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1. Intr-oduction. In Stone (1985) a variety of parametric,

nonparametric and semiparametric statistical models involving an unknown

function f were discussed with an emphasis on the flexibility,

dimensionality and interpretability of the various models. Also, a

heuristic dimensionality reduction principle was informally introduced.

Consideri in particular, a pair (X,Y) of random variables, where

x = (X1,... ,X) ERJ and YER ; here Y is called a response variabZe

and X1 ,.. .,XJ are referred to as covariates. Let f be a function

such that f(x) is a specific attribute of the conditional distribution

of Y given X = x; f is called the response function. Let f* be

the "best" additive approximation to f. If f itself is additive,

then f* = f. But even if f* differs somewhat from f, f* may be

useful in practice especially because of its greater interpretability.

Consider additive estimates of f* based on a random sample of size

n from the distribution of (X,Y). According to the dimensionality

reduction principle, under suitable smoothness conditions on f* and

appropriate mild auxiliary conditions on the distribution of (X,Y),

the optimal rate of convergence for general J should be the same as

that for J = 1. In the paper cited above a precise result to this

effect was obtained when f is the regression function of Y on X.

Here an analogous result will be obtained in a setup that includes

logistic regression as a special case.

The setup involves an exponential family of distributions of the

form ebl(l)Y+b2(n)v(dy) subject to some restrictions which will be

described in Section 2. The mean V of the distribution is given by

=b3n = -b'(n)/bj(n); correspondingly n = 1(), the function



2

-l

b3 being called the Zink function.

Consider now a model for the joint distribution of (X,Y) in which

X E C = [O,J1J and the conditional distribution of Y given X = x

belongs to the above exponential family with n = f(x); correspondingly

E(YIX=x) = b3(f(x)), x E C. This model is called an exponential response

model in accordance with terminology introduced by Haberman (1977). The

expected log-likelihood for the model is given by

A(a) = E[bl(a(X))Y+b2(a(X))] = E[bl(a(X))b3(f(X))+b2(a(X))]

If f is linear, the model is called a generaZized linear model (see

Nelder and Wedderburn, 1972, and McCullagh and Nelder, 1983). If f is

additive, it is called a generalized additive model in accordance with

terminology introduced by Hastie and Tibshirani (1984).

Let the assumption that the conditional distribution of Y given

X = x belong to the exponential family be replaced by the weaker

assumption that E(YIX=x) = b3(f(x)) for x E C. The resulting model

is called a quasi exponential response model in line with terminology

introduced by Wedderburn (1974), and A(*) is now called the expected

quasi log-likeZihood function. If f is additive, the model is called

a quasi generalized additive model.

Consider now a quasi exponential response model. Let f* be the

best additive approximation to f; that is, the additive function having

the maximum possible expected quasi log-likelihood. The purpose of this

paper is to verify that under suitable conditions, the dimensionality

reduction principle holds for estimation of f*; and that the optimal

rate of convergence can be achieved by a natural and practicable estimate
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involving the use of maximum quasi likelihood to fit an additive

spline.
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2. Statement of Results. Consider an exponential family of the

form e v(dy), where the parameter n ranges over R . Here

v is a nonzero measure on R which is not concentrated at a single

point and

bl (r)y+b2(n)
fe v(dy) = 1 for -c <n < Xo

The function b is required to be twice continuously differentiable

and its first derivative b1 is required to be strictly positive on R

Consequently, b1 is strictly increasing and b2 is twice continuously

differentiable on R. The mean V of the distribution is given by

= b3(n) = -b'(n)/b'(n). The function b3 is continuously differentiable

and b is strictly positive on R ; so b3 is strictly increasing on

R. Given any positive constant ni0 there are positive constants t

and M such that

fety bl (n)y+b2(n)v(dy) < M for Int and itt <

Finally, it is required that there be a subinterval S of P such that

v is concentrated on S (i.e., v(SC)=O) and

(1) b"(n)y + b (n) < 0 for n E R and y E S

(If b' = 0, then (1) holds automatically.) It follows from (1) that

(2) b"(n)b3(no) + b2(n) < 0 for n, nO E R

Although (1) seems quite restrictive, it and the other requirements

mentioned above are satisfied in most of the familiar exponential families,

including the following five examples (see also Wedderburn, 1976).
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EXAMPLE 1 (NVorrnaZ). The normal distribution with mean 1. and fixed

variance a2 is of the required form with b (n) = n/a2, b2(n) = -n /2a

and S = R. Here b3(n) = n and b 1 =

- EXAMPLE 2 (BinomiaZ-Zogit). The Binomial distribution with

parameters n0 and Tr, with 0 < Tr < 1, is of the required form with

= n, b2(n) = -nO log(l+en), and S = [O,n0]. Here

b3(n) = noeT/(l+er) and b"1G() = log(U/(n0.-)) = logit(u/n0) = logit(w).

