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ON ESTIMATING THE NUMBER OF UNSEEN SPECIES:

HOW MANY EXECUTIONS WERE THERE?

P. J. Bickel and J. A. Yahav

1. INTRODUCTION

Our interest in this problem was aroused by the question of how

to estimate the number of distinct executions that took place in South

Vietnam after the takeover by the Hanoi government in 1975.

J. Desbarats of the Institute of East Asian Studies and Karl

D. Jackson of the Department of Political Science at the University

of California at Berkeley provided us with data taken from a sample

of refugees living in Chicago, Orange County and San Francisco:

Table 1

Chicago Orange San
County Francisco

Sample size 98 840 1160
# distinct executions 30 67 36
# distinct executions reported once 24 61 28
# distinct executions reported twice 5 3 7
# distinct executions reported 3 times 0 1 0
# distinct executions reported 4 times 1 0 0
# distinct executions reported 5 times 0 1 0
# distinct executions reported 6 times 0 1 1
# reported executions 38 81 48

On the basis of this data we were interested in estirating the number

of distinct executions witnessed by the total refugee communities in
*
Research partially supported by Office of Naval Research contract
N00014-80-C-0163.
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each of the those locations. Extrapolation to Vietnam is of course

questionable, since the refugee populations cannot be considered as

random samples from the Vietnam population.

The problem of estimating the number of unseen species was

discussed by Fisher, Corbet and Williams in (1943), where a parametric

empirical Bayes model was devised. Good (1953) developed this model

without assuming a parametric family of priors on the parameters. Good

and Toulmin (1956) and Efron and Thisted (1076) aujrentec the Good

approach by constructing better estimators. G2oodman (1949) studied a

version of the problem in which the the total population size is known

and constructed the unique unbiased estimator for the number of species.

Our data differs from that modelled by previous authors in

two respects:

Mi) The bulk of the sample consists of individuals who have seen

no executions. If we unrealistically consider the known text of

Shakespeare, the Efron-Thisted example, as a sample from all his

writings, then every word written corresponds to one (and only one)

type. The obvious lack of independence of successive words of the

text make this assumption unrealistic and renders understandable Efron

and Thisted's unwillingness to pursue distribution theory.

(ii) There are individuals reporting more than one execution,

unlike the species problem where each individual belongs to only one

species. We accommodate these special features in a general sampling

with replacement model in section 2. We derive lower bounds k of

different types to the unknown number k of "executions". These

bounds are readily estimable by simple estimators £. We maintain this
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grisly terminology for convenience since our results of course apply to the

estimation of the number of unseen species. The reason for looking

at estimable lower bounds rather than trying to estimate k directly

are discussed here and in section 2. In section 3 we proceed further

and derive a normal approximation to the distribution of I when the

sample size and k are large, for the simole model in which each

individual sees at most one execution -- the type of model considered

by previous writers but with "nonresponse" permitted. The asymptotic

variance ak of k is hard to estimate but we can find an upper bound
-2 2 -2a2k to a k such that k is easily estimated. Finally we propose

lower confidence bounds of the form k-zl Pk. In section 4 we discuss

the application of our techniques to the Vietnam and Efron-Thisted data.

Proofs for the asymptotic approximations claimed are given in an appendix.

Our results are central limit theorems for sums of functions of the coim-

ponents of multinomial vectors. They are based on work of Stack (1957)

and are related to later work of Morris (1975) although Morris' conditions

seem to fail for the indicator functions that we need to apply them to.

2. SIMPLE LOWER BOUNDS AND THEIR ESTIMATORS

Given the refugee population sizes, we ignore that the samples

were obtained without replacement. The situation can be described as

follows: Let S = {All vectors (1,s2,... ,Ek) of k O's and l's},

tF = a set of probabiilty distributions on S. Let U,,U2,...,Un be

independent and identically distributed according to P E F,

U = (iEl,Ei2,. . ,sik). Let a be a random permutation of {1,2,...,k}

(fixed for all n). Let X = {a(j):*0 =i . Xl,X2,...,Xn are our

observations. The correspondence with the "execution" situation is

the following:

