age-specific

mortality rate. These rates are important because mortality experience

usually varies substantially with age and a crude rate may not display

important phenomena. Age-adjusted rates are an attempt to-provide single

rates that allow direct comparison of populations with differing age

compositions. They are weighted combinations of age-specific rates. (For

example, the weights may correspond to the composition of some standard

population.)

Ratios. T1he standardized mortality ratio (SMR) may be mentioned. It is

the ratio of observed total deaths to "expected" deaths using the rates

of some standard population and the given person-years lived. It is often
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used in making comparisons.

The purpose in setting down the above material has been to bring out

the basic quantities involved in constructing vital statistics - counts

and estimates of population size. These are the quantities whose variability

will be fundamental- Discussion of vital statistics generally and details

concernin particular cases may be found in: Chiang (1961), Keyfitz (1966),

Benjamin (1968), Fleiss (1981),-Benjamin and Pollard (1980), Inskip,

Beral and Fraser (1983) for example.

The structure of this paper is the following: the next section sets

the scene and presents some variability measures in common use; Section 3

sets down a conceptual model for the physical process of concern and shows

how the Lexis diagram and the methodology of point processes may be used;

Section 4 presents specific formulas for a number of cases of interest;

the following section discusses the results obtained and describes a

simplifying approximation; Section 6 turns to the (regression) case where

measurements of explanatory are available and presents models and worked

examples for cases where greater than Poisson variation is present; the

final section draws some conclusions and indicates problems for further

study.9
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2. Background

Discussion will focus on the case of an age-specific death rate for a

given year. Let Dx denote the number of deaths in the year for the age
say

group x to x+K/and let Px denote the mid-year population for that age

group. Then the age x death rate is (usually taken to be)

x D /P (2.1)

(In practice Px has to be estimated, but Dx may be obtained from official

records. For the moment however, Px will be assumed available.)

In statistical studies, Dx is often assumed to be distributed as a

binomial variate with parameter n = Px and its variance is estimated by

D1(l - M) , (see for example Pollard (1971), Daw (1974), Tukey'and

Mosteller (1977) Section llC-) Conceptually however, this assumption has

to be viewed as an approximation for this case of an open population.

Some individuals enter the population during the year, when they reach

age x, others leave during the year, when they reach age x+K+l.The exposures

of the individuals are not all the same and the realizations of the individual

life histories are not identically distributed - as is required for the

binomial. Further Pr is not the number of individuals in the study, rather

it is an estimate of the average number alive aged x to x+K during the

year.

In researchHiF obtain a more valid variance estimate, Chiang (1961)

created a hypothetical population of size N,= (Px + K(l-a1)D1)/K and

assumed D binomial with parameter n - N . (Here a is taken to representthx x

the average number of years lived in the year by an individual who dies.
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It is usually taken to be 1/2.) Chiang's estimate of the variance of Dx
is then

D1(1 - DJ/N1) (2.2)

In the case that the death rate is low, both

Chiang's and the preceding variance estimate are approximately D . This

last corresponds to Poisson variation. It will be argued in this paper

that it is this Poisson estimate that should be employed generally, whether

or not the death rate is low. Conditional variances are also presented below.
Death rates are often subjected to regression analyses when explanatory

variables are available. The discussion of what is an appropriate variance

estimate there becomes the question of what weights to employ in the

regression analysis. Some references are: Fryer et al. (1979), Hogan

et al (1979), Pocock, Cook and Beresford (1981). This issue will be

returned to later in the paper.
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3.- A Conceptual Model

An issue that arises with death counts and rates is - are these not facts

or exact values and hence subject to no uncertainty? There is clearly a

conceptual basis for treating times and lifetimes as random however.