EXAMPLE 3 (BinaiaZl-probit). The Binomial distribution from

Example 2 can also be put in the required form with j = b3(n) = no0(n)
and n = b 1(j) = D1 (v/n ) = F 1(7r), o being the standard normal

distribution function. To do so, take b1(n) =

b2() = n0 log(l-4(n)) and S = [O,n01.

EXAMPLE 4 (Poisson). The Poisson distribution with mean , > 0

is of the required form with b1(n) = , b2(n) = -en and S = [O,o).

Here 1i = b3(n) = en and n = b1 (V) = iog(v)4.

EXAMPLE 5 (GCnaa). The gamma distribution with parameters a

(fixed) and X is of the required form with bl(n) = -e , b2(n) = -an

and S = (O,). Here V b3(n) aen and n = b31() = log(li/ct).

Geometric and other negative binomial distributions can also be

put in the required form.

Let (X,Y) be a pair of random variables, where Y E 1R and

X = (X1,...,X ) ranges over C = [IO,11.

CONDITION 1. The distribution of X is absolutely continuous and
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its density g is bounded away from zero and infinity on C.

The conditional distribution of Y given X = x is not required

to belong to the exponential family described above, but the following

conditions are required to hold.

CONDITION 2. Pr(Y E S) = 1 .

CONDITION 3. E(YIX=x) = b3(f(x)), x E C, where f is bounded on C.

CONDITION 4. There are positive constants t0 and M1 such that

E(etYIX=x) < M1 for It| < to and x E C.

Let A denote the collection of additive functions a on C such

that EIa(X)I < =. Each a e A can be represented in the form

(3) a(x,.. ,xj) = a0 + j1 a (Xj)

where Ea.(X.) = 0 for 1 < j < J. Clearly a0 = Ea(X) . It follows

from Lemma 1 of Stone (1985) that under Condition 1 the functional components

ail 1 < j < J, are essentially uniquely determined (i.e., uniquely

determined up to sets of Lebesgue measure zero); and there is at most

one continuous version of each such function. If a is essentially

bounded (i.e., bounded except on a set of Lebesgue measure zero), then

so are its functional components.

Let A(-) denote the expected quasi log-likelihood function, defined

by

A(a) = f(b1(a(x))b3(f(x))+b2(a(x))Jg(x)dx

It follows from Lemma 1 in Section 3 that - < A(a) < Xo for a E A.
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The following theorem will be proven in Section 3. Here aZmost everywhere

means except on a set of Lebesgue measure zero.

THEOREM 1. Suppose that Conditions 1 and 3 hold. Then there is a

function f* E A such that A(f*) = max AA(a); f is essentially

uniqueZy determined and essentiaZZy bounded. If f E A, then f* = f

almost everywhere.

The function f* from Theorem 1 can be represented in the form

f*(xl , * *.,x = f* + 1 f. (x.)

where EfJ (X.) = 0 for 1 < j < 3.

Let q be a nonnegative integer, let y E (0,11 be such that

p = q + y > .5, and let M E (0Oo). Let H denote the collection of

functions h on [0,11 whose qth derivative, h(q)', exists and satisfies

the Holder condition with exponent y:

jh(q)(t.)-h(q)(t)j < M2jt'-tly for 0 < t, t' < 1

CONDITION 5. f*. E H for 1 < j <J.

Let N denote a positive integer and let Inv' 1 < v < N, denote

the subintervals of (0,11 defined by Inv = [ (v-l)/N,v/N) for 1 < v < N

and InN = [1-N 1,l]. Let q' and q" be integers such that q' > q

and q' > q" >-1. Let SN denote the collection of functions s on

[0,1 such that

(1) the restriction of s to Inv is a polynomial of degree q'

(or less) for 1 < v < N;
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and, if q" > 0,

(ii) s is q"B times continuously differentiable on [0,11.

