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1. Introduction. In his famous monograph [1] , Paul Levy states a

result that gives necessary and sufficient conditions for a sum

S = X X. of independent variables to have an approximately normal
jJ

distribution. The only condition imposed is the independence. There are

no negligibility requirements. Levy's statement and the accompanying

arguments have sometimes been criticized as non-rigorous or too vague.

Actually the statement makes perfect sense intuitively and the argument

can be made rigorous. The present paper is an attempt to a rigorous

presentation, following almost exactly the steps indicated by Levy. A

rigorous presentation, for the case where variances exist and converge

to the variance of the limiting distribution, was given by Zolotarev in

[5]. The general Normal case is covered by a paper of Macys [3].

Zolotarev treats a more general problem in [6]. However, the techniques

of proof are different from those used by Levy. Here we consider the

general case. In some lemmas we have used results that are more precise

than those available to Levy in 1937. However, these are inessential

modifications of the main arguments. After some preliminaries, the

theorem is stated in Section 2 below. Section 3 gives the proof of a

number of auxiliary lemmas. Section 4 concludes the proof of the theorem.
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2. Notation and results. Let X.; j = 1,2,... be a finite or

infinite sequence of independent random variables and let S = i X. be
jJ

their sum, assumed to exist if the sequence is infinite. The problem
raised by Levy is to find out conditions that imply that the distribution

-Q(S) of S is close to a Gaussian A(ii,a2) distribution. For this to

make sense one has to introduce distances between distributions. We

shall use two of them: the Levy distance X(P,Q) between the probability

measures P and Q and the Kolmogorov vertical distance p(P,Q).

The distance X(P,Q) is the infimum of the numbers £ such that

-£ + P{(-OO,x-£J } < Q{(-o,x] } < P{(-00,x+El } + E

for all values of x. The distance p is given by

p(P,Q) = suplP{(-Wc,xI}-Q{(-Co,xI}l. The two are related by the inequalities
x

X < p < X+C(X)

where C(X) = min{Cp(X),CQ(X)} with for instance Cp(X) = sup P{[x,x+X]}.
x

We shall be concerned here with conditions that are necessary and

sufficient for approximability of .(S) by A(vi,a2) in the sense of

the Kolmogorov distance. This distance is invariant by one to one

monotone increasing transformations. Hence the size of a is

unimportant. One can standardize and look for approximations by .A(O,1).

We shall often write PQ for the convolution of two measures P and

Q and write G for the Gaussian measure .A'(O,a2).
One of the main results we need is a theorem conjectured by L6vy

and proved by Cramer as follows.
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THEOREM 1.

numbers pisa1,

Pl + =2 0 and

Let the convoZution

i = 1, 2 such that

a2 + a2 = 1.1 2

PQ be L*(O,1) then there are

P (P a2) and Q A'(i2,a2) with

An easy consequence of Theorem 1 is a result proved by Levy in [2].

THEOREM 2. There is a function g on [0,11 to [0,11 with the

fo1lowing properties:

i) 9(6) > 6 and 9(6) decreases to zero as 6 decreases to zero.

ii) If G =A(t0,1) and X(PQ,G) < 6 then there is a G A=(ii,a )

such that X(P,G ) < g(6).

Now consider our sequence {X.} and let {Xj} be an independent

replica of it. Let S' = i Xj and let T = S - S'. According to

Theorem 2 and the bounds between Levy and Kolmogorov distances recalled

above, the sum S will be approximately Gaussian if and only if T is

approximately Gaussian. Thus it will be sufficient to study the case

where the independent variables X. have distributions that are symmetric

around zero.

We shall make that assumption in the remainder of the present paper.

For our next statement we shall need a variant of Theorem 2 applicable

to the symmetric case as follows.