Among justifications that may be provided are: moments of birth and death

appear unpredictable; there exists an immense biological variability;

there exists substantial environmental diversity; there are epidemics;

there are medical advances, accidents, violent deaths; periods of extreme

weather occur; and researchers have constructed useful chance mechanisms

for fertility and diease. At the same time it may be mentioned that there
near

do exisV/deterministic aspects, in particular babies are often induced

and there do exist seasonal fluctuations. In the framework to be presented

both times of birth and lifetimes will be assumed stochastic leading to

natural variability of vital statistics.
I

Before developing sampling results, some notation and assumptions

will be set down. It is convenient to display individual's life histories

by slope 1 lines in the age time-of-death plane, i.e. Via the Lexis diagram.

(This technique is discussed and employed in Benjamin and Pollard (1980)

for example.) In the diagram the axes have equal scales, lifelines begin

at birth and end at death, for a set A of the plane the number of lines

ending in A gives the number of deaths in A. Figure 2 provides an example

of a Lexis diagram. Let N(A) denote the number of deaths (endpoints) in

the region A. Then, for example, the crude death rate for 1980 may be

represented by N(A)/N(B) with A and B the regions given in Figure 3.
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In setting down definitions and developing results, it will be convenient

to make use-of the machinery of stochastic point processes* Cox and

Lewis (1966) is one reference to this material* Briefly, a linear point

process is a random scattering of points along the real line. Its
the

realizations may be denoted by j wjlwith or/coordinate value of the j-th

point.(Shortly the a, will be taken to be the birth times of the population

members.-) An important parameter of a linear point process is its

intensity function, (.), given by

Prob {point in (t,t+h)J^%,O(t)h (3.1)

for h small. Supposing I to be an interval, and M(I) to be the number of

points in I, then

E M(I)? = J 3(t)dt - B(I) (3.2)

say. The (linear) Poisson process with intensity 3( .) may now be defined

by the requirement that for disjoint intervals I l'"IK the counts

M(Il)l**1M(I-K) are independent Poisson variates with means B(Il),90,B(I)
respectively, K 1,2,.-.

A planar point process is a random scattering of points in the plane.

Its intensity function ?(*) is given by

Probt?oint in (t,t+h)KX(x,x+h')4 %(t,x)hh' (3.3)

for h, h' small. If A is a region of the plane and N(A) the number of

points in A, then

E ,N(A} - Jf(t,x)dtdx (3.4)
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The planar Poisson process with intensity X*) may now be defined by the

requirement that for disjoint regions Al10..,ATC the counts N(A1)1*099N(A)
are independent Poisson variates with means J\J(Al),..N.JUA.) respectively,

K - 1,2,.-. * Here

X(A) - E {N(A)} - JJ 2(t,x)dtdx * (3.5)

A

Properties of the Poisson process include: i) var N(A) = EtN(A)g =_J_(A),
ii) for A contained in a region B the distribution of N(A) given N(B) = n

is binomial with parameters n andMA(A)/%B) o

Returning to the discussion of vital statistics; suppose that the times

of birth of the population of concern are ay,1 cr21 0310--- . Let M(I) denote

the number of '. in the interval I . Supposing that M(I) is a stochastic

point process, its intensity function 3(t) will be referred to as the

birth intensity. (We remark that, for example, 13(t) would be periodic

were there a seasonal effect present.) Next, suppose that individuals

live random lengths of time. Let X denote the lifetime of an individual

born at time c. The distribution of X is conveniently described by the

force of mortality, AI(t,x), defined by

Prob :x4X,.x+h IiX'x} - I(t,x)h (3.6)

with t . o+x and h small* For example, the probability that an individual

born at time a&-itrvives to age x is given by

exp t - J 9(a-+y0y)dy (397)
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The death process is defined to be the planar point process with points

at the positions (date of death, age at death) , specifically supposing

the j-th individual is born at time a,. and dies aged x. , then N(A) denotes

the number of points (c+x.;) in the region A. It corresponds to the

endpoints of the lifelines of the Lexis diagram. Let A(t,x) denote the

death intensity (i.e. the intensity of the point process N(.*) ), then

i - J2 (t,x)dtdx EN(A)! (3.8)

where

2(t,I = 3(t-x) L(t,x) exp -j p(t-x+y,y) dy* (3.9)

This last follows by first principles, the three factors on the right

having the interpretations; "born at t-x","die at t age xt,u"survive to t"

respectivelyo.