A function satisfying (i) is called a piecewise polynomial; if

q' - 0, it- is piecewise constant. A function satisfying (i) and (ii)

is called a spline. Typically, splines are considered with q" = q - 1

and then called linear, quadratic or cubic splines according as

q= 1, 2 or 3.

Let (Xl,Yl), (X2,Y2),... denote independent pairs, each having the

same distribution as (X,Y) and write X as (X1l,...,x3j). Consider

the random sample (Xl,Y1),...,(XnYn) of size n. Let An denote the

collection of functions a on C of the additive form (3) where the

functional components a., 1 < j < J, are such that a. E SN and

n a.(X..) = 0; here N is a positive integer. A function in A

is called an additive spline.

Let Qn(a) = Zl'[bl(a(Xi))Yi +b2(a(Xi))1, a E A, denote thi quasi

log-likelihood function corresponding to the random sample of size n.

if
n E

n and n(fn)= maxaEA Zn(a), then fn is called the mazsimmnn
quasi ZikeZihood additive spZine estimate of f*. It follows from Lemma 14

in Section 4 that under Condition 1 and the condition on Nn in Theorem 2

below, except on an event whose probability tends to zero with n, fn
exists and has a unique representation in the form

f (X'goosxJ) fno + .(x.) with 1l fnj(Xij) = 0 for 1 < j < J.n I J) fn + 1' nj 3

The estimate f of f* can be implemented numerically usingn

B-splines (see de Boor, 1978, and Section 4) and GLIM (see Baker and

Nelder, 1978). Hastie and Tibshirani (1984) introduced a different additive

fitting technique which involves a "local scoring method" and "running

line smoothers." Through a number of examples involving real data, they
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demonstrated the usefulness of the resulting procedure in uncovering

nonlinear covariate effects. In this connection see also Hastie (1984).

The rate of convergence of fn to f* will now be determined.
-~~~~~~~~~

To this end, given positive numbers an and bn for n > 1, let

an bn mean that an/bn is bounded away from zero and infinity.

Given random variables Zn' n > 1, let Zn = Opr(bn) mean that the random

variables bn1Z , n > 1 are bounded in probability or, equivalently, thatn n _

lim limsup Pr(IZnl> cbn) 0

also let Z = o (b ) mean that the random variables b1Z1 convergen pr n n n

to zero in probability or, equivalently,, that

l im Pr( IZn>> cbn) = 0
nn n

for all c > 0

Let IkpII denote the L2 norm of a function

1101= E4 (X) If2(x)g(x)dx. For 1 < j < J
2 ~C

L norm of a function h on [0,1] , defined by
2= 2 =rl 2lihl= Eh (X.) J h (x.)gj(x)dx. . Here gj3 0 i 3

of X. It follows from Condition 1 that gj is

and infinity on [0,11.

Set y = l/(2p+l ) and r = p/(2p+l). Given

m, set rm = (p-m)/(2p+l). The proof of the next

in Section 4.

let

on C, defined by

lihil . denote the

is the marginal density

bounded away from zero

a nonnegative integer

theorem will be given

THEOREM 2. Suppose that Conditions 1-5 hod and that n nY.

Then

(fnC-f0)= Opr(n 2r
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llfm) f*(1)12= 0 (n 2r for 0 < m < q and 1 < j < J

and

2= (n-2r)
11fnf i2 0pr n )

The rates of convergence in Theorem 2 do not depend on J. It is

clear from the results in Stone (1982) for J = 1 that these rates

(except possibly that for fnO) are optimal. Thus the dimensionality

reduction principle is valid for the generalized additive models and

their extensions considered here.



3. Proof of Theorem 1. Throughout this section it is assumed that

Condition 1 holds and that f is bounded.

LEMMA 1. Given T > 0 there exist C >-O and A > 0 such that

lnb3(nO) + b2(n) < A - Elnl for 1n01 < T and n E

bl(n)b3(no) + b2(n) < A - slbl(n)l for InoI < T and n E R

and

b )b3(nl) + b2(n) > (1+A)(bl(n)b3(no)+b2(n)) A2

for Ino0 < T, Irl < T and n E 1.

