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SUMMARY
We consider the problem of estimating the number of distinct
executions witnessed by the total refugee communities in three locations.

We give lower bounds to these numbers and prove asymptotic normality

for the estimator considered.
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ON ESTIMATING THE NUMBER OF UNSEEN SPECIES:
HOW MANY EXECUTIONS WERE THERE?*
P. J. Bickel and J. A. Yahav

1. INTRODUCTION
Our interest in this problem was aroused by the question of how
to estimate the number of distinct executions that took place in South
Vietnam after the takeover by the Hanoi government in 1975.
J. Desbarats of the Institute of East Asian Studies and Karl
D. Jackson of the Department of Political Science at the University
of California at Berkeley provided us with data taken from a sample

of refugees 1iving in Chicago, Orange County and San Francisco:

Table 1
Chicago 83323; Frazz?sco
Sample size 98 840 1160
# distinct executions 30 67 36
# distinct executions reported once 24 61 28
# distinct executions reported twice 5 3 7
# distinct executions reported 3 times 0 1 0
# distinct executions reported 4 times 1 0 0
# distinct executions reported 5 times 0 1 0
# distinct executions reported 6 times 0 1 1
# reported executions 38 81 48

On the basis of this data we were interested in estimating the number

of distinct executions witnessed by the total refugee communities in

%*
Research partially supported by Office of Naval Research contract
NO0014-80-C-0163.



each of the those locations. Extrapolation to Vietnam is of course
questionable, since the refugee populations cannot be considered as
random samples from the Vietnam population.

The problem of estimating the number of unseen species was
discussed by Fisher, Corbet and Williams in (1943), where a parametric
empirical Bayes model was devised. Good (1953) developed this model
without assuming a parametric family of priors on the parameters. Good
and Toulmin (1956) and Efron and Thisted (1976) auqgmentec the Good

approach by constructing better estimators. Goodman (1949) studied a

version of the problem in which the the total population size is known

and constructed the unique unbiased estimator for the number of species.

Our data differs from that modelled by previous authors in
two respects:

(i) The bulk of the sample cqngists of individuals who have seen
no executions. If we unrealistically consider the known text of
Shakespeare, the Efron-Thisted example, as a sample from all his
writings, then every word written corresponds to one (and only one)
type. The obvious lack of independence of successive words of the
text make this assumption unrealistic and renders understandable Efron
and Thisted's unwillingness to pursue distribution theory.

(ii) There are individuals reporting more than one execution,
unlike the species problem where each individual belongs to only one
species. We accommodate these special features in a general sampling
with replacement model in section 2. We derive lTower bounds k of
different types to the unknown number k of "execut{bns". These

bounds are readily estimable by simple estimators E, We maintain this



grisly terminology for convenience since our results of course apply to the
estimation of the number of unseen species. The reason for looking

at estimable Tower bounds rather than trying to estimate k directly

are discussed here and in section 2. In section 3 we proceed further

and derive a normal approximation to the distribution of Kk when the
sample size and k are large, for the simple model in which each
individual sees at most one execution -- the type of model considered

by previous writers but with "nonresponse" permitted. The asymptotic
variance OE of E_ is hard to estimate but we can find an upper bound

'i to oi such that Bi is easily estimated. Finally we propose

lower confidence bounds of the form E;-z]_ask. In section 4 we discuss
the application of our techniques to the Vietnam and Efron-Thisted data.

Proofs for the asymptotic approximations claimed are given in an appendix.

Our results are central limit theorems for sums of functions of the com-
ponents of multinomial vectors. They are based on work of Stack (1957)
and are related to later work of Morris (1975) although Morris' conditions

seem to fail for the indicator functions that we need to apply them to.

2. SIMPLE LOWER BOUNDS AND THEIR ESTIMATORS

Given the refugee population sizes, we ignore that the samples
were obtained without replacement. The situation can be described as
follows: Let S = {A11 vectors (e],ez,...,ek) of K 0's and 1's},
F = a set of probabiilty distributions on S. Let U]’UZ""’Un be
independent and identically distributed according to PEF,
U, = (811’612"?"€ik)' Let o be a random permutagjon of {1,2,...,k}
(fixed for all n). Let X; = {a(j): €43 =1}. Xl’XZ""’Xn are our
observations. The correspondence with the "execution" situation is
the following:

(i) The executions are labelled 1,2,...,k, the sampled

individuals 1,2,...,n.



th

(ii) e€;: =1 1if and only if the i*" individual in the sample saw

1]
th

the j~ execution so Ui is the record of which executions were seen

by individual i, and which were not. Ui is of course not observable.
(i) Xi is the 1ist of executions witnessed by individual i,

with the "names", the a(j), containing no information about the

magnitude of K.