A theorem desoribing the distribution of the death process may now

be stated. Its proof is given in the Appendix.

Theorem 1. fIf a) the birth process {xs is Poisson with intensity 3(t),

b) the lifetimes Xj of the individuals are independent of each other,

independent off the birth process and correspond to the force of mortality

,u(t,x), then the death process N(.) is planar Poisson with intensity (3.9)

This result may be used to derive the distributions of various vital

statistics. It is particularly convenient because for the Poisson process

counts corresponding to disjoint regions are statistically independent.

It is worth remarking specifically that the resulting Poisson distributions
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for death counts arise. not from rarity (small numbers) rather

from the assumed total randomness (Poisson) of the birth process and the

assumed: randomness of lifetimes.

The assumptions of Poisson births and independent lifetimes were essential

to the derivation of the Poisson conclusion. In fact the birth process

may be expected to show some clustering because of twin births, further

lifetimes will not be completely independent because of the existence of

multiple deaths in accidents. These phenomena may be expected to have

small effects generally however.

The following result will be used to set down the distributions of

various statistics arising. It follows directly by writing the regions

involved in terms of disjoint subregions and the fact that for a Poisson

process, counts for disjoint regions are statistically independent.

Corollary. Under the conditions of the theorem: a) L1N(A),N(B)I is

distributed as tU+W,V+Wj where U, V, W are independent Poissonrs with

means A.(A.-AB) ,.AB-AB) ,J.(AB); b) N(A)/N(B) is distributed as (U+W)/(V+W);

c) N(A) given N(B) is distributed as U+S where U is Poisson with mean

JA.(A-AB) and S is independently binomial with n N(B) and n =I.M(AB)/k(B)
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4. Some Examples

The preceding theorem and corollary will now be used to set down distributions

for various vital statistics.

Example 1 : Crude Death Rate* Let I) denote the number of deaths in a given

year and P the corresponding mid-year population. Then the crude death rate

is D/P . It may be represented as N(A)/N(B) with A, B regiolns of the Lexis

diagram, for example Figure 3 applies to 1980.

Assing complete randomness of births and independent lifetimes as

required in the theerem, it follows that fD,PJ has a bivariate Poisson

distribution. Specifically {D,P? is distributed as IU+W,V+W} of the theorem,

withA(e) given by (3.8), (3-9) . The crude death rate, D/P, is therefore

distributed as (U+W)/(V+w) . (Incidentally, this representation shows

that there is a chance that the denominator of this ratio is 0 when the

numerator is not.) The bivariate Poisson is discussed in Haight (1967).

On some occasions one is interested in conditional distributions. It

follows from the corollary that the distribution of D given P is U+S with

U Poisson and S independently binomial. In particular this gives

EtDIP _-A(-AB) + P (4.1)

var tDiP} = J^.(A-AB) + p (1 A_ -B) . (4.2)

Restating (4.1), the regression coefficient of D on P is A(AB)/)(B)

This is initiallysurprising because the region AB refers only to deaths

occurring in the second half of 1980 to persons born before 1 July 1980-
clearly

The constant term/plays an important role in this case of an open population.
The relations (4.1), (4.2) may be used to guide regression analyses. The conditional

variance of D, and indeed its distribution, is made up of a Poisson and
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a binomial part. In the case that the expected number of deaths in A-AB

is small, the distribution is approximately binomial and one is led to

the traditional assumption of binomial variation- In the case of a closed

population,A is contained in B and A-AB is empty and the binomial is exact.

