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1. Introduction. In Stone (1985) a variety of parametric,

nonparametric and semiparametric statistical models involving an unknown
function f were discussed with an emphasis on the flexibility,
dimepsionélity and interpretability of the various models. Also, a
heuristic dimensionality reduction principle was informally introduced.
Consider; in particular, a pair (X,Y) of random variables, where

= J
X = (X],...,XJ) € R

and YER; here Y is called a response variable
and X],...,XJ are referred to as covariates. Let f be a function
such that f(x) 1is a specific attribute of the conditional distribution
of Y given X =x; f 1is called the response function. Let f* be
the "best" additive approximation to f. If f itself is additive,
then f* = f. But even if f* differs somewhat from f, f* may be
useful in practice especially because of its greater interpretability.

Consider additive estimates of f* based on a random sample of size
n from the distribution of (X,Y). According to the dimensionality
reduction principle, under suitable smoothness conditions on f* and
appropriate mild auxiliary conditions on the distribution of (X,Y),
the optimal rate of convergence for general J should be the same as
that for J = 1. In the paper cited above a precise result to this
effect was obtained when f 1is the regression function of Y on X.
Here an analogous result will be obtained in a setup that includes
logistic regression as a special case.

The setup involves an exponential family of distributions of the

form eb1(n)y+b2(n)

v(dy) subject to some restrictions which will be
described in Section 2. The mean u of the distribution is given by

u = by(n) = -by(n)/by(n); correspondingly n = bgl(u), the function



b3 being called the link function.

Consider now a model for the joint distribution of (X,Y) in which
XEC-= [0,1]J and the conditional distribution of Y given X = x
belongs té the above exponential family with n = f(x); correspondingly
E(Y|X=x) = b3(f(x)), x € C. This model is called an exponential response
model in accordance with terminology introduced by Haberman (1977). The

expected log-likelihood for the model is given by
A(a) = E[by(a(X))Y+by(a(X))] = Elby(a(X))bg(f(X)) +by(a(X))]

If f ds linear, the model is called a generalized linear model (see
Nelder and Wedderburn, 1972, and McCullagh and Nelder, 1983). If f is
additive, it is called a generalized additive model in accordance with
terminology introduced by Hastie and Tibshirani (1984).

" Let the assumption that the conditional distribution of Y given
X = x belong to the exponential family be replaced by the weaker
assumption that E(Y|[X=x) = b3(f(x)) for x € C. The resulting model
is called a quasi exponential response model in line with terminology
introduced by Wedderburn (1974), and A(-) 1is now called the expected
quast log-likelihood function. If f 1is additive, the model is called
a quasi generalized additive model.

Consider now a quasi exponential response model. Let f* be the
best additive approximation to f; that is, the additive function having
the maximum possible expected quasi log-likelihood. The purpose of this
paper is to verify that under suitable conditions, the dimensionality
reduction principle holds for estimation of f*; and that the optimal

rate of convergence can be achieved by a natural and practicable estimate



involving the use of maximum quasi likelihood to fit an additive

spline.



2. Statement of Results. Consider an exponential family of the
b, (n)y+b,(n)

form e v(dy), where the parameter n ranges over R. Here
v is a nonzero measure on R which is not concentrated at a single
point and--
by (n)y+b,(n)

Ie vidy) =1 for - <n<o,
The function b] is required to be twice continuously differentiable
and its first derivative b{ is required to be strictly positive on R.
Consequently, b] is strictly increasing and b2 is twice continuously
differentiable on R. The mean u of the distribution is given by
u = b3(n) = -bé(n)/bi(n). The function b3 is continuously differentiable
and bé is strictly positive on R so b3 is strictly increasing on
R. Given any positive constant Ng» there are positive constants t0

and M such that

b,(n)y+b,(n)
Jetye 1 27 7v(dy) <M for |n| <ny and |t] < t, -

Finally, it is required that there be a subinterval S of R such that

v is concentrated on S (i.e., v(SC):=0) and

(1) b'{(n)y + b;(n) <0 for n€ER and yE€S .
(If b; = 0, then (1) holds automatically.) It follows from (1) that
(2) by(n)bs(ng) + by(n) <0 for n,ng €R.

Although (1) seems quite restrictive, it and the other requirements
mentioned above are satisfied in most of the familiar exponential families,

including the following five examples (see also Wedderburn, 1976).



EXAMPLE 1 (WNormal). The normal distribution with mean p and fixed

2

variance o is of the required form with b](n) = n/oz, bz(n) = -n2/2c2

and S = R. Here bs(n) =n and bg](u) = |.

EXAMPLE 2 (Binomial-logit). The Binomial distribution with
parameters g and m, with 0 <mw< 1, is of the required form with
by (n)
b3(n)

N, by(n) = -n, log(1+e"), and S = [0.ngl. Here

noe”/(1+e”) and bgl(u) = 1og(u/(n0-u)) = logit(u/no) = logit(m).