PROOF. Set T. (n) = bl(n)b3(n0) + b2(n) Then T' (n) = 0 and
b'(nb3(0) 3(,O 1')-nIF"(n) = bl" (n)b3 + b"(n) < 0 by (2). Since b", b2 and b are

continuous, there is a 6 > 0 such that T" (n) < -d for Ino0 < Tno
and In! < 2T. Consequently, T' (n) < 'Yn (2T) < -6T for n > 2T and

Tn (n) > ST for n < -2T. Therefore T'n(r) nV (2T) (n
00 0

n > 2T and T'(n) ' no(-2T) + 6T(n-2T) for n < -2T. The first

result follows easily from these two inequalities. The second result

follows from the first result, since bI is continuous and strictly

positive on R. (Replace nO by nO ± 1 in the first result.) The

third result follows from the second result.

Let T now be an upper bound to f on R. It follows from

Lemma 1 that

(4) A(a) < A - sJiaig, a E A

LEMMA 2. Let Z be a random variable having mean zero. Then

EIZI <2EIu+ZI for aZl u E R.

PROOF. Let Z+(Z-) denote the maximum of Z(-Z) and 0. Then
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Z = Z- Z and IZ| =Z + Z, so EZ+ = EZ = EIZI/2. If u > 0,

then Iu+ZI > Z and hence E|u+Z| > EZ = EIZI/2. Similarly if u < 0,

then EIu+ZI > EIZI/2. This yields the desired result.

Let v and V denote positive constants such that v < g < V on

C. Then v < g. < V on [0,1] for 1 < j < J.

LEMMA 3. Let a E A. Then

JajaI < 2V (A-A(a)) for 1 < j < J

PROOF. According to (4), J'aig < (A-A(a))/e. Let 1 < j < 3.

By the definition of A, there is a u e 1R such that

Iu+aj I Jlal <-J lalg < A-A(a)

Consequently by Lemma 2,

flaj I <- laj igj ' v lu+ai 1g. < 2v ||u+a. t < 22 (A-A(a) )

as desired.

Let 1111t denote the L norm (supremum) of q.

LEMMA 4. Let M3 be a real constant. Then there .'s a positive

constant M4 such that the folZowing holds: If a E A and A(a) > M

there is an a e A such that A(a) > A(a) and IIiII < M4.

PROOF. In the following argument, M4. M5,... denote unspecified

positive constants which can be defined in terms of M3, v, V, A, e and J.

Choose a E A with A(a) > M4. It follows from Lemma 3 that

I Ii a (x ) ig(x) dx2 i i 2 " " "dXj < M5 .
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According to the definition of A(a), there is an x 9O,1J such

that if u= a + a1(x1), then

(5) -f[bl(u+Ea2(x ))b3(f(71 ...,x3)) + b2(i+12 a (x ))J

g(x1 * * * txi) dx2. dxJ > A.(a)

Consequently,. by the first conclusion of Lemma 1

JA-eIu£1+ 2 aj(xj)1]g(x1 ... xj) dx2 .dx i > A(a)

and hence ju| <M6. It follows from (5) that

(6) r[b(u+z3 a.(x.))b (f(X S*. xj)). + b (W+Z a.(x.)) - AlIJ'+12 333 1 32233

g(Tx .-..,x3) dx2 ..dx3 > -MI7

Acc.ording to the first conclusion of Lemma 1, the quantity in brackets

in (6) is nonpositive. Thus by Condition 1,

[bl(U+ 2 a(x)))b3(f( 1,.. xj)) + b2(i+ 2 a.(x.)) - A]

g(x) dx2.2 dx3 > -M8

and hence, by the third conclusion of Lemma 1,

b1(u7+1 ai(xi))b3(f(x)) + b2(u+Y2 ai(xi))]
g(x) dx2.. .dx3 > -M

Observe that if Ia0+al(xl)I > M10, then

f[bl(a(x))b3(f(x))+b2(a(x))]g(x)dx2. ..dxj < -Mg

Define a on R by al(xi) = a0 + a1(x) if la0+a 1(x1)j < M
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and a(xl = u otherwise. Write a (xl aO + a, (xl), where

Ja11 = 0. Then ja0+a1(x)j <MHl for x E [(0,11 and hence

(7) - l0IaO _- M11

and Ila1il1 < M12. Also, if a is defined by

a(x .... = + (x + j a (x.)

then

(8) A(a) > A(a)

By similarly modifying ai, 2 < j < J, we obtain a E A where (7) and

(8) hold as well as

(9) Ila <i1' M12 for 1 < j < 3

By (7) and (9), 1i1all < M4. This completes the proof of the lemma.