§ I{U; =s}, the number of sampled individuals whose

i=1
execution record is s. If T = P[{s}] is the proportion in the

Let NS =

population of such individuals, then N = {NS: s €S} has a multinomial
(n,ns;siES) distribution. A1l statistics we consider are functions
of N which are also functions of (X],Xz,...,xn). In the Fisher et al.,
Good, Good and Toulmin and Efron and Thisted situations (with dependence.
between words ignored) this model is further restricted by F making
only s with exactly k-1 zeros possible. An observation is exactly
one species or word, and we can replace S by {1,2,...,k}, N by
(N]’NZ""’Nk) yhere Nj is the number of times j occurs.
(NysNps...sN ) has a multinomial (n,mysmy,...,m ) distribution. The
observable suffigient statistic is given by {Na(j): Na(j) >0}. In
the "simplified" execution problem, the 0 vector is also admitted
and we can replace S by {0,1,...,k} where the outcome 0 means
that the sampled individual witnessed no executions, etc.
We shall refer to this as the simple model.

The total number of distinct executions listed T, 1is a natural
underestimate of k. If Ny = 1§1€1j’ the numEer of individuals in

the sample that witnessed execution j, T = } I{N5'>O},
j=1

) k n k n-1 r ' )
E[T,] = jzl(] -(1-nj) ) = jZ] rzonj(l-ﬂj) . (2.1)



Denote E[Tn] by 6,. Then, the bias

k-€fo,] = oi E nj(l-nj)'“ . (2.2)
r=n j=1
More generally, for m > 1, denote the expected number of distinct
executions listed in a sample of size m, by
k m-1 r

O = jZ] rzonj(]-“j) ,
so 8, = E[Tn]. Then, as a limit, 6_ = k and we define 8y = 0.
For m<n, 6 is estimable unbiasedly on the basis of our sample of
size n by the U-statistic,

6 =(n)§I{[§e. . >0},

m M 3=1 =1 'pd
the average number of distinct executions listed in subsamples of size

m drawn from the sample of n. So, Tn = @n. Finally, let

k
e e .z

-1
(T-r )™,
J=]WJ( WJ)

the expected number of executions seen by the first person in a sample

A

of size m and no others, which is unbiasedly estimable by Km = 6m"em-1'
In the simple model, Efron and Thisted and previous writers pointed out
that if nnj = Aj, j=1,2,...,k are moderate and n 1is large, we
can approximate and simplify the model by taking Nj independent

Poisson (Aj). This approach is discussed further in Section 4.

PROPOSITION 1. Even in the simple model no unbiased estimator

of k exists. “

Proof. We can write an estimator G(NO,N],...,Nk) with the

understanding that

5(n0,n],...,nk) = G(né,ni,...,ni) (2.3)



k k
if t= ) I{n,>0} = J I{nt>0} and the nonzeros of n, ,...,n,
j=1 3 j=1 3 37
are a permutation of the nonzeros of n! ,...,n. . Unbiasedness for

J J
n . . V1 k
k =1 then requires J (})n'(1-m)"s(i,n-1) =1 forall 0<m<1.
i=0

Hence 6&(i,n-i) = 1. However k = 2 forces
14,3 ['n']"}'”%(""1'“2)n-1-35(i’j’"'i‘j) -

1,J
O<i+j<n

for all 0 < Ts Ty and T+, < 1. Hence 2 = §(i,j,n-i-j). But

(2.3) requires &(i,0,n-i) = 8(i,n-i) for i > 0, and we have a

contradiction. 0.E.D.