(1) The executions are labelled 1,2,...,k, the sampled

individuals 1,2,...,n.
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(ii) e.. = 1 if and only if the ith individual in the sample saw
13

the jth execution so U. is the record of which executions were seen
1

by individual i, and which were not. U. is of course not observable.
1

(iii) X. is the list of executions witnessed by individual i,

with the "names", the a(j), containing no information about the

magnitude of k.
n

Let N5 = I I{U =si, the number of sampled individuals whose

execution record is s. If 7= P[{s}] is the proportion in the

population of such individuals, then N = {Ns seS} has a multinomial

(n,7rrs;sES) distribution. All statistics we consider are functions

of N which are also functions of (Xl,X2,...,Xn)* In the Fisher et al.,

Good, Good and Toulmin and Efron and Thisted situations (with dependence

between words ignored) this model is further restricted by F making

only s with exactly k-l zeros possible. An observation is exactly

one species or word, and we can replace S by {1,2,... ,k}, N by

(N1,N2,... ,Nk) where N. is the number of times j occurs.

(Nl,N2,...,Nk) has a multinomial (n, l',72'**' rk) distribution. The

observable sufficient statistic is given by {NI(j): N(I) >O}. In

the "simplified" execution problem, the 0 vector is also admitted

and we can replace S by {0,1,...,k} where the outcome 0 means

that the sampled individual witnessed no executions, etc.

We shall refer to this as the simple model.

The total number of distinct executions listed Tn is a natural
n

underestimate of k. If N. = E ei, the number of individuals in

the sample that witnessed execution j, Tn = I I{N>0},
j=l '

k k n-i
E[Tn] = -(l (l-7) ) = I 7 rj(1-r . (2.1)

j=l j=l r=0
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Denote E[T ] by 0 . Then, the bias

00 k
k-E[en] = ITrj_(l j)r (2.2)

r=n j=l

More generally, for m > 1, denote the expected number of distinct

executions listed in a sample of size m, by

k m-l
em =- r-I 7T -T

so en = E[Tn]* Then, as a limit, o, = k and we define 0 =0.
For m < n, em is estimable unbiasedly on the basis of our sample of

size n by the U-statistic,

k m
E0= ( ) I It I s .>0}om m j=l r=l 1r3

the average number of distinct executions listed in subsamples of size

m drawn from the sample of n. So, Tn = Finally, let
n n

A=0~m-l =k m-lAm = 6m -6m 1i I Trj(l-7rj)m m ~~j=l
the expected number of executions seen by the first person in a sample

of size m and no others, which is unbiasedly estimable by Am = 9m em 1

In the simple model, Efron and Thisted and previous writers pointed out

that if n7i. = X., j = 1,2,...,k are moderate and n is large, we

can approximate and simplify the model by taking N. independent

Poisson (x.). This approach is discussed further in Section 4.

PROPOSITION 1. Even in the simpZe model no unbiased estimator

of k exists.

Proof. We can write an estimator 6(NO,N1,... ,Nk) with the

understanding that

6(no,n1,..n.nk) = 6(n' n n 2.3)(2.3)
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if t

are a

k = 1

Hence

k k
= X I{n. >0} = X I{n'. >0} and the nonzeros

j=l i j=1 J
permutation of the nonzeros of n'. ,..,n.

then requires X (n)Tr,(1 _r)n-6(i ni) =k
i=O0

6(i,n-i) - 1. However k = 2 forces

of n. ,...,n.

Unbiasedness for

forall 0< Tr< 1.

li,j (j, Irl r(1-7r 1)n-i-j6(i j n-i-j) = 2
O<i+j<n

for all 0 < -r1, Trr2 and 7r1 Tr2< 1. Hence 2 = 6(i,j,n-i-j). But

(2.3) requires 6(i,O,n-i) = 6(i,n-i) for i > 0, and we have a

contradiction. q.E.D.