LEMMA 5. Given a positive constant M4 there are positive constants

M5 and M6 such that if a. E A ard lla.iI0 < M4 for j1,2, then

2 d2 2-M511a1-a211 < A(ta1 +(l-t)a2) < -M611al-a211 for 0 < t < 1
dt

PROOF. Since

d2 A(ta1+(l-t)a2) = f(a1-a2)2(bi(ta, + (1-t)a2)b3(f) + b2(tal + (1-t)a2)]g

the desired result follows from (2) and continuity.

PROOF OF THEOREM 1. It follows from (4) that the numbers A(a),

a E A, are bounded above by A. Let L denote the least upper bound of
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these numbers. Let ak9 k > 1, denote a sequence of elements of A

such that limk A(ak) = L. By Lemma 4 it can be assumed that

lIakII < M4 for k > 1. It now follows from Lemma 5 and the definition

of L that Ilak-ak-alt -* 0 as k, k' -' Xo and hence that tlakCf II + 0

for some essentially bounded function f*. By Lemma 1 of Stone (1985),

f. can be chosen to be in A. Clearly A(f*) = L. Suppose that f E A

and A(T) = L. It follows by an argument similar to a portion of the

proof of Lemma 4 that f is essentially bounded and hence from Lemma 5

that IIf-f*I1 = 0. Thus f is essentially uniquely determined. Observe

that, for nO E R, the function T on R defined by

T(n) = b1(n)b3(n0) + b2(r) has a unique maximum at n = nO. The last

statement of the theorem is a simple consequence of this observation.
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4. Proof of Theorem 2. Throughout th.is section it is assumed that

Conditions 1-5 hold and that Nn nY.

LEMMA 6. Let M4 be a positive constant. Then there are positive

constmts M7 and M such that

-M7Ia-f*II2 < A(a) - A(f*) < -M8IIa-f*1I2

for alZ a E A such that lall._ < M4

PROOF. Given a E A with llallt < M44 set a(t) = ta + (l.t)f*. Then

d A(a(t))I = °

and hence

A(a) - A(f*) = f(1-t) d2 A(at)
O dt

Since llf*hl < c, the desired result now follows from Lemma 5.

LEMMA 7. There is a positive constant Mg such that

hIall.. < M9NhIlahl for n > 1 and a E An

PROOF. In this proof it can be assumed that Jajgj = 0 for

1 < j < J. Observe that

iatll fa g= aO + (1 ai(x ))2g(x) dx

By Lemma 1 of Stone (1985) there is a positive constant MlO such that

1(I1 aj(x ))2g(x) dx > M1 J a2

Let 1 < j < J. By Lemma 11 of the same paper there is a positive constant
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M1 1 such that

xsEuIp laI(x)I < MM11Nn ajgj < MllNn fa g

for 1 < v < Nn and hence Ila. 112 < M 1Nn [ajg. The desired result

follows from these observations.

According to (4), Lemma 5, and the definition of An' there is a

unique f* E A such that A(f*) = max A(a).n n n aEAn

LEMMA 8. IIf*f*Il2 = O(Nf2P) and IIf*-ff*I N=n hn n co n

PROOF. By Lemma 5 of Stone (1985), a result due to de Boor (1968), and

Condition 5 there is an fnf An such that Ilfn`f*II < M0N-P; here M

is some positive constant. Consequently lfn-f*112 < M2N-2p Thus by

Lemma 6 there is a positive constant M11 such that

(10) A(f) A(f*) >-M41N-2P for n > 1

Let c denote a large positive constant. Choose a E An with

IIa-f*112 = cN 2p. Then IIa-fnI 2 < 2(c+M 2 )N 2p Now p > .5 so by Lemma 7,

for n sufficiently large, ltlallo, < IIf*li + 1 for all such a's. Thus by

Lemma 5 there is a positive constant M12 such that, for n sufficiently large,

(11) A(a) - A(f*) < -M cN-2 for all a G A with lla-f*11 =cN12 n n n

Let c be chosen so that M12c > MH. It follows from (10) and (11)

that, for n sufficiently large,

A(a) < A(f ) for all a E A with IIa-f*112 = cN"2pn n n
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Therefore, by the concavity of A as a function of the parameters of a,

IIf*f*II2 <cN 2p for n sufficiently large. This verifies the firstn n

conclusion of the lemma. Observe that lf*-f*..f2 = O(N 2p) and hence byn n n

Lemma 7 that IIfn*fnIf = o(j.5 P). Consequently, 1 n*-f*ll,, = O(N-5-p),n n00 n n ~00 n

so the second conclusion of the lemma is also val'id.