Here is our principal lower bound 54. Let

k k A
-1 r r+1
Moo= () 7)) m(l-m) = —.
rogmd g o
[e o] [e <) ‘—rT

. . _ . n-1 _

The bias is then, from (2.2), k -8, = ) MM > A, y Mn-]

n 1 1 r=n r=n

A
Ay ](1 ]) An[(Zi)ﬁ:T-']]-]' Our lower bound is

n=-

k=8 +a [ ‘)“T 1T

Evidently k, =k if and only if T =, 1<J<k. ky canbe

thought of as the first in a hierarchy of bounds. Thus,

. k n, k k n-1_
j=1 J- j=1
0<my<t, T<j<k}. (2.4)
We can similarly define “
k(3 . | . n, t -1
_(1],12,...,1r) o, + m1n{JZ](] mT.) : Z s (1- - ) Ait,

=1,2,..., }.



0f course k(1,2,...,n) is the best of these bounds.

ASSUMPTION A. Suppose that as k—=, n(k) = and Ty vary
in such a way that the empirical distributions Gn(-) Of Ny MMy, 0T
converge weakly to GO(°), a probability distribution on (0,»).

Moreover, suppose that

n
ny, — Exdso(x) . (2.5)
Then,
en -\
S o r(l-e )dGo()\) (2.6)
0
and
n . -t)
rtn}+ — Exe dgy(n) , 0<t<1. (2.7)
In this case if r§1{0=t1 <ty <ty <tr} is dense in [0,1]
lim + k(t,,t t) >1-|erde(n) (2.8)
k =*"1272°° 2" p/ = 0 *
ko0 0
-0

+ min{re"‘de(x): er'“de(x) =
G ‘0 0

rxe'“deo(x), O<t<l} =1,
0

since the measure AdGO(A) is uniquely determined by its Laplace
transform on an interval. This suggests that consistent estimators
of fwe'xdGo(A) can be constructed by choosing r(k) —« slowly and
estimgting Eﬂ[t]n]+l,[tzn]+1,...,[trn]+1) by E_ in which

a »4 seeesh are replaced by the ci :
[tynl+1" [ tpn]+1 [t,n]+1 P Y the corresponding

points from a completely monotone approximation to A 1 (Feller [2],

[nt]+
p. 439).



Now,

k k
_ 1 1/n-1 -1
ky =T + =% Iy _1nLO Y NL/VT 0y Z90) =177 (2.9)

Calculation of .E is eased by noting that for this linear programming
problem on]y G concentrating on at most r points need be considered.
This approach will be considered elsewhere. It is closely related
to Efron and Thisted's maximization of negatively biased linear
estimators of k.

We analyze only 51 and ‘E] further in what follows, but note

several other easily estimable nonlinear lower bounds. Thus from (2.1),

] k
Ber-aact

_ ]nj)" =1-(1 -9,;‘-)“ : (2.10)
J:

Let 52 be the integer part of the unique finite root > by of:

0 A
Rar-0-P". (2.11)

The existence and unicity of such a root and k, < k follow from (2.6)
and the fact that g(x) = enx-1-+(1-A]X)" is convex on [O,A;]],

g(0) = 0 and g(%) < 0. The estimate Ez obtained by substituting
én’ 8] in (2.11) is closely related to the Petersen-Chapman-Darroch

estimate (see Seber [7]) which solves

A

G n M,
+=1-10-9, (2.12)
i=1

k
where M, = ] €jj» the length of i's Tist. This estimate is

Ly .
appropriate if P[eij =1] does not depend on j though it may
depend on 1i. Substituting 0, = E[@n] and E[Mi] =4y fin, (2.12)

leads



to (2.11). Again k, = k if and only if 7. =m, 1<j <k

Another bound is
_ 2,2
= en/n (A]-Az) .

This bound is not comparable to 54, 52 and becomes sharp when k —w
and all nnj are small. It gives some insight to see what happens to

54, i=1,2,3 under assumption A. From (2.5)-(2.7) we have

k
ﬁ}-—+ oy = J(l-e’x)deo(x) + [[Ae'*dso(x)][log deeo(x) -logJAe'AdGO(A)]']

since n[ -
e dGO(A)

k
%*%

where x -1 > 1 satisfies
P2

h00 = 01 - ()3 + exp[-x[:xdeo(x)] “1-=0,

k0 - [e a5y (1))?
k"3 [xzdeo(x)

PROPOSITION 2. p; <1, §=1,2,3, with equality for =12 if

and only if G0 18 a point mass. Moreover,
p] 2> 02 . (2-]3 )
Proof. The claim for H is equivalent to