E The age x death rate has the form

M D/P * N(A )/N(B ) where A' is the set (1980,1981)X(x,x+5) and. BX x/x x x x x

is the set of (t,y) satisfying 1980.5 < t and x .< y - (t-1980.5) < x+5

N(Ax), N(Bx) count respectively how many die aged x to x+5 in 1980 and

how many were alive and aged x to x+5 on 1 July 1980.5 . Because of the

(planar) Poisson nature of the death process a variety of distributions are

now apparent from the theorem and its corollary. The distribution of D

is Poisson with mean

1981 X+5
k(Ax J' 7( t,y)dt dy. (4 .3)

1980 x

Its variance may be estimated by Dx . The distribution of fDX,Px is

bivariate Poisson. The distribution of D given Px is not generally simple.

An approximation to the distribution of M will be presented in the nextx

section.

One simple result is that M statistics for disjoint age intervals arex

statistically independent.

xample 3_: Age-stand_ardized Rates. These have the form

-fWN(A )/N(B) (4.4)I x xX

for some given weights wX The distribution may be described in terms of

Poisson variates; however it is non elementary.
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Example 4 : Ratios* This are generally based directly on counts. For

example the SMR is given by

N(A)/Z MiN (BX) (4. 5)
x

with the MXs the rates of a selected standard population. The distribution

here is clearly messy, although it may be represented directly in terms

of statistically independent Poisson variates* An approximation to its

variance will be suggested in the next section.
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5 . Some Discussion -

The principal purpose of this paper is to provide a conceptual basis on

which sampling uncertainties of various vital statistics might be derived.

Assuming birth times in accordance with a Poisson process, and assuming

independent lifetimes, it has been found that the points (time of death, age

at death) are distributed in the Lexis diagram in accordance with a planar

Poisson process. This means that counts corresponding to disjoint regions

of the Lexis diagram are independent Poissons. As many vital statistics

may be written as functions of such counts, an expression for their distribution

has been constructed. The results obtained differ from those of Chiang

(1961) - the results here are simpler. Chiang's results typically involve

Poisson terms and correction terms, such as the (1 - DI/N ) of expression

(2.2) . An implication is that variances computed under the present framework

will generally be larger. An extreme case of this is provided by the case

of the rate for those aged 85 and over. Chiang (1961), page 281, estimates

the variance of this by 0. Here it would be estimated by D /l2

The exact distribution of an age-specific death rate was seen to involve

the bivariate Poisson. This is generally an inconvenient distribution to

work with. In the case that the coefficient of variation of the population

size is small, as the following theorem shows, an approximation may be

employed. A further advantage acruing in this situation is that the particular

choice made for the denominator (person-years-lived) is not so crucial.

The approximation is to replace the denominator by its expected value.

Theorem 2. Suppose that D is Poisson with mean ;\ and that P has mean A and
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variance a,2, then

tProb{(p -
D 3/ < c a- Prob 4 } I

< 3( ( + x) + fo;

The proof of this result is given in the Appendix. Basically one wants

the coefficient of variation of P, a'/A_,to be small.

This result leads one, for example, to estimate the variance of the

crude death rate D/P by D/P2; to estimate the variance of an age-specific

death rate M D /P by D1/P2; to estimate the variance of an age-standardized

rate, E wM * by Z w D./P ; and to estimate the variance of a standardized

mortality ratio, D/£ M P , by D/(E N P:2 * This is to be contrasted with
Xs x Xs x

the formula resulting from Chiang (1961), expression (18), namely

2 'P2£ wxDs(l - Dx/N)/P . This last is smaller, particularly when Dx/Nx is not small.

In some situations one may have a parametric model of interest. One

may then be able to set down a likelihood function and proceed to compute

say maximum likelihood estimates. In particular cases that likelihood may

factor and the term involving the population size separate,leading one to

make inferences conditionally on it. This happens, for example, in the

case of a closed population.

Another situation in which things simplify is when the individuals'.

person-years-lived values are known. Hoem (1984) discusses this case and

presents variance estimates.