THEOREM 2 '. There is a function f on 10 , 1 ] to [0,11 with the

following properties:

i) f(6) > 6 and f(6) decreases to zero as 6 decreases to zero.

ii) If G =.A(O,l) and P and Q are probability measures

symmetric around zero such that X(PQ,G) < 6 then there is

a a such that for G =cA(O°,a ) one has X(P,G ) < f(6).
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We are aware of results of Sapogov [41 that give bounds on the

function g. However we shall not use these bounds in order to show

that Levy's argument can be carried out without actual knowledge of the

bounds, although the statements would be more precise if the bounds were

used.

THEOREM 3. Let the variables X. be independent symmetricaZZy
2 2

distributed around zero. Let D. = E(1 A x.). Then there are functions

£(6), 0(6), w(6) aZZ tending to zero as 6 + 0 with the foZZowing

properties. Let J be the subset of the integers where D 2 < EW.
Then, if p[.5(S),G1] < 6 one has

i) {PIXj >> 0(6); i EJ} < W(6).
i ~~~~cii) For each j E J there is a Gaussian Ga such that

3

X{P(Pj.Ga.): jejC} < (641)[f(6)
3 J 1i

This Theorem admits a converse. However to get a converse in terms of
2

the Kolmogorov distance one must assume that D0. or something similar
j J

is not too close to zero. Here is such a converse.

THEORE:I 4. Let the X. be independent and symmetrically distributed

around zero. Assume that for some subset J of the integers one has

i ) I{P{ I Xi I > £:}: J} < F,
j

cii) For each j E J there is a ai such that

I{P(Pj,Ga): jeJC} < E.

Let

T2 = y{G2. j ejc} + I{E{E A [Xj]}2: jEJ}
j j i
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Then

p[9P(S) 'G < K T + 2£T Tr

for a certain universal constant K.

The combination of these two Theorems is what Levy had stated in

his own way: In order that Y(S) be close to .A(0,1) it is necessary

and sufficient that i) any term that is not negligible be close to

Gaussian and ii) the maximum of the negligible terms be itself negligible.

L6vy seems to have been thinking of "nonnegligible" as something like

our D2 > e for a fixed E. Hence the number of nonneglibible terms has

tostayfinite. With the condition used here in Theorem 3 that D2> E

the number of such terms may tend to infinity as 6 + 0 . Hence the

stronger formulation in terms of P{p(Pl;Ga): je1cj
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3. Auxiliary lemmas. As stated we assume that the variables X.

are independent and symmetrically distributed around zero. We shall use

a splitting technique described by Levy in [11.

Let (j,rnj,Uj.,Vj) be independent random variables such that

2( i) = 9(nj) and P(Ej=l) = 1 - P(EjO) = a;.. Assume that X. has

the same distribution as Y. = (l-.i)U. + E.V.. The technique consists

in replacing the sum S = i Y. by a sum T = 1(l-ni)U. + i .iV., thus

removing the difference S-T =(ni-i)Uj*
A splitting of X. in this form can be obtained in several manners.

One possibility is to take numbers e. with P{IXil> .} < aj and

.9?(U.) =Y{xjIIXj.I <9e), . '(Vj) =2['XjjXj >oj]. A more refined procedure

would be to take independent variables W., uniformly distributed on

[-1,+1] and write that X. has the same distribution as a certain

nondecreasing function pj(W.) such that wp(-x) = -p(x) for x > 0.

One couldthentake C. = I[IW I>l c-ai] and Z(U.) =.T{XjIIWjI<l-.aj}
and so forth.

LEMMA 1. Let (E.rjT.,Uj.,v) yield a spZitting of X. as described.

Asswne that sup ac. < a and that the U. have symmetric distribution

around zero. Then

p[Y( S ),(T)] < 133ac1/3

PROOF. Take a number T > 0 and let U. = U' + U" where

U' = U. if |U.I < T and U. = 0 otherwise. Let a2= E(Uj)2. The

variance of l(n.-.)Uj is equal to 2Xaj(1-cij)fj3 < 2a(l-a) $j2.