[Ae'AdGo(x)

e dGO(x)

xdeo(x)
< Tog (2.14)

-)\ *
Ae dGO(A)
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Let dQ(A) = e'xdGO(A)[Je'AdGO(A)]']. So (2.14) is equivalent to

e dq()

JAdQ(A) < Tlog We have

AdQ()

j AdQ(A)

Jxeldo(x) > I)\dQ()\)-e (2.15)

which holds by the strict convexity of Ael with strict inequality
valid unless Q is a point mass. (2.14) follows easily from (2.15).
To prove the claim for pp» note that h(0) = 0, h"(x) >0,

h(«) = » 1implies that h has exactly one positive root. Since
h(1) = -Ie'AdGO(A) + exp{-[deo(A)} <0,

unless Gy is a point mass, -J—.Z 1 and the result follows. Finally
2
[I(l-e')‘)dGo(A)]z < J(]-e')‘)zdeo(x) < JAZdGO(A) yields py < 1.
To prove (2.13) note that

K n
ky <o, + .Z (l-ﬂj) = k
j=1
k
if jzlnj = 4. Therefore,
D e §
ko <6+ min{ ) (1-m,)": T, =A}
=2 n 321 J j=1 j 1
k k
. -1
<6 + min{ § (1-m.)": E T.=Ays ) m.(1-1.)"" ' =
n =1 30 T gmd Va3
S
by (2.4) Q.E.D.

We do not pursue 52, 53 at this time although the assumptions
that lead to the approximate normality of Eq also Tead to normality

of Ei, i=2,3.
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3. APPROXIMATION TO VARIANCES AND DISTRIBUTIONS OF ESTIMATORS

As we suggested in section 2 we want to make large k aporoxi-
mations to the distribution of (Eq-gq)//E. Embed our situation in a
sequence indexed by s. Suppose that k(s) —», n(s)—= and

I{nm; _<_x} + G(x) as
1

nes— s

ASSUMPTION A. (i) 6_(x) = ——
. s ko j

s —o where

(ii) 1im G(x) = 1, 7Tim G(x) = 0,

and X x>0
(i111) sup fwt4dGs(t) < w,
s ‘0

LEMMA 1. Under Assumption 4, E_ may be linearized asymptotically:

k k
Ry -k, = =0} - (1-1.)™) - =1} = nm(T-m,)"]
ky -k jZ](I{NJ 0} - (1-m))%) - A, jZI(I{NJ 1}-nmy(1-m)")
k
) -1/2
+ B, jZ](Nj nvj) + op(k ) (3.1)
where
= -] -2, n_
An =St 9nCh nd
= n-zo -zo_n_
Bn - dn ®h “n-1
(3.2)
€y = n(dn-l)
A
1,1/n-1
d = ()
n An
Proof. MWrite 24 = gn(én,nﬁn,ng])

k = gn(en’"An’"Al) .

Taylor expand around (en’"An’"Al) and note that the sums above are

just (§n—en), n(Kn-An), n(K]-A]). The remainder is op(k']/z)



12

since under A, the second derivatives of g9, are uniformly bounded

in n, k 1in a neighborhood of (en’An’Al) and the sums are Op(k']/z)

by Theorems 1-3 of the appendix. (The centering constants are

easily shown to differ from those of the theorems by o(k']/z). Q.E.D.

The asymptotic variance of the right hand side of (3.1) is

of ~ k{r [e™*(1-e7%) +Aﬁxe'x(1-xe'x) +B2x1dG(x)
0 n
-X
. J: xe™¥[2A x - 28, - 2A B (1-x)1d6(x)

- -———l————{fm(Anxe'x(x-l)-+an-xe'x)dG(x)]2}

[:x dG(x) 0

An upper bound on of is:

5% = k{I:[(l-e'x)-PAﬁxe'x-vaﬁjdG(X) (3.3)
+ ‘r:xe'x[ZAnx--ZBn -2Aan(1-x)]dG(x)
] -X -X 2
- ———[| (A xe""(x-1) +B_x -xe”")da(x)]} .
rmx dG(x) r; " " }
0

The upper bound of the asymptotic variance can be estimated consistently

using A as follows:

) I{legl} =6,

k fm(1-e'x)dG(x) x
0
k[”x dG(x) =~ Y N, = nA
0 i3
kfwxe'xdG(x) x JI{N,=1} = nA
0 J J

kmeze'xdG(x) x
0

2
N
(R ]
—
~—
=2
i
N
—
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A;» B, can be estimated consistently by using 8] and Kn in the

n
definition of An and Bn' A1l of these claims are consequences of

Theorem 1 of the appendix.
K-k

THEOREM 1. In the simple model, if Assumption A holds, ——s.
o}
1

has as S—» a limiting normal distribution with mean 0 and

variance < 1.