Here is our principal lower bound kl. Let

Mr = ( j ilwi)jEl7i(l i)~ = ____k ~ 0k>rrrr j=13 j=1 J A
r

The bias is then, from (2.2), k -n = AAM > A1 I in- =
n I ~~~A 1r=n r=n
n-1 ~~~~~~~~~A

A OM 7(l-Mn)l = A [(1)n1 1-1i1. Our lower bound is1n-I n-ln An[

k1 =0n+AnA1jn-T- 1-l-l =in +n[(Al)-n1]

Evidently kl = k if and only if 7r. 7, 1< j < k. _ can be

thought of as the first in a hierarchy of bounds. Thus,

6 ~k 1Tn:k k
)-

= 0n + min{ I (1)-n I1rri=Al 1 7Tj(-7Tj)n =AnLI n ~j=l = j=l n

0 < ,<1, 1< j < k} . (2.4)

We can similarly define

k
k(- 1,i2' 'ir) = n + min{ I (,_Tr1)n:r n ~~~j=l

k it-1
1 7T j(1-7Tj-) = Ai ,
j=1 J, ,
t =1,2,,,,,r}
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Of course k(l,2,... ,n) is the best of these bounds.

ASSUMPTION A. Suppose that as k -oo, n(k)-*oo and 'wT vary

in such a way that the empirical distributions G n() of nTrl2nr,r2,...,nTrk

converge weakZy to G0(@), a probabiZity distribution on (O,oo).

Moreover, suppose that

n
-:.--, JXdGO(X ) (2.5)

Then,

-T -[ f(l-e )dGQ(X) (2.6)

and

n rXe txdG (x) 0 <_ 27kP[tn]+l < t 1 (2.7)

00

In this case if u{O=tl < t2 <t3<* ** <tr} is dense in [0,1]

lium k k(ti2t2.***9tr) > 1 - jedG (X) (2.8)

+ min{e XdG(x): Xe XtdG(X) =
G O O

fxe'tXdG (X), O<t<l} = 1

since the measure XdGO(X) is uniquely determined by its Laplace

transform on an interval. This suggests that consistent estimators

of fe'XdG (X) can be constructed by choosing r(k)--oo slowly and

estimating k([t1n]+l,[t2n]+1,...,[trn]+1) by k in which

a ,A ,... ,a are replaced by the corresponding
[tln] +1 [ t2n] +1 trn] +1

points from a completely monotone approximation to A [ntl+l (Feller [2],

p. 439).
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Now,

1 Tn + IIN il/n-il- (2.9)
3= j=lj

Calculation of k is eased by noting that for this linear Drogramming

problem only G concentrating on at most r points need be considered.

This approach will be considered elsewhere. It is closely related

to Efron and Thisted's maximization of negatively biased linear

estimators of k.

We analyze only kl and kI further in what follows, but note

several other easily estimable nonlinear lower bounds. Thus from (2.1),

< 1 - (1-0T)- (1el) (2.10)
j=l J

Let k be the integer part of the unique finite root > A1 of:

en= 1 A-(-m a (2.11)

The existence and unicity of such a root and k < k follow from (2.6)

and the fact that g(x) = Onx l1 +(l-Alx)n is convex on [O,Al ],

g(O) = 0 and g(k) < 0. The estimate k2 obtained by substituting

n 1 in (2.11) is closely related to the Petersen-Chapman-Darroch

estimate (see Seber [7]) which solves

§ ~n M.n i-l 1) (2.12)
k~~~~~~~~~

k
where Mi = Ie ij the length of i's list. This estimate is

appropriate if P[Eij=1] does not depend on j though it may

depend on i. Substituting on = E[§n] and E[Mj] = A1 in, (2.12)

leads
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to (2.11). Again k2 = k if and only if Tr.= ir, 1 < j < k.

Another bound is

=3 n j=l1 n (1-A2)

This bound is not comparable to k1, k2 and becomes sharn when k-oo

and all nfr. are small. It gives some insight to see what happens to

k., i =1,2,3 under assumption A. From (2.5)-(2.7) we have

k -
p F(1..eX)dC,(X) + rIXe dG (X) log If' -.1

ox- d x

A~ XdGO JQJo(jdoxi-o)XdG()

A1 1
n XeXdG0(X)

K2
k P

where x= I > 1 satisfies
P2

h(x) = [1 - e dG0(X)]-x + exp[-xf'XdG0(x)] - 1 = 0

k3 e1- dG0(X))^ 4 J xLXdG ( x)

PROPOSITION 2. pj < 1, j = 1,2,3, with equality for j 1,2 if

and onZy if G0 is a point mass. Moreover,

>1' p2 . (2.13 )

Proof. The claim for p1 is equivalent to

Iee dG (X) XdG (X)
r _x - < log -. (2.14)
e dG0(X) - Xe dG0(x)
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Let dQ(X) = e XdGO(X)[eXdGO(X)Jl. So (2.14) is equivalent to

Xe dQ(X)
XdQ(X) < log . We have

XdQ(X)

fXdQ(X)
|feXdQ(X) > fXdQ(x)-e1 (2.15)

which holds by the strict convexity of XeA with strict inequality

valid unless Q is a point mass. (2.14) follows easily from (2.15).