Using Chebyshev's inequality and taking account that
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Pr [I(n, -Ej )Uj 7 O] < 2a(xl -oa)XP [|Uj > T]
j JJj 3

one can write

Pr{ (rijn-Ej. )Uj I >TI} < 2a(1l-a)D2(T)

where D2(T) = I E{l /\ 2 Thus
T

Tu

Pr{IS-T|> T} < 2a(1-a)D2(T)

An application of standard inequalities for Kolmogorov distances and

moduli of continuity yields

p[Y(S),2(T)] < [rs(T)ArT(T)l + 2a(l-oc)D 2(T)

where for instance rS(T) = sup P[x< S<x+TJ. According to Esseen's
x

modification of Kolmogorov's concentration inequalities, one has

rT(T) < 2/2w
(A-)D(T)

Now consider two cases. It

Pr{j(nj-Ei)U 7 0} < 2aD2(0) and

contrary 2aD2(0) > 13al/3, note

tends to zero at infinity. Thus

(l-cz)3D3(T) = 1 . This value

may be that 2aD2 (0) < 13a23. Then

the desired result follows. If on the

that D2(T) decreases continuously and

there is a smallest value T such that

minimizes the expression

2{ T)/FT + c((l -a)D2(T)
t D(va)lu o

the value of the mi'nimum is

4 [21/3 + 2-1/3]Tr 1 /3a1/3 < I 3a1/3
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This completes the proof of the lemma.

Now let us return to the Normal approximation with p[.Z(S),k(O,l)] < 6.

According to the above we also have

p[Y(T),,/(O )I = y < 6 + I13a

Thus we shall work

independent terms

appl ied to the sum

with T instead of

IO-nj) u+ X EijVj
iIEiVj..3 3

S. Note that T is a sum of

Therefore Levy's theorem can be

LEMMA 2. Let y = p[2(T),.A"(O,l)] . Assume 32f(y) < 1

that in the above splitting there is a subset J where the

either identicaZZy zero or such that

Ivj > e = (1 .6){1 + '2 Ilog f()1 }f(Y) -

and assume

V. are

Then E P{jV.I >el} < 4f(y).

PROOF. Let H be a subset of J where IViI >6 and where

r = E ac < ¼ Then, if W = V jeH} one has
JEH J 3

Pr[W=O >1 - X a > 1 - rn and Pr{IWI > O} > 11 ( -a l )

According to the Crame'r-Levy theorem, there is a Gaussian

k(O,a2) = Ga such that X(.!Z(W),G ) < f(y). Since Pr[W= O1 > 1 -n,

such a Gaussian measure must be such that

Ga [-f(y),f(y)] > 1 - r - f(y)

However, here, n + f(y) < ½i. Therefore

Pr[ i WI > e] > -n (1 -pn) one must also have

(1.6)f(y) > a. Since

G { [-6+f(y) e-f(y)] cI > n(l-n) - f(Y) -

CT _
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Using the usual upper bound on tail probabilities, this gives

f(y) + T exp{-12 [O-f(y)] } > p(l-r)7Ti e-f(y) 2

Here 0 is chosen so that

0 - f(y) > (1.6)f(y)/21log f(y)l > v/21log f(yf)l

Thus r(l-r,) < 2f(y) and n < 4f(y), giving the required bound for the

subset H. Now note that 13ac13 < y < f(y). Thus a < Thus

any other element of J could be added to H without violating the

condition n < ¼. It must therefore be true that aj. < 4f(y).
je33J

This concludes the proof of the lemma.

LEMMA 3. Let P be a probabiZity measure such that X(P,G ) < £

for G =A(O,a2). Then p(P,G ) < E 1+-L)a a 2

PROOF. For Ga an interval of length e has a probability at most
1 a

LEMMA 4. Let P1 and P2 be two probabiZity measures. Let

Dj(T) = fA(x)2}dP . Then ID2(T) - D2(T)I < 2P(P1,P2)
/.2

PROOF. Let Pj be the distribution of (T1). Then

p(Pj,P'gP) 2p(Pl,P2). Furthermore, if P' is the distribution of

Yj= 1 A(x1 then p(P",P2) - P(P1'P2) Let F. be the cumulative

distribution of Y . Then EYk = f (l-F1(y)] dy. The result follows.