Assumption A is uncheckable as it stands. However, a heuristic
argument suggests an estimable parameter to guide us. For k large
A(ii) suggests that the Nj's are approximately independent Poisson(nnj)
where nm, <M, ji=1,2,...,k. Then mgx Nj should be stochastically
smaller than max N3 where the N3 are independent Poisson(M). It

J
is well known that

(max Nj) log log k

Tog & = Op(l) (3.4)

and the same should ho]dkfor max Nj' Similarly A suggests that Op(l)

is not op(l). Since jZ]Nj ig of the order of k, we finally

conclude that the approximations of the theorem are reasonable if

a = (?g? Nj)-(1og log .E]Nj)[Iog -E]Nj]-] is moderate -- not too large

and not too small. Further theoretical and Monte Carlo work is needed

to make this statement precise. It is however notable that for our

data o ranges from 4.7 to 20.5. For the Efron-Thisted data a = 2747.
Although the Steck theory is no longer applicable for the full

model, it seems plausible here too that under suitable conditions, as

n, k—o the Nj behave 1ike (dependent) Poisson nm variables and

that (§n,n81,n£n) still exhibit 1imit normal behaviour. However the
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possibility that two or more executions can appear on the same list of
an individual witness leads to a more elaborate upper bound on the
variance. One has to introduce P(j'|j) as the probability that
execution j' is witnessed by an individual chosen at random given
that this individual witnessed execution j. If P(j'|j) is of the
order of LT or smaller, then formula (3.3) for an upper bound of
the variance of our estimator E_ does apply. If P(j'|j) for most
(j',j) 1is of order one, then the calculation of the variances of
LI{N;=1}, ZNj and LH{{;>0}  pecome somewhat more involved taking

account of the covariances that can be estimated.

4. APPLICATION OF LOWER BOUND ESTIMATES TO VIETNAM DATA
AND COMPARISON WITH OTHER TECHNIQUES

Table 2. Lower bounds for the Vietnam data

Chicago Orange County San Francisco

k
T = ) I{N,>0} 30 67 36
k; 82 282 88
k, 80 210 79
ky 53 76 36
5,(K;) 29.9 69.9 27.4

The authors cited in the introduction considered the simple model.

k k -ao,

They argued that D = (]-ﬂj)n may be approximated by J e J
=1 J=1

J
where o = N5, for n large. Good (1953) observed that

= .

k -a. k -a. -a.t

Y e J may be approximated by A(t) = y e J(1-e J), for t

29

large. A(t) can be interpreted as the expected number of species
that would be seen in an additional sample of size net, and were not

seen in the initial sample. Now A(t) can be expanded as:
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k =0, © ,i+-‘ (a.t)1
Mt) = Je T ENT —H) (4.1)
j=1 i=1 :
k (a,t) -a, K
and ——%7——«e J can be estimated unbiasedly by tI.Z I{Nj=i}.

j=1 ~ i
The resulting A(t) can always be defined since XI{Nj=i} =0 for

i> max(N],...,Nk). and it is not hard to see that it is always an
unbiased estimate of A(t). However A(t) becomes unstable as t
grows out of [0,1), the region of absolute convergence of the series
iﬁ A. It does not converge as t—o even though A(t) — A(x),

the quantity we want to estimate.

Good and Toulmin (1956) and Efron and Thisted (1976) considered (biased)
estimators based on approximating A(t) by a partial sum in i of a
series obtained by applying a summability method to the original series
(4.1). Efron and Thisted's methods gave what seem to be reasonable
estimates for the number of words Shakespeare knew but did not use.