To prove the claim for P2, note that h(O) = 0, h"(x) > 0,

h(oo) = X implies that h has exactly one positive root. Since

h(l) = _feXdG (X) + exD{-fxdG0(X)} < 0 9

unless G is a point mass, - > 1 and the result follows. Finally

I (1-e- x)dG (]2 < f(l-e )2dG0(X) < J 2dG0(X) yields p3 < 1.

To prove (2.13) note that

k
)

k2 < en + I (1 )n = k
j=l '

k
if Tr= A1. Therefore,

j=l
k k

12~Senj=l j=l J 1k2<0e + min{ k (l-lw.)n: jI nl=..A}
< en + min{ I (1-j) 7Tw=/l 7Tlj(l-n) hnn jbl ~ ~ 1ThVl= - n

by (2.4) Q.E.D.

We do not pursue , k3 at this time although the assumptions

that lead to the approximate normality of also lead to normality

of k, i=2,3.
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3. APPROXIMATION TO VARIANCES AND DISTRIBUTIONS OF ESTIMATORS

As we suggested in section 2 we want to make larqe k aDproxi-

mations to the distribution of (k1-k1)//. Embed our situation in a

sequence indexed by s. Suppose that k(s) -*o, n(s) -poo and

k
ASSUi1PTION A. (i) G Cx) = k I{nTrj <x}xl G(x) as

5 k ~~j=l
s oo where

(ii) lim G(x) = 1, lim G(x) = 0,
and x x4O

(iii) sup ft4dG5(t) < 0.
s Jos

LEMMA 1. Under Assumption A, k may be Zinearized asymrptoticaZZy:

K1 -i.1 = i (I{N.=O}-(1-1)n) k ni)k
=l

(I{ =}-( An jI (I{N .=l}I - n7r.(1-'rr.
k12+ Bn I (N.-nfrr) + op(k'112) (3.1)

j=l

where

An =c1 + d c'2 n
An Cn n n n-i

Bn = dn-2.C-2 n
n n nn-

(3.2)
Cn = n(dn-l)

d = (1)1/n-In An

Proof. Write -1 = 9n(g ,nAn nA )n(n n 1)
k = 9

n (nAn nA1)

Taylor expand around ( n,nAn,nAI) and note that the sums above are

s n-en)9 n(^n An). n(^1-A1). The remainder is o (k-
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since under A, the second derivatives of gn are uniforrnly bounded

in n, k in a neighborhood of (On An Ai) and the sums are 0p(k-l/2
by Theorems 1-3 of the appendix. (The centering constants are

easily shown to differ from those of the theorems by o(k 1/2). Q.E.D.

The asymptotic variance of the right hand side of (3.1) is

1 -k{fY[e x(l-e x) +Anxe x(l-xe x) +Bnx]dG(x)

+ xe x[2Anx-2Bn -2A B (l-x)]dG(x)

-C1 rr(A xex(x-l) +B - xe X)dG(x)]2}
xdG(x)L~

An upper bound on a2 is:

a2 kk [(l-e x)+Anxe X+xBn]dG(x) (3.3)

+ xex[2A x-2B -2A B (l-x)]dG(x)

-C1 rt;(Axxe +(x-1)+Bx-xe )dG(x) .

xdG(x)LJn x-/ x

The upper bound of the asymptotic variance can be estimated consistently

using A as follows:

k K(1-ex)dG(x) z I I{Nj>1} = en

kJ x dG(x) Nj MAl

k] xe- dG(x) _ I{NI =l = nAn

(00n

kfx2ex dG(x) Z 2 tI{N =2}
O00 Ji
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An, B can be estimated consistently by using tl and n in thenh n 1ad n
i h

definition of An and B n* All of these claims are consequences of

Theorem 1 of the appendix.

k -k
THEOREM 1. In the simpZe modeZ, if Assumption A hoZds, 1

has as s a-oo a Zimiting nornuZ distribution with mean 0 and 1

variance < 1.