The next result follows from Conditions 3 and 4 (see the proof of

Lemma 12.26 in Breiman et al., 1984).

LEMMA 9. There are positive constants M10 and M11 such that

t(Y-b3(f(x))) 2
E[e |X=xI < 11 for xjr C and tJ <Mo

This lemma will be used to verify the next result.

LEMMA 10. Given s > .5/(2p+l), c > 0 and £ > 0, there is a

6 > 0 such that, for n sufjficientZy large,

Pr( n(a*n(f)_ (A(a)-A(f*)) > n-2) < 2e-n

for aZZ a E An with lla-f*ll = cn s.
n ~~~n

PROOF. Observe that

9.n(a) = In[bl(a(Xi))Yi+ b2(a(Xi))]

= 1n[b1(a(X.))(Y - b3(f(Xi))) + b2(a(X ))+ bl(a(X1))b3(f(Xi))]
Consequently

In(a) - Qn(fn) - n(A(a) -A(f*)) = In[B1(Xi)(Yi-E(YIXi))+B 2(Xi)J
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where

B,(x) = b,(a(x)) - b (fn(x))

and

82(x) = b2(a(x)) + b,(a(x))b3(f(x)) - A(a)

- (b2(f*(x))+ b (f*(x))b3(f(x))- A(f*))

It follows from Lemma 9 that if ItB1(x)l < M1O, then

E[etB(x)(Y-E(Y1X=x)) IXx] < 1 + Ml t2B2(x)

and hence

t(Bl (x) (Y-E(Y X=x) )+B2(x)) 2 2 tB(2(x)
E[ e IX= XI < (l+M11t Bl(x))e

Thus if t2(B2(x)+B2(x)) < M12, then

t(Bl (x) (Y-E(Y | X=x)+B2(x)1) + 2 2 2Ele X=xl < I + tB2(x) + M13t (B1(x)+B2(x))

(Here M12, M13 ... etc. are unspecified positive constants.)

Since EB2(X) = 0 it follows that if t2(11IB2+IIB2II < M12, then

t(BI (X)(Y-E(Y|X))+B2(X))

Consequently, if

M t2f(B2+B2)g
< 1 + m 2B) <

13 1
- 13J1 2

t2 (1I1 II:2+IIB211 2) < M1 2n2, then

tZn (a)
Een

M1 3t2J(B2+B2)g/n

where
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Z (a)-9,(*
z (a) = (f)n n (A(a)-A(f*))n ~~~n

Set sO = s - .5/(2p+l) > 0. Suppose now that a E An with

Ila-f*iI = cn s. Then lIa-fn*I.I < M14n0° by Lemma 7 and hence

2Bti + 112I1 < M n and r(B2+B2)g < Mn2s. ThereforeB1 I0 2I~ C* 15 j12) < 16

Een (a) M17t2nn-2s

if It < M18n °. It follows easily that if e/2M17 < M18n °, then

Pr( I Zn(a ) I > e n-2s) < 2e-6nl 2

where 6 = s2/4M This completes the proof of the lemma.17'"

It is a consequence of Conditions 3 and 4 that n 1ZlnjlYi-E(YilXi)l is

bounded in probability and hence that the following result holds.

LEMMA 11. Given £ > 0 and M12 > 0, there is a 6 > 0 such

that, except on an event whose probabiZity tends to zero with n,

n
(a2 ).Zn(a 1) 2s
|n2nn 1 _ (A(a2)-A(a1)) < £nE2n2

for alZ a1, a E A with Ila1II,, < M12, Ila211 < M12 and I1a1a2 I < 5n 2

It is convenient to define the "diameter" of a subset B of An
as sup{lla1-a211,,: al,a21B}. The next result is an obvious consequence

of Lemma 7 and the definition of An

LEMMA 12. Given c > 0, 6 > 0 and s > .5/(2p+l) there is an

M > 0 such that the following property is valid: {aEAn:IA a f-II =cn s}13 ~~~MN log n n n
can be covered by O(e 13 n ) subsets each having diconeter at most