The assumed variability of the birth process was basic to obtaining the

Poisson conclusion. In some circumstances, eg. manpower studies, there will

be steady (deterministic) recruitment to the population and the results

deriVed here will be inappropriate.

r+x > 0
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6. Regression

In many studies of mortality, measured explanatory variables are available.

The most common of these are age and (time) period. Others include: cause,

sex, region. An individual's mortality may be expected to depend on various

of these. The measurements may be includedlin a quantitative manneriby

setting down a functional form for the force of mortality or related

parameters. In this section, the case of Poisson regression will first

be mentioned, then the case of extra-Poisson variation will be studied*

6a. Poisson Regression. The conceptual model of mortality,presented in

this paper,led to a Poisson distribution for the number of deaths. In

the case that the population size is P and that a (vector-valued) explanatory

variable x is available, one might assume that the number of deaths, D,

is Poisson with mean Pexpfx'l i, i being a parameter to be estimated.

For example, Frome (1983) sets down such a model for lung cancer deaths

of British physicians taking P to be man-years at risk and as explanatories

years of smoking and number of cigarettes per day. The Poisson model is

found to fit well - a deviance of 51.47 based on 48 degrees of freedom obtained.

6b. Extra-Poisson Variation. As is often the case in ordinary regression

analyses, it is to be expected that in many situations essential explanatory

variables will not have been observed. Were they all available, a rate

expi'xj might be appropriate. In the case of omitted explanatories we

are led to consider a rate

ex xlp+ez (6.1)

2 2with £ norml mean 0 and variance a'* The parameter or provides a
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measure of the extra-Poisson variation. Following the work of Hinde (1982)

and Brillinger and Preisler (1983), the maximum likelihood estimates of

, and or here may be determined by a combination of numerical integration

and the EM algorithm. Those papers provide glim macros and sessions illustrating

the technique. That the error c has been assumed normal is not cracial, rather

the distribution of the error should be known up to a finite dimensional

parameter.

Briefly the approach is as follows: let U denote a latent variate with

density function f(u,13) depending on a parameter 3. (In the present case

U is e and e is a.) Let Y be an observable variate with probability mass

(or density) function, given U - u, f(y|u,a) depending on the parameter a.

(In te present case Y is Poisson and a is 3.) Then the marginal probability

mass function of Y is

f(yIa,~) - f f(yju#a)f(ujP)du (6.2)

Let X = (a,P) and

AIYl@) - alog f(ylQ) (6.3)

Supposing that observations vl*-- yn are available, the maximum likelihood

equation for estimating Q is given by

n
£ Ay |)$) ° (6.4)

Elementary manipulations allow this last to be written

£ fAul 3)f(yul u )f(ua )du/f(yj l a ) - 0 (6.5)
iinl



The difficulty that arises in many cases, particularly the present one,

is that the integration in (6.5) may not be carried out analytically.

The approach is to carry it out numerically, replacing the probability

element f(uIP)du by a discrete approximation

M
f(uIP)du p&fu - u I (6.6)

ml m m

Siu3 denoting unit mass at u - O. The um are nodes and the Pm are corresponding

weights . This all leads to the approximate likelihood equations

£ A£C(iu du ) (yi la P )
i=1 ml).

(6.7)
n M I A

Z Z Aum I)wa(yi a,p) X a
i-l m)l

where the wm are weight functions given by
m~~~~~~~

M
wm(yla,t) - f(yjuma)pm/ ff(yluk,a)pk (6.8)

mul

These equations are conveniently solved iteratively.

The procedure will now be illustrated by two sets of computations. One

set involves the fitting of a dynamic (time series) model to the historial

data on Canadian female mortality given in Figures 1. However the

first set refers to a data set having both age and period as explanatories.

Tqhe computations made use of Gauss-Hermite integration with 11 nodes, see

David and Rabinowits (1975) for the formulas. The standard errors were

estimated as in Brillinger and Preisler (1983).
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The data of the first example are female deaths by age group for Canada

during the period 1950 - 1972 and the corresponding age-specific death rates.