Assumption A is uncheckable as it stands. However, a heuristic

argument suggests an estimable parameter to guide us. For k large

A(ii) suggests that the N.'s are approximately independent Poisson(ni.j)
where niT. < M, j =1,2,...,k. Then max N. should be stochastically

3- j 3
smaller than max N'. where the N' are independent Poisson(M). It

j 3 3
is well known that

(max N'.) log log k
- (1) (3.4)log k p

and the same should hold for max N. Similarly A suggests that 0n(l)
k i 'i P

is not op(l). Since I N is of the order of k, we finally

conclude that the approximations of the theorem are reasonable if
k k 1

a = (max N.)-(log log I N.)[log I N.Y is moderate --not too large
j>l j=l1 j=l

and not too small. Further theoretical and Monte Carlo work is needed

to make this statement precise. It is however notable that for our

data a ranges from 4.7 to 20.5. For the Efron-Thisted data a = 2747.

Although the Steck theory is no longer applicable for the full

model, it seems plausible here too that under suitable conditions, as

n, k+oo the N. behave like (dependent) Poisson nTr variables and

that (n ,nA ,nt ) still exhibit limit normal behaviour. However the
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possibility that two or more executions can appear on the same list of

an individual witness leads to a more elaborate upper bound on the

variance. One has to introduce P(j'jj) as the probability that

execution j' is witnessed by an individual chosen at random given

that this individual witnessed execution j. If P(j'|j) is of the

order of 7Tj or smaller, then formula (3.3) for an upper bound of

the variance of our estimator k does apply. If P(j'lj) for most

(j',j) is of order one, then the calculation of the variances of

EI{I=}N IN. and EV{;Nj>O} become somewhat more involved taking

account of the covariances that can be estimated.

4. APPLICATION OF LOWER BOUND ESTIMlATES TO VIETNAM DATA
AND COMPARISON WITH OTHER TECHNIQUES

Table 2. Lower bounds for the Vietnam data

Chicago Orange County San Francisco

k
Tn= I I{N.>O} 30 67 36

j=l
82 282 88

k 80 210 79
k 53 76 36-3
Er (1 29.9 69.9 27.4

The authors cited in the introduction considered the simple model.
k k -a.

They argued that D = I (l-rr.) may be approximated by e
j=l J=1

where ac. = nrr., for n large. Good (1953) observed that
k -a J k -a. -a.t
I e may be approximated by A(t) = e J(l-e3 ), for t

j=l j=l1
large. A(t) can be interpreted as the expected number of species

that would be seen in an additional sample of size not, and were not

seen in the initial sample. Now A(t) can be expanded as:
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k -a. X +1 a.t
A(t) = e i(I (-) .) (4.1)

j=l i=l

k (c.t) k-a.
and iJ.! *e can be estimated unbiasedly by tl i I{N.=i}.

j=l i=l i

The resulting A(t) can always be defined since JI{Nj=i} = 0 for

i > max(Nl,...,Nk), and it is not hard to see that it is always an

unbiased estimate of A(t). However A(t) becomes unstable as t

grows out of [0,1), the region of absolute convergence of the series

in A. It does not converge as t -+c even though A(t) - A(Xo),

the quantity we want to estimate.

Good and Toulmin (1956) and Efron and Thisted (1976) considered (biased)
estimators based on approximating A(t) by a partial sum in i of a

series obtained by applying a summability method to the original series

(4.1). Efron and Thisted's methods gave what seem to be reasonable

estimates for the number of words Shakespeare knew but did not use.