In estimating A(») their method requires setting two tuning constants,
(i) t, such that A(t) = A(»), and (ii) the number of terms taken
in the partial sum mentioned above. The constants used for the
Shakespeare data applied to ours give substantially lower answers than
ours. On the other hand EJ gives lower results than those of Efron
and Thisted, for the Shakespeare data. This is not surprising since
we expect the nj are far from equal in that case. Here is a combina-
tion of the two methods which evades the need for the tuning constants
and yields high values for both data sets. Use A(1) to estimate
A(1) and then estimate the remainder by our method.. Formally:

k n(t+1)-1

= r
a0 = ) ] () (4.2)

J r=n J
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Arguing as in section 2,

D > A(t) +

(4.3)

and for large n

E =%y -0yt

o.e J

D > A(t) N J'=] J ‘[Za.e ]
oo 151 | I ]

-L .
Xaje

J

Using our previous estimator and Good's estimator for A(1), we get

k
(1 I{Nj=1})2

b= A + W - (4.4)
( I N;) log —3—
j=1 9 JI{N;=1}

The results are consistent with Table 2.

E] 9.+ Tn
Chicago 82 82
Orange County 283 287
San Francisco 88 86

Using (4.4) to estimate the number of words Shakespeare knew but did
not use increases our lower bound estimate by almost 300% but still is
only about one-third of Efron and Thisted's estimate?

We finally compare our lower bounds with estimates obtained by a

parametric empirical Bayes method proposed by Fisher et al (1943).
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. . . . . b
We assume Mo j=1,2,...,k i.i.d. with density f(x) = (b+1)(1-x) ,

0<x<1 and b>0. As k—

k
1 P 1
I~ A
j=1 J b+2
k
1 n-1 P (b+1)
F§ m5(1-m,) " To+n+1) (b+n) °
and
k
1 n P b+1
k L0t B il
j=1
Note that
-1
y Tr.(]-'n.)n
j 3 P, (be2)(b+1) _ _b°
z T (b+n+T1) (b+n) (b+n)2
j J
Use the method of moments to estimate
) )
n Te by N. »
j=119 j=1 9
n z ﬂ.(]-ﬂ.)n-] by E I{N.=1}
j J J j=1 J
b by
A _ - - _ _ _~|
b= n\@I{Nj B/ 0 \/§1{Nj 1}/ Ny) (4.5)
and D by
A f o 2
5= Ly (ox)be2) gy _(b/m)” (4.6)
n j J  (b+n+1) j (b/n) +1

From our data, we obtain
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Table 3. Lower bound and parametric empirical Bayes estimates

Chicago | Orange County | San Francisco

B/n | 3.8265 6.5548 2.4691
i} 116 461 84
b, 53 216 52

We see that the parametric empirical Bayes approach yields estimates

that are about twice our lower bound estimates.
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APPENDIX A
We let k, n and the "j depend on a hidden index s, so that
as s —», n(s)—», k(s)—> and nj(s)-—>0. We suppress the

dependence on s when it is clearly understood.

k
ASSUMPTION K. (i) G (x) = ¢ } LTy <x} = G(x).
(i) 1im G(x) =1, T1im G(x) = 0
_>0

(i) sup th dG (t) < =,

A is a blanket assumption for this section.

Let h: I—R, where I = {0,1,2,...}, be bounded. Let

(No, 120" ,Nk) be multinomial (n,g), ™= ("0’"1”"’"k)‘ We
will differentiate between three situations and state corresponding
fheorems 1-3.

1.

—0, kmw,—o

o 0
2. limmy >0, kmy—e
3. kwo = 0(1)

Before stating the theorems, we will prove two lemmas.

LEMA 1. If my—1, then %-—+ 0. Otherwise 0 < lim_%
Tim X
< Iim i ©,
Proof. By A,
UTg ! En — | t dG(t) (1)
k k5"

where 0 < Imt dG(t) < =.
0
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LEMMA 2. Let M=n -NO. Then

%LJ t dG(t) . (2)
0
If kTr0 —o,  then
k
M-n z Tl’j
. j=r- ~ N(0,1) .
o (T-m,
M, _ 1 K
Proof. E[T(-] ol y nmy — rt dG(t)
351 0

Var(yk-) = fz-n- 0(1-1r0) ~]F"0J:t dG(t) — 0 .