We shall need another inequality using the Levy distance instead of

the Kolmogorov distance.

LEMMA 5. Let X(Pj,G) < X. Then 22 > Dj(l) - 2X(1+½2X) with
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D2(z) = El A (-j as usual.

PROOF. Let Z be a random variable with Y(Z) = G . Then for

y > X > 0 one can write Pr[Z>y- XI > P[X>y] - X and a similar

inequality for the negative tail of the distribution. Combining them,

one obtains

Pr[IZI+X>y] > P[IXI >y] - 2X

or equivalently, for X2 < v < 1

Pr{[IZI+X]2>v} > P{JA lX12>v} - 2X

Integrating on 10,11 gives

f1PriiIZl+X12>v]dv > JPr{l\AIXI2>v}dv 2X X
O 'O

Integration by parts then yields

EZl++Xl2 > E{lA xI2} - 2x - x

However [|Zj+XJ 2 < 2[IZI 2+X21. Therefore

2EZ2 > E(lAX2) - 2x - 3x2

LEMMA 6. For S = i Xj assune p[Z(S),G] < 6. Fix an £ > 0 and

a t > O. Let

C(t) = I7f2e-X 2/dx

Assume C(t) > 26. Then the set of integers j such that D2(t) > c

has cardinality at most 1 Sr 2
E [C(t)-2612
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PROOF. The concentration sup P[x< S<x+tJ is at most
x

2v2T

4 D7ot)
The result follows.

LEMMA

Let JC(c)

7. Assume 6 < .09. Let E be such that E > 4f(6)1(+2f(6)].

be the set of indices j such that D2(1) > E. Then
3

A = l{p(P.,G ): jEJC(e)} < E f(6) [1+ 1

AZso, for 0 < t < 1 one has

a = sup{P{IXjI > t}: j EJ(e)} < 2
i t

PROOF. The last statement follows from Chebyshev's inequality. The

first one is obtained as a combination of Lenmma 5, Lemma 6 and Lemma 3.
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4. Proof of Theorems 3 and 4. To prove Theorem 3, let

s(6) = [f(6)]16/27. This gives a certain set J = J(s). According to

Lemma 7 and replacing 1 + 1 by , the sum J{P(Pj,Ga ): jEJ }

does not exceed (64)Tr[f(6)11.

Similarly, one can take t2 = (13)3[f(6)]7127. Then

a = sup{PIXjI > (13)32 [f(S)J1 jeJ} < i If(6)]113
j (13)

Thus 13ac/3 < [f(6)MO]9. Let y = 6 + [f(6)]J/9 and let 0(6) be the

maximum of (13)3/2Mf(6)]7/54 and (l.6)f(y){l+V2j1og f(Y)T}. Now

Lemma 2 says that

i{P [ I X * I > 0(6)]: iE J} < w(6) = 4f(y)
j 3-

This concludes the proof of Theorem 3.

To prove Theorem 4, let a2 = Z[a2: ijcI and

I={E[k'AX I: jEJ}. Let V = {X., jeJC}, W = J{X: jEJ}.

Then pWV),G < 1{p(Pj.Ga ): jEJc < s. Also, if Y. = [(AX.]sign X.

and Z = [Y.: jEJJ one will have pLZ(W),ZZ)] < £. Thus it is
j3 _

enough to bound the distance between GT and the convolution of Ga
with 2(Z). For that one can use the procedure commonly employed to

obtain the Berry-Esseen bounds. This will yield the result as stated, since

the distance between GT and Ga convoluted with £'(Z) will take the

form Kel{E(AXA. ) E J} .
j 33

Note that the bound will be usable only if T is large compared

to e. Note also that it would more pleasant aesthetically to use

~2 22(T)2 = a + I{Dj2 jej} instead of the T of the theorem. This can
J i

be done if for instance (T')2 > 2iE. Alternately, one could bound the

Levy distance X 1(S),GTIJ , instead of the Kolmogorov distance.
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