In estimating A(Xo) their method requires setting two tuning constants,

(i) t. such that A(t) _ A(Xo), and (ii) the number of terms taken

in the partial sum mentioned above. The constants used for the

Shakespeare data applied to ours give substantially lower answers than

ours. On the other hand k1 gives lower results than those of Efron

and Thisted, for the Shakespeare data. This is not surprising since

we expect the M are far from equal in that case. Here is a combina-

tion of the two methods which evades the need for the tuning constants

and yields high values for both data sets. Use A(M) to estimate

A(M) and then estimate the remainder by our method... Formally:

k n(t+l)-l
A(t) = . - (4.2)

J=1 r=n '
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Arguing as in section 2,

D > A(t) +

A n(t+l)
Al. (fn) n-i

An 1/n-1
1 - (nl)A1

and for large n

k

D > A(t) +
-a.

og

Eca.e J

Using our previous estimator and Good's estimator for A(l), we get

D = A(l) +

k 2
( I{N .=l})
j=l i

k XN.
( I N.) log
j=l J VN j=l }

(4.4)

The results are consistent with Table 2.

k D+Tn
~n

Ch i cago 82 82
Orange County 283 287
San Francisco 88 86

Using (4.4) to estimate the number of words Shakespeare knew but did

not use increases our lower bound estimate by almost 300% but still is

only about one-third of Efron and Thisted's estimate.

We finally compare our lower bounds with estimates obtained by a

parametric empirical Bayes method proposed by Fisher et al (1943).

(4.3)
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We assume Trw, j = 1,2,. . . ,k

O<x < 1

i.i.d. with density f(x) = (b+l)(l-x)

and b > O. As k-ooo

k p 1
kjl J b+2

- I Tr(1-7r) n-i
J3

and

(b+l )
b+n+l )b+n)

p _( -
I(b+ni}

Note that

I 7r.(1-ir) n-1
ij 3

I7Ti
3

P, (b+2)(b+l)
(b+n+ )4(b+n) '

Use the method of moments to estimate

k
n I r. ---by

j=l J
k n- 1

n I Tr( 1 fi.)n- by
jJ

k
I N.

j=1 j
k
I I {N.I1}

j=1

b = nr I {Nj=1}/N (1
3 3

I{N3=1 } / IN ) 1

and D by

n1 Nj (b-n(+ ) N) ((6/A)2nj 3 ('b+n+l ) i("b

From our data, we obtain

kj-

b2

(b+n)2

b by

(4.5)

(4.6)
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Table 3. Lower bound and parametric empiricaZ Bayes estimates

Chicago Orange County San Francisco

G/n 3.8265 6.5548 2.4691

D 116 461 84
53 216 52

We see that the parametric empirical Bayes approach yields estimates

that are about twice our lower bound estimates.
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APPENDIX A

We let k, n and the 'r. depend on a hidden index s, so that

as s -÷, n(s) oo, k(s)-oo and ir(s) -O. We suppress the

dependence on s when it is clearly understood.

k
ASSUMPTION A. (i) G (x) = I {nTrj <xl G(x).s k j=l '
(ii) lim G(x) = 1, rim G(x) = 0.

Xxo x-+O

(iii) sup ft4dG (t) < oo

s O

A is a blanket assumption for this section.

Let h: I-- R, where I = {0,1,2,...}, be bounded. Let

N = (NO,Nl,...,Nk) be multinomial (n,wr), Tr = (7rTO,rl....7rk). We

will differentiate between three situations and state corresponding

Theorems 1-3.

1. o , kTro-+o
2. lim IrO > 0, k7rr0o

3. k7ro = 0(1)

Before stating the theorems, we will prove two lemmas.

LEMMA 1. If 7ro 1, thenAlnk O. Otherwise 0 < lim k
0' ~ ~ ~~nn

< k <00
- n

Proof. By A,

k(l'r) k j=j 0ft dG(t)

where 0 < ft dG(t) <O.
O0
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LEMMA 2. Let M = n -No. Then

M t dG(t)

If k7r0 -*o, then

k
M - n IT
- J- -> N(0,1) .

E[M] = j Y lr;- ft dG(t)
k) k j=l Oo

Mar =1
7 0 . dG(t) --+- 0

Hence (2) is proved. To prove the asymptotic normality, we note that
kit0 n(l~~~~~ir0Pit0-*.oo~Nnlf

kfro - o implies that n(l--n ) 7 by (1) and hence -

-

- N(O,1).
k /ni0l-i0)

But M- n~Ij j -(No-n'nTO) which proves (3).