;4-2s
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The next result follows from the analog of Lemma 6 with f replaced

by fn* and Lemmas 10-12. (Note that 1 - 2s > y if s < l/(2p+l).)
n

LEMMA-13. Let .5/(2p+l) < s < l/(2p+l) and c > 0 be given. Then,

except on an event whose probability tends to zero with n,

n(a) < Qn(f*) for aZZ a E A such that IIa-f *1I = cns
n n.n n

The next result follows from Lemma 13 and the strict concavity of

A on {aEA : IIa-f *I <cn s}.n n

LEMMA 14. The maxinwn quasi likeZihood additive spZine estimate

fn of f* exists and is unique, except on an event whose probabiZity

tends to zero with n. Moreover, lhf .f*II = 0 (n5s) for s < 1/(2p+l).n n pr

There is a basis BnT 1 < T < Tn, of SN consisting of B-splines
n

(see Chapter IX of de Boor, 1978). Here Tn < M14Nn, where M14 000

are positive constants. These functions are nonnegative and sum to one

on [ 0,11 . Also each Bnt is zero outside an interval 3nI of length

at most M15N 1 whose end points are in {O,Nn1 ,...,l-NQ,l}. If

1 < T, O < Tn and 15-TI > M16, then Jn and Jn6 are disjoint.
Tn

If s b B E SN , then

n

lb I2 < M17 supJ s < M 8Nn f35

(see page 155 of de Boor's book and Lemma 11 of Stone, 1985). Consequently

(12) M 9NQ TIn b2 T< Jljn b B 12 '11nn 219n11b .fiz nTBn M20QN~n bT

Set Kn = JTn let AnkX 1 < k < Kn, be, in some order, the

functions defined by Ank(x) = BnT(x.), and write Ank as Ak for short.
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The An's span An, but they are not a basis of A since 1 can be

represented in J linearly independent ways as a linear combination of

the A's. Given a K dimensional column vector s = (03) set

a, = i $A. Then aa = A. Let a* = (ank) be such that1 k k a/3k k" n nk esc a

fn =ln nkAk
It is convenient to write Q (a) as (a). Observe that

n ~~~n

(13) ni =Z[Ab(X)Ibj(a (Xi) )Y +b'(a(Xi))A
and

2t
(14) a =$' Ak(Xi)Ak (X )[b7(aa(Xi))Yi+b2(aa(X ))]3k3k 1 22 1

12~~~~~~~~~~
Let Xn = (Snk) be such that fn = 1n nkAk. The maximum likelihood

equations for n are

an
(B ) =°0 for 1 < k < K

k n - n

In light of Taylor's theorem, these equations can be rewritten as

(15) C (n n*) = -DQ 0*)

where

c JOD 2z(*+t(i-a*)) dtn j n n n n

Here D2 n(8) is the Kn dimensional vector of elements atn()/aak
and D29(8) is the K x K dimensional matrix of elementsn n n

a2n(s)/a3k 8k2n k~1 k2
Let * and denote the usual inner product and corresponding

norm on R. It follows from (15) that



(16)

It will be shown

(17)

and that n

ns) cn(n =n *nnn

shortly that

jDZ (a*) 12 = 0 (n)n n pr

and Sn can be chosen so that (for some positive constant

M )

(18) ( s'n) * C (S *-6) < M N-1, B *n n n n- n 21Nn nS 5n-n

except on an event whose probability tends to zero with n. It follows

from (16)-(18) that

I6r_S*I2 = 0 (N2/n)

and. hence from (12) that

(19) iIn fnil2 = 0pr (Nn n) = Opr ( 2r

It now follows from Lermma 8 that

(20) I*l2=02( -2rin- f 1 = pr(n
Let f* be written in the formn

n*( 1 ..sXj) = f + Zj f*1(x )

where ff*gj = 0 for 1 < j < J. It follows from Lemma 8 together with

Lemma 1 of Stone (1985) that

(21) II* f*.112 =0( rIlfnj j-jII= 0pr ) for 1 < j < J

(f*~f*)2 = 0 (n 2r)
n C pr

23

(22)
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and ^

(23) n1 f* (X ) = (nCrC2) = op(n r) for 1 < j < J.(23) ~~ Li njiji pr pr -

Let fn temporarily be written similarly as
n~~~~~~~~~~~~

(24) fn(XI .,xJ) =fnO + 1Z fnj(xj)

where fnjIj = 0 for 1 < j < J. It follows from (19) and Lemma 1

of Stone (1985) that

(25) 1fnj-fn* illi2 = 0 pr(n2') for 1 < j < J

and

f 2 2r)(26) C~~ ~~~~f )20 n(26) (^no- no) pr(n~ )

Choose £ > 0. It follows from Lemma 12 of Stone (1985) that

(l In ; ff* 2 ((n\i~
nL njijni(fnj'' = " nj nj pr n

2r)
= pr(n

and hence from (23) that

(27) n x = pr(n~) for 1 < j < J.n fninJ'i' p

Let fn be rewritten in the form (24) with

n 1 fn(X =0° for 1 < j <3.