EXAMPLE 3 (Binomial-probit). The Binomial distribution from
Example 2 can also be put in the required form with u = b3(n) = n0¢(n)
and n = bgl(u) = @'](u/no) = ®-](n), ® being the standard normal
distribution function. To do so, take b](n) = log(o(n)/(1-2(n))),

bz(”) =g log(1-¢(n)) and S = [O,nol.
EXAMPLE 4 (Poisson). The Poisson distribution with mean p > 0
is of the required form with b](n) =r, bz(n) = -e" and S =[0,»).

Here u = b3(n) =e" and n = b;l(u) = Tog(u).

EXAMPLE 5 (Gamma). The gamma distribution with parameters o
(fixed) and A is of the required form with b,(n) = -e™", by(n) = -an

and S = (0,=). Here u = b3(n) = e and n = bgl(u) = log(u/a).

Geometric and other negative binomial distributions can also be

put in the required form.

Let (X,Y) be a pair of random variables, where Y € R and

X = (X1,...,XJ) ranges over C = [0,1]J.

CONDITION 1. The distribution of X 1is absolutely continuous and



its density g is bounded away from zero and infinity on C.

The conditional distribution of Y given X = x 1is not required
to belong to the exponential family described above, but the following

conditions are required to hold.
CONDITION 2. Pr(YES) = 1.
CONDITION 3. E(Y|X=x) = b3(f(x)), X € C, where f 1is bounded on C.
CONDITION 4. There are positive constants t0 and M] such that

E(etY|X=x) <M for [t| <t, and x €C.

0

Let A denote the collection of additive functions a on C such

that Ela(X)| < ~. Each a € A can be represented in the form
(3) a(x x1) = a, + 79 a.(x:)
127727y 0 1 J J ’

where Eaj(Xj) =0 for 1 <j<dJd. Clearly ag = Ea(X) . It follows
from Lemma 1 of Stone (1985) that under Condition 1 the fimctional components
355 1 <J <J, are essentially uniquely determined (i.e., uniquely
determined up to sets of Lebesgue measure zero); and there is at most

one continuous version of each such function. If a 1is essentially

bounded (i.e., bounded except on a set of Lebesgue measure zero), then

so are its functional components.

Let A(-) denote the expected quasi log-likelihood function, defined

by
Ma) = (b (a(x))by(F(x)) +by(a(x))1g(x) dx .

It follows from Lemma 1 in Section 3 that -» < A(a) <= for a € A.



The following theorem will be proven in Section 3. Here almost everywhere

means except on a set of Lebesgue measure zero.

THEOREM 1. Suppose that Conditions 1 and 3 hold. Then there is a
function f* € A such that A(f*) = maxaEAA(a); f* is essentially
uniquely determined and essentially bounded. If f € A, then f* = f

almost everywhere.
The function f* from Theorem 1 can be represented in the form
* _ ek J e
f (X-I,...,XJ) = fo + Z] fj(xJ') 9
where Ef}'(xj) =0 for 1<j<Jd.

Let q be a nonnegative integer, let y € (0,1] be such that

p=q+y>.5 and let M2 € (0,»). Let #H denote the collection of

th

functions h on [0,1] whose g~ derivative, h(q), exists and satisfies

the Holder condition with exponent «:
lh(q)(t')-h(q)(t)llg let'-tlY for 0<t, t'<1.
CONDITION 5. f} €H for 1<j<J.

Let N denote a positive integer and let Inv’ 1 <v <N, denote

the subintervals of [0,1] defined by v - [ (v-1)/N,u/N) for 1 <v <N

1

In

and N = [1-N"",1]. Let q' and q" be integers such that q' > q

In
and q' >q" >-1. Let Sy denote the collection of functions s on
(0,1] such that

(i) the restriction of s to Inv is a polynomial of degree q'

(or less) for 1 < v <N;



and, if q" >0,
(ii) s 1is q" times continuously differentiable on [0,1].
A function satisfying (i) is called a piecewise polynomial; if
q' =0, it-is piecewise constant. A function satisfying (i) and (ii)
is called a spline. Typically, splines are considered with q" = q' - 1
and then called linear, quadratic or cubic splines according as

1, 2 or 3.

q'

Let (X],Y]), (XZ’YZ)"" denote independent pairs, each having the
same distribution as (X,Y) and write Xi as (xil""’xiJ)‘ Consider
the random sample (X],Y]),...,(Xn,Yn) of size n. Let An denote the
collection of functions a on C of the additive form (3) where the
functional components 2y, 1 <j <J, are such that 3 E.SNn and
Z? aj(xij) = 0; here N is a positive integer. A function in A,
is called an additive spline.

Let 2 (a) = Z?[bﬂa(XiDYi-#bz(a(Xi))], a € A, denote th2 quasi
log-likelihood function corresponding to the random sample of size n.