The data are given in Tables 5 and 6 of Statistics Canada (1976). They are here

displayed in Figures 4 and 5. In those figures, the diameter of the circle

plotted at a given(age, year)position is proportional to the number of

deaths in Figure 4 and the rate in Figure 5 * Examination of the figures

shows: high death counts and rates for the 0-1 age group, with both falling

as time passes. It shows death counts at the high age groul increasing,

(the population size is steadily increasing, see Figure 1), but death rates

falling.

Let Dij denote the number of deaths in age group i for year j and let

Pij denote the corresponding (midyear) population. The model fit is one

of Dij given ci being Poisson of rate

P.-expPa. + p + C. (6.9)

2with the Cij independent normals of mean 0 and variance a' * The ai and

are age and period effects respectively. The deviance obtained for a
2

pure Poisson fit (a' - o) was 4619. on 396 degrees of freedom. The deviance

with the extra-Poisson variation was 1452. on 395 degrees of freedom - a

substantial reduction for the inclusion of a single further parameter.

It is to be expected that the deviance may be driven down substantially

further by inIading further explanatories, for example a cohort effect;

however the purpose of the present study was principally to illustrate that

mortality data can be non-Poisson and that a direct procedure was available

to handle the extra-variatione.
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Figures 6 and 7 provide the estimated age and period effects, ai and Bj.

(Actually the model was reparametrized to I + a + 3 with a

to avoid aliasing.) The age effects show a "bathtub" shape - corresponding

to high mortality at the youngest ages, then a dip followed by a steady increase

with age. On the other hand, the period effects evidence a steady decrease

in mortality with time.

The fit of a model is conveniently studied by the standardized residuals,
AA A A

as well as the deviance. These are defined as (D - L IF, where z, B are

estimates of EiDjand Ja7 under the model being considered. Figure 8 is

an estimate of the density of the standardized residuals under the Poisson

model. (The estimate was computed via the procedure "density" of Becker and

Chambers (1984).) The distribution is exceedingly broad. Figu-re 9 is the

estimated density for the model (6*9). This figure provides further evidence

of a substantial improvement in fit being provided by the model with extra-

Poisson variation. Examination of the residuals themselves brought out the

presence of a clear outlier in the published values (Table 6, Statistics

Canada (1976)) - namely the value 2.9 for those 35-39 in 1951. The estimate

of o was *064

It is worth remarking that when the present extended model was fit to

the Frome data of 6a above, there was no reduction in the deviance - it just

fluctuated with round-off error.
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Our second example involves a time series modelling of the data,on

all Canadian- female deaths during the time period 1926 to 1982, presented earlier

in Figure 1 and taken from Table 1 of Statistics Canada (1976) and a

supplement provided by D. Nagnur. The model fit is analagous to an

autoregressive process of order 1. Let d denote the number of deathst

in time period t and let Pt denote a corresponding measure of population

size. Let m denote the latent death rate at time t and suppose that itt

evolves in accordance with

log mt a + a log m,_ + a (6.10)

the c. being independent normal variates with mean 0, variance 2

and suppose further that given mt and the past, dt is distributed as

Poisson with mean ptmt * A model of this sort may be expected to be of

some use in forecasting.

The model (6.10) was fit by maximum likelihood as in the earlier example.
2The deviance for a Poisson model (or - 0) was 1844. based on 54 degrees

of freedom. For the dynamic model it was 276.6 based on 53 degrees of

freedom - a substantial improvement in fit. The estimates and their estimated

standard errors were 'a = .062 (.007) R . 964 (.003), a- .0168 (.00105)

the first two were highly correlated. Figure lois a plot of the (conditionally)

standardized residuals versus time. It evidences a definite suggestion

of the variabiM:ltt reducing with time-
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7 . Concluding Remarks

The goals o±f this paper have been to provide a conceptual basis for the

description of the natural variability of certain vital statistics and

to make use of that description in the analysis of two data sets. It

was found that under two elementary assumptions (one re the birth process,

the other re lifetimes) that basic counts of deaths were Poisson, with

those corresponding to disjoint-regions of the Lexis diagram independent.