Hence (2) is proved. To prove the asymptotic normality, we note that

Nn-nT
k1r0 — « implies that n(1- o)no—-m by (1) and hence 0 0 _, N(0,1).
k vaOH-TrOj
But M-n) m, = -(No-mro) which proves (3).
=1
Given Ny let ﬁj, j =1,2,...,k be independent Poisson with -
parameter My; and My = TTJ.(]-TI‘O)-]. Let
_ T .a -t.r -1 _
w (t) = J h%r)e” "t (r)"" , a=1,2
a =
r=0
_ v -t,r -1
wyq(t) = ¥ ren(r)e "t (r!)™ " .
11 L
r=0
and w(t) = wy(t) - (wy(£))2 .

THEOREM 1. If kﬂ0—>°° and 1r0—+0 then

k ~
1 th(Ny) - Eh(N;) INg T3 *
) —> N(0,1) (4)
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where
S 2
, ) ) (1, Coutiyan(ip) )
Hig) = 1 varn(ip) Ing) - ; (5)
([ (g (8- (£))d6(£))
- kU:w(t)de(t) - + oK) .
t dG(t
j: (t)
'fs[h(ﬁ )INy] = 'f (nm,) + o_(k'/?) (6)
i FUAL) j=]w] m b .

Proof. We establish the correspondence with Steck's theorem 2.2.
A11 computations are conditional on NO’ The conditioning vector VS

of Steck is one dimensional and lattice given NO'

The vector Us is one dimensional

k. .
U = jzl(h(Nj)-E[h(Nj)lNo]) .

To prove (4) we need to check conditions (ii)-(v), of Steck's Theorem 2.2.
Condition (ii).
k - D,
.z Var(leNO) ®
j=1
k -
J Var(h(N,)|N,) 2+ w
L j’"o
j=1
k N A\ ]
We note that ) V(leNo) =M and by Lemma 2 converges to «. As
L4

for the second term,
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=~

Z Var(h(N,) INg) = T w(@ 1)) = k| w(i———)dg,(t) .
=1 =1 f: fxvde(v)
0

But t — w(at) is bounded and continuous in (a,t) since h is
bounded. Using (2) of Lemma 2 we get

k
Tuiup) =] wnas(e) —=
J—

since w(t) >0 for t > 0.

Condition (ii1i). Argument of Steck's theorem 2.4 shows that (iii)

will hold provided that:

N
P Tim Corrd( N;, 2 h(Nj)INO) <1 (7)

nes-ax
-—

J

P lim —-Var( 2 h(N )|N me(t)dG(t) >0 (8)
j=1 0

P )

P 1im %-Var( 2 N. |N0) = fwth(t) >0
0

3=1
(where P 1im denotes limit in probability) and
1 K 1
Yim ¢ ¥ I{egnnjgg}_ >0 for some € >0 . (9)
k k
( Z W”(% IJJ) - M_z W](‘Li UJ-))Z
But (7) equals J=1 J=1 .
M
M z wi(t us)
g1k

Arguing as for (ii), (7) is equivalent to

[J:wn(t)de(t) -J‘;wl(t)dG(t)-Etde(t)) ]1
<

[ntde(t)- w(t)dG(t)
0 0

1. (10)
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Let T~G and N given T be Poisson(T). The expression in (10) equals

2
E |Cov§h§N),N|T22 . . ) )
ETVar(h(NV T T-ElVariNT TV T Since h is bounded, h 1is not linear

in N and hence for every T such that T > 0 we have

1/2

Icov(h(M) ,NIT)| < var'/2(h(N) |T)var/2(N|T) .
Hence
[ECCov(h(N) ,N|T) 1| < E[Var'/2(n(N)|T)-var/2(n|T)]
but
Efvar /2(h(N) [T)Var /2(N|T) ] < E'/2[var(h(N) |T) 1-E/2[Var(N|T) ]

Since P(T>0) >0, (7) follows. (8) was essentially proved under

(i1). (9) is immediate by A(ii).
Condition (iv). Follows from (7).

Condition (v) (Part 1). This reduces to
1 K . . 4
2 j§1E[("("5) - ELh(N,) INg D [Ng] >0, (1)
A IiE[(N €N, IN DN B 0 (12)
2 shra TR el Mo '
(11) is immediate since h 1is bounded while (12) is equal to
1K 2, 1 2
;7 jZ]{Muj-+3(Muj) } ~ E{J:tdﬁ(t)-FBI:t dG(t)) — 0 .