It follows from (27) that (25) and (26) continue to hold. It follows from

(21), (22), (25) and (26) that
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(l=2 0 n(-2r) for 1 < j < J(28) Itf3njf1 pr- -

and

(29) (f *)2 = 0pnrn2r
It follows from (28) and Lemma 8 of Stone (1985) that

-2rm(30) 11fyI(f )(m)1 2 = 0 (n m) for 0 < m < q and 1 < j < Jn,j jj pr

Formulas (20), (29) and (30) together constitute the conclusion of

Theorem 2.

It remains to verify (17) and (18). To verify (17) note that

EAk(X)[bl(f*(X))Y+b2(f*(X))] 0

Consequently,

*(62= jn E{¶n A2(Xj)be(f*(X\\Y+bI,f*(Xt1}2EIDZn n =I Ei '1 Ak(X)i l(fln(Xi))Yj+ib2(fni(Xi))]

= Kni1 E{Ak(XI)tbl(fn(x))Y +b2(f*()(X.)]}K= 1n Zln E{A (Xi)[b1(f*(XY+b bf(fX)) X22

M22nl Kn E{Ak(X) }

by Conditions 3 and 4, Theorem 1 and Lemma 8. It follows from the

properties of B-splines that EA2(X) = E B2 < M N l and hence thatk(X n~r( _ 23 anneceta
*2EIDQin(0n)I < M24n. Therefore (17) holds.

Finally, (18) will be verified. According to Conditions 2 and 3 there is

a compact subinterval S0 of S such that E(YIX=x) e So for x E C.

Choose e > 0. It now follows from Conditions 2 and 4 that there are
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subintervals S1 and S2 of S such that S. is closed and bounded on

the left, S2 is closed and bounded on the right and Pr(YeS1lX=x) > C

and Pr(YES21X=x) > e for xEC. Given n > 0 set

S3 = (yES: bj'(Tn)y + b2(n) < -e for In I <KnO}e

Then £ can be chosen sufficiently small so that

(31) Pr(YES3jX=x) > for x E C

By Theorem 1, Lemmas 7 and 8, and (20), nO can be chosen so that

(32) lim Pr(lIf*il <no and ii ii <
n ~~ o ln ,,n0)T = 1

Set In = {i: l<i<n and Y1ES3}. It follows from (14) and (32) that,

except on an event whose probability tends to zero with n,

(33) a *D c a < ai S(X)n - n

Let S =a ) (b1) so that a (x) = i a .(x.), where

a5 (xj) =Tn b. B (x.). Let a now be chosen so thatai- 1 j-L n-r j

(34) Zi a5 (Xij) =0 for 2 <j < J

It follows from (12), (31), (33), (34), Lemma 12 of Stone (1985) and an

extension of Lemma 3 of the same paper that, except on an event whose

probability tends to zero with n,

2 ~ ~~J 2
aza2(X) > M25 11 11 a j(X ii)

> M 6n 7, Ila llj

> M27nN |1 227n
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Therefore (18) holds if 3n and Sn are chosen so that a = Sn - N
satisfies (34). This completes the proof of (18) and hence that of

Theorem 2.
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THE DIMENSIONALITY REDUCTION PRINCIPLE

FOR GENERALIZED ADDITIVE MODELS1

By Charles J. Stone

University of California, Berkeley

Summary

Let (X,Y) be a pair of random variables such that X =(XI,...,XJ)
ranges over C = [0,1]J* The conditional distribution of Y given

X = x is assumed to belong to a suitable exponential family having

parameter n EIR. Let n = f(x) denote the dependence of n on x.

Let f* denote the additive approximation to f having the maximum

possible expected log-likelihood under the model. Maximum likelihood

is used to fit an additive spline estimate of f* based on a random

sample of size n from the distribution of (X,Y). Under suitable

conditions such an estimate can be constructed which achieves the same

(optimal) rate of convergence for general J as for J = 1.
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