Given N0 let N., j = 1,2,...,k be independent Poisson with

parameter Mui and pj = rrj(1-o- 1 Let

00aretr Iwa(t) = X h (r)e-t (r!)-
r=O
00

r I

wil(t) = I r-h(r)e t (r!)
r=0

2and w(t) = w2(t) - (w1(t))

, a = 1,2

THEOREM 1. If kiro0-+oo and 7ro -*0 then

k
I {h( -) - E[h(N)IN|NO]

crNO,) .~ N(0,1)

(2)

Proo f.

(4)
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where
k

2 k ( Cov(Ni 9h( Nj)N))'
a2(N0) - Var(h(N )IN0)- j( M (5)0 j=l 0M(5

roo~ ~ ' (wl1(t)-tw1 (t))dG(t))
= ktf'w(t)dG(t)- ) + dop(k)

Ft dG(t
k~~~~~~

1 E[h(N.)IN = Iwk(nff,) + op(k/2) (6)

Proof. We establish the correspondence with Steck's theorem 2.2.

All computations are conditional on N0. The conditioning vector Vs
of Steck is one dimensional and lattice given N0.

k k
V = ~N. M I .

S j=l j=l J

The vector U5 is one dimensional

k
US = 1 (h(N.)-E[h(N.) IN])

j=l i

To prove (4) we need to check conditions (ii)-(v), of Steck's Theorem 2.2.

Condition (ii).

k
IVar(Nj INO) -P,

j=1
k
I Var(h(N.)I ) 0

k
We note that I V(N.1N0) = M and by Lemma 2 converges to o. As

j=l tn
for the second term.
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k k = r M t )d(t
I Var(h(N-)IN0) = E w( ) kJw(. )dG (t)

j=l 0 j=l 1

But t -- w(at) is bounded and continuous in (a,t) since h is

bounded. Using (2) of Lemma 2 we get

I w(k pj)M kf'w(t)dG(t) 0 2

since w(t) > 0 for t > 0.

Condition (iii). Argument of Steck's theorem 2.4 shows that (iii)

will hold provided that:

k k
P lim Corr2( N.,N E h(N.)IN0) < 1

j=13 j=l i

im k Var( I h(N.)IN w(t)dG(t) > 0

P lim-Var( INk NO) = tdG(t) > O
j=l i N0 >

( where P lim denotes limit in probability) and
k

im I I{E<nrTj <-} > 0 for some >

j=l E

k M. k M 2
Iel pj) M I Wl ( Pj)

But (7) equals j=l k- j=.l~
M I W(1Mj

(7)

(8)

(9)

Arguing as for (ii), (7) is equivalent to

(f'w1c(t)dG(t) - w1(t)dG(t).ftdo(t)) 1

Ftp (t J
gtdG(t)-| w(t)dG(t)

.1 0
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Let T G and N given T be Poisson(T). The expression in (10) equals

EC[Var(h(N)NT)T)E[Var(NJT) Since h is bounded, h is not linear

in N and hence for every T such that T > 0 we have

ICov(h(N),NIT)I < Varl/2(h(N)fT)Var1/2(NIT)
Hence

IE[Cov(h(N),NIT)]I < E[Var1/2(h(N)IT)-Var1/2(NIT)]
but

E[Var /2(h(N)IT)Var /2(NIT)] < E 1/2[Var(h(N)IT)].E1/2[Var(NIT)]

Since P(T>0) > 0, (7) follows. (8) was essentially proved under

(ii). (9) is immediate by A(ii).

Condition (i'v). Follows from (7).

Condition (v) (Part 1). This reduces to

I2 E[(h(N.) -E[h(N")IN0])4INO] ,-P0, (11)
k j=l

_k4
12jl[N-E E[N INO])1N]0 0 (12)

(11) is immediate since h is bounded while (12) is equal to

k

{Mp + 3(f4)2} tdG(t)+3j t2dG(t))
kj=l 0

Condition (v) (Part 2). This reduces to

E[(N E[N |N ])4|N ] N (13
limjsup k C< o. (13)

j

But (13) equals
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Mu.+3(Mp.)
lim sup k

.

1k< 1 im k .IIT Ji-. {Mij + 3(M-P ) }
3

f';t dG(t) + 3ft2dG(t) < 00
.0

Steck's conditions have been checked and (5) has been proved in check-

ing (iii).