Condition (v) (Part 2). This reduces to

S 4

—— EL(N;-EIN:INGD) 7 ING] )

Tim sup J ﬂ 0 0 <C<o, (13)
J

But (13) equals
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M e3me?
Tim sup K I < Tim
J

~|—

K 2
.Z]{Muj + 3(Muj) }

- rt da(t) + 3rt2de(t) <o .
0 0

Steck's conditions have been checked and (5) has been proved in check-

ing (iii).

Proof of (6). Note first that if |h| <M so are |w|, |w'| and
|w"|. Since E[h(ﬁJ.)lNJ.]

w](Muj), we can Taylor expand around nm

to get
k k K 2
jzl{wl(mj)'w](nﬂj)} = lewl(nﬂj)(ma'n"\]) + Op(jZ] (MUj'n"j) ) .
But

k k
jZIW'(nﬂj)(Muj-nwj) (M-n(]-nb))jzlwl(nnj)uj (14)

' M
kf;tw (946(8) iy - )

m
Oy (ke (1) ) = Oyl lkrg) /%)

R

1/2
op(k )

k
since wo-—+0. The remainder is Op((M--n(]—no))2 ) u?) =
-2y _ =1
Op(nnb(l- 0)kn ) = op(l). Q.E.D.

THEOREM 2. IF limm

lim my > 0,

k
L (h(5) -y (nm))

B -> N(0,1) (15)

0

where
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K s 2
( 3 Cov(i, h(f) INg))

2 K " j=
T (No) = jZ]Var(h(Nj)INO) - m
K 2
B () -y o)
([ b0 - yras(en? [ o conasie)
- K(rw(t)de(t) ] by
0 rt dG(t) rt da(t)
0 0
+ o(k) .

Proof. We only used knb-—+w in the proof of Theorem 1 save for

the expression in (6). That term now yields

k k
jZI{W](Muj) 'w](n"j)} = jz]wl(nﬂj)(mu‘]"nﬂj)
+ 'f "(nm ) My, -nmr; )2 + 0 Ifmu-n 13
e T T T g PTG
By (14)
¥ () S SR | 12
L [EYCED)
kvro[]‘;tw'(t)dG(t)]z
J‘Dt d6(t)
0
Also
'fw-'(nn ) (Mu,-nm,)2 = (M-n(1- ))ZlZ(w"(mr) é (16)
PENMR It I USSP L
~ (M=n(1-m)? | w(t)t2dg(t)——
r‘: k(rth(t))z
0

= Op(l) .
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Finally,

3
‘ ; ; f:t dG(t)
E(.Z IMUj'n“jl ) ~ EIM'n(]'no)'
=1 kz(J‘;t da(t))3

= o(E¥*M-n(1- NH?) = o VE)
The result follows. Q.E.D.

THEOREM 3. If ﬂo-—+0 but kno = 0(1) then

k
iZ]{h(Nj);w](an.)} o
n
where
2 X * 1 k * *\ 1y 2
o, = jZ]Var(h(Nj)) - ﬁ(jZ]COV(Nj’h(Nj))) (17)

(] gy (01t (£2) ()2

. k[f:w(t)de(t) -0 I:t —

and the N; are independent Poisson(nnj)

Proof. By Lemma 1, wo-—+0 implies nmy = 0(1) and Ng = op(k]/z).

Proceed as in the proof of Theorem 1 by applying Steck's theorem

. _ P *y_ * - s *_
with Ug jzo(h(Nj) Eh(Nj)) and Ve iZO(Nj nvj). Note that

k * 1 K . * *y\ 142
1 Var(h(N)) - { ] Cov(N3,h(N7)))
im0 J s 9T
(j:(w”(t)-tw1<t))de<t))2]

) kU;w(t)dG(t) ] J:t —



27

and

* *\ 1 _ 1/2
h(Ng) - ELh(NG) ] = o (k'/)
and Theorem 3 follows. This covers the important case Ty = 0. Q.E.D.
Finally we shall use

COROLLARY. If A holds and h is bounded,

k
y h(N.)
=Y e)dace)
= [ o)

k
Proof. Since 1 Y wi(nm,) — | w,(t)dG(t) the result follows
k 31 1V 0 1

immediately from Theorems 1-3. Q.E.D.
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