It was further demonstrated that sometimes, perhaps because of omitted

explanatory variables, Poisson variability was insufficient. A general

model involving extra variability was set down and fit to the two data

sets. These data sets were found to evidence substantial variability beyond

the Poisson.

A continuing issue in analyses of mortality rates,with measured explanatory

variables, by linear regression has been: what are the appropriate weights

for the observations. Different choices are made in Fryer et ale (1979),

Hogan et al. (1979) and Pocock et al. (1982) for example. Emnploying a full

likelihood analysis, as is proposed in this paper, is clearly an alternate

way to address the issue* Noting that the present computations were in fact

carried out by iteratively reweighted least squares makes the connection

even more apparent.

Finally it is to be noted that this paper has taken the basic quantities

to be analyzed-4, be simple counts and rates. Clearly other quantities,

perhaps specific estimates of probabilities as in Hoem (1984) or subtle

variants such as the Mosteller (1969) rate D/(P + cD) will be of interest.
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APPENDIX

The proof of Theorem 1 will proceed via the method of probability generating

functionals. he pertinent methodology may be found in Vere-Jones (1968)

and Daley and Vere-Jones (1972). In particular it should be noted that

for a general stochastic point process, with points located at positions r.
"-3

the p. go flo is defined to be

E

for a general function f() . The p. go fl. characterizes a point process.

The p. go fl. of a Poisson process with intensity function V(.) is given by

exp J'[(r) - i]V(r) dr}

Proof of Theorem 1. The ends of lifelines in the Lezis diagram occur

at the positions (o.+X.,X) with a'. denoting the birth time and X. the

lifetime of the j-th individual. The p. go fl. of the death process is

therefore

E R\(+X ,Xj

Now

Efp(t+I,X)I Jrf(t+x,x) g(t+x,x) exp-f II(t+x-y,y)dy dx = 7(t)
XK 0

say, with X deno5ting the lifetime of an individual born at time to It has

been assumed that the o. correspond to a Poisson process of intensity 3(o)

Therefore

E {Tk¶,l(o.)j - expIf[It) - lJp(t)dtj



Combining these last expressions one sees that the death process is (planar)

Poisson with- the indicated intensity.

Doob (1953), Pp. 405 - 407, is an early reference to this type of result -

that random translations of Poisson processes are themselves Poisson.

Proof of Theorem 2. Let

D

and

£ = (j1+ x) (JV 1)

then elementary manipulations show the quantity to be bounded is

4( Prob x - Isk <xE + 1lel

< Prob4jI)cs> + Prob itx -xI<3 (A.)

for any o0 . Now, by Tchebyceff's Inequality, the first probability

here is

vvar/P, , (JA + x)2cr2/SA3 . (A.2)

For D a Poisson variate of mean )X it is the case that

|Prob ID $ ui - Prob ID < v $I .< (u - v)c/Jf (A-3)

for u,v integers u > v with c = iJ /8. This comes from Theorem 2 Tsaregradskii

(1958) and from bounding the absolute value of the characteristic function

of D by expt-2At2/7 21



The second probability in (Ael) for J1+ x y 0 is $ Prob iv <D < u3with

u - v a< 2+j+ 2 * The result of the theorem now follows by adding (A-3)

and (A.2) and then choosing 8 to give the smallest total.



FIGURE CAPTIONS

Figure 1. Top graph provides the estimated 1 June number of females in

Canada for 1926 to 1982. Middle graph provides the year total number

of female deaths for the same time period* Bottom graph is the ratio

of the previous two, the crude death rate,

Figure 2. A Lexis diagram, with the sloping lines representing individual's

lifetimes. The lines begin at the moment of birth and end at death.