Proof of (6). Note first that if IhI < M so are

Since E[h(N.)IN.] = w (Mu.), we can Taylor expand around nfrS ne [ 33-iIjI1

k
I {w1 (Mj)-wl (nrj) } =

j=l

k
I wi (n7T .)

j=l i (M3j-n3fj)
k 2

+ Op( 3(3M"-n7rj) )

k
= (M-n(l-7ro)) I w'(nrhj)ij

j=| t

~kftw'(t)dG(t)(-n,_flo7I.1)

= 0 (k.((17T- l/2)
p

= o (k1/2)p

since nrro 0-0.

0p(nwo(l-rfo)kn2
The remainder is

) = 0 (1).p

2 k
O ((M - n(I-Tr 0)) I

= Op((krro) 1/2)

2
ll *) =

IJ
Q. E. D.

THEOREM 2. If liM 7T0 > O,

k
jIl 3(N) - w 3(nrj) I
j=ji

~- > N(0,l)

1w"I.

to get

lwl, lw'I and

But

k
jI WI Onj)(MU -nff ) (14)

where

(15)
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k
( I Cov(N.j,h(N.)JIN ))ji=l-jO

M

k 2

+ E( I w1(Mij) -w1(nT ))

(;(w11 (t) - twI (t)dG(t) )2
= K(I w(t)dG(t) - dG(t)

+ J0t dG(t)

+ o(k)

tw'(t)dG(t)
+ 7TrO -

t dG(t)
Jo

Proof. We only used ktro in the proof of Theorem 1 save for

the expression in (6). That term now yields

k k
I {w1 (Mui) -w1(n'rj))} = I w'(n.rj)(Muj-nwrj)

j=l j=l ( i
k (4k)

+ I "nfj-,~P-7j + 0 1 f

By (14)

k 2
E( I w' (n7 .) (MP .-nrr.) )

j=l J J n 7r0(1 -ff) 0Itw' (t)dG(t)A

k7ro 0'*t' (t)dG(t) 2

t dG(t)
.1

Al so

k 2 k(16)

1 w"(n7rj)(Muj-nrr.) = (M-n(l-7ro)) I w'(n7rr)pi (16)
j=l

i
j=l

- (M-n(1-7ro))2 FwI(t)t2dG(t)

= 0 p(1) .

T2(N0) = IVar(h(Nk) IN0j=l
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Fi nal ly,

k f't3dG(t)
E( I IMlj-nTril ) - E (M-n(l-Tr 0))I -

j= k2 r(g t dG(t))3
= O(E3/4(M -n(l-Tr))4 k-2) = O(k- 1/2 ) -

The result follows.

7rT0 Q but k70 = 0(1) then

k
I {h(N.)-W, (niT ) }

j= )wn )
2arn

N(O,1)

a2 = k * * 2
a Var(h(N.)) - -.( I Cov(N.,h(N.)))n j=1 n j=1 3 3

k(w(t)dG(t) -

0,0(-|(w 1 (t) _tw1 ( t) ) dG( t) ) 2

r . . ,If.
Ja

t dG(t)

and the Nj

Proof.

Proceed as

with U5 =

are independent Poi'sson(nirT)

By Lemma 1, rr 0-O implies n'rro = 0(1) and No = (k1/2).
, in the proof of Theorem 1 by applying Steck's theorem

00 00

I (h(N*)-Eh(N*)) and V - X (N!-n7T ). Note that
j=O i Jn itO J i

kk2
1 Var(h(N )) -( I Co'v(N*,h(N'*)))2
j=O
~ ij=O i

- k(f w(t)dG(t)
00

t dG(t)
0

2( 0(wjj (t) -twj (t) )dG( t) )
I

THEOREM 3. If

Q.E.D.

where

(17)

i
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and

h(N*) - E[h(N*)] = o (k1/2)0 0 ~~~p

and Theorem 3 follows. This covers the important case

Finally we shall use

If A hoZds and h is bounded,

k
I h(N.)

k
rf)

0 ww1 (t)dG(t) .
19

Proof. Since k i w1(nTjn) 1w1(t)dG(t)
j=n J T

immediately from Theorems 1~-3.

the result follows

Q.E.D.

COROLLARY.

7T = 0.0 Q.E.D.
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