Theose ending in the region A represent individuals dying in the corresponding

age and time intervals.

Figure 3. Lexis diagrams representing the crude death rate, N(A)/N(B)

for the year 1980 taking N(B) to be the midyear, i.e. 1980.5, population.

Figure 4. A circle diagram to represent the counts of females dying annually

from 1950 to 1972 separated into 19 age groups (age intervals: 0-1, 1-4,

5-9, 10-14,..*, 80-84, 85+). The radius of the circle plotted is

proportional to the corresponding count.

Figure 5. A circle diagram of the age-specific death rates corresponding

to Figure 4.

Figure 6. The estimated age effects for the data of Figure 4 and the

model (6.9). The values plotted are defined so the age 0-1 value is 0.

Figure 7. The estimated period (year) effects for the data of Figure 4,

defined so the 1950 value is 0.

Figure 8. An estimate of the density function of the standardized residuals

resulting from fitting a simple (ar - 0) Poisson model to the data of

Figure 4.



Figure 9. An estimate of the density function of the standardized residuals

resulting from fitting the model (6*9) to the data of Figure 4.

re 10.TThe standardized residuals,plotted versus year, resulting

from fitting the dynamic model (6ol1) to the total counts of Canadian

female deaths during 1926 to 1982.



CANADIAN MORTALITY CF) , 1926- 1982
Po I1t ton

AllD11th.

i-t

Cru. Deth Rote

Is law

0

I

1- t- law la"

6

I

a

a

lo 1s87
t --R- a

lo

,.Xs too



time



time

B

time

age

A

1980 1981

age



LA
ur*

OD * * 0 e 0 0 0° °
c0 . . . . . . 0; 0

0%
V0 0 20 4* 00 0 81

* ** * * * 0 0 0 c:

** * *0 0 0 0
* * * *0 0 0 c0

E-4

0 0

0 0. * 0~0 0 00 000

0 20 400 60 80 10

age



U)
'-4

0 ° . .00
0 * ' 0 0O

0

a | O ** * .o°oQ° C

'-4

U1 W 0* * ..O

'-

0 00 60 80 10

C> . ooQ
co 0 0~~**ooQ
w~ ~ ~ ~ ~ .o

cI~~~~0
0~ 0 .o
%O 0C .oooQ

0U0 0C * 0 Q

C> * 0o 0.Q
0> 5 0 0 0 00

Ul)

0 20 40 60 80 100

age



Age Effects

40 60 80 100

age

I)

Period EUfects

1960 1965 1970 1975

year

cv,)

r-4

w-0

C~4

Lfl

0

* * *~~~~~~~~~~~~~~~~~

* *

.~~~~~~~~~~~~~~~~

20

0

'-4

0

C')

0

1

U)

0

* ~ ~ *-

* *

* *

_~~~~~~~~~~

1950 1955

t- I .o



Estimated Density J

: Residuals of Poisson Model
I~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

**
** *

*
*

*

*

*

*
*
*

*

I ** t * * **t ***

-5

*

0 5 10

standardized residual

Estimated Density
: Residuals of Full Model

0 2 4

standardized residual

0

0

*n
'-4

0

0
'-4

0

In

0
0

0
0
-20 -15 -10 15 20

0

Uf)

0

eq

0

m

6

eq

0

'-4

0

0
0

*

*

*
*

*

*

*
*

*
*

*
*

**

* *

it

* * * *
I

t****. I *~~~~~~~~~~** * ***

-4 -2 6 8

*

9(l. .



rv .
-

Standardized Residuals

* *** * *I

I ~~~~ ~~***** **
H I** * * *- * * ** ~* I

'~~~~~~~~~~~~~~~~~~~~~~ * .*
esS ** ~~~~** * *I

d L I I | . | | I~~~~
19201930 1940 1950 1960 1970 1980 199

year