If ?n €A and Qn(?n) = maxaEAnln(a),'then ?n is called the mazimum
quasi likelihood additive spline estimate of f*. It follows from Lemma 14
in Section 4 that under Condition 1 and the condition on Nn in Theorem 2
below, except on an event whose probability tends to zero with n, ?n
exists and has a unique representation in the form

F(xpaeenaxy) = F 04 1Y Foylxg) with I1F (G0 =0 for 1<§<u.

The estimate ?n of f* can be implemented numerically using
B-splines (see de Boor, 1978, and Section 4) and GLIM (see Baker and
Nelder, 1978). Hastie and Tibshirani (1984) introduced a different additive
fitting technique which involves a "local scoring method" and “running

line smoothers." Through a number of examples involving real data, they



demonstrated the usefulness of the resulting procedure in uncovering

nonlinear covariate effects. In this connection see also Hastie (1984).
The rate of convergence of ?n to f* will now be determined.

To this ehﬁ, given positive numbers a, and bn for n>1, let

a ~ bn mean that an/bn is bounded away from zero and infinity.
Given random variables Z , n>1, let Z = Opr(bn) mean that the random

variables b;]zn, n>1 are bounded in probability or, equivalently, that

1im limsup Pr(lZ |>cb ) =
c+> n

-1

also let Zn = °pr(bn) mean that the random variables bn Zn converge

to zero in probability or, equivalently, that

lim Pr(|Zn|>~cbn) =0 forall c¢c>0.
n

Let I[l¢ll denote the L2

ol = E 63(X) = J o2(x)a(x)dx . For 1< j<d let Ihil; denote the
c
2

norm of a function ¢ on C, defined by

L™ norm of a function h on [0,1], defined by
N Rt RN

of xj. It follows from Condition 1 that gj

HhH§ = Ehz(xj) = J;h (x:)g.(x. )dx . Here 95 is the marginal density
is bounded away from zero
and infinity on [0,1].

Set y = 1/(2p+1) and r = p/(2p+1). Given a nonnegative integer
m, set m = (p-m)/(2p+1). The proof of the next theorem will be given

in Section 4.

THEOREM 2. Suppose that Conditions 1-8 hold and that N,
Then

3 *y2 _ -2r
(Fro=fo)% = 0 (n™®")
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-2r
a(m)_exy(m), 2 _ m .
nfnj -(fj) uj Opr(n ) for 0.<m<q and 1 <j<d,

and
1,12 = 0 (n72") .

The rates of convergence in Theorem 2 do not depend on J. It is
clear from the results in Stone (1982) for J = 1 that these rates
(except possibly that for ?no) are optimal. Thus the dimensionality
reduction principle is valid for the generalized additive models and

their extensions considered here.



3. Proof of Theorem 1. Throughout this section it is assumed that

Condition 1 holds and that f 1is bounded.
LEMMA 1. Given T > 0 there exist € >0 and A > 0 such that
b] (ﬁ)b3(n0) + bz(”) <A -¢|n] for |n0| <T and n€ R,
by(n)bz(ng) + by(n) < A - elby(n)| for Ingl <7 and n €R,

and

by (n)by(ny) + by(n) > (14A) (by (n)by(ng)+by(n)) - AZ
for Inol <T, In.ll <T and n€R.

PROOF. Set ‘Pno(n) = b](n)b3(n0) + bz(“)' Then ‘i’,flo(n) =0 and
‘{I;O(n) = b;(n)b3(n0) + b;(n) <0 by (2). Since b;', b; and b,y are
continuous, there is a & > 0 such that \P,';O(n) <-§ for |ngl <7
and |n| < 2T. Consequently, \l’r']o(n) < \P;‘O(ZT) < -8T for n > 2T and
v,;o(n) > 8T for n < -2T. Therefore \yno(n) < wno(zT) - 8T(n-2T) for
n > 2T and Wno(n) i‘Pno(-ZT) + <ST(n-2'I") for n < -2T. The first
result follows easily from these two inequalities. The second result
follows from the first result, since bé is continuous and strictly
positive on R . (Replace g by ng * 1 in the first result.) The
third result follows from the second result.

Let T now be an upper bound to f on R. It follows from

Lemma 1 that
(4) Ala) < A - ej|a|g, a€A.

LEMMA 2. Let Z be a random variable having mean zero. Then
E|Z| <2E|u+Z| for all u € R.

PROOF. Let ZT(Z") denote the maximum of Z(-Z) and 0. Then
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z=2"-7 and |z| =2"+ 7, so EZ' = €7 = E|Z|/2. 1f u >0,

then |u+Z| 3Z+ and hence E|u+Z|> ezt E|Z]|/2. Similarly if u < 0,

then E|u+Z| > E|Z|/2. This yields the desired result.

Let v and V denote positive constants such that v < g <V on

C. Then v < g.

J_<_V on [0,1] for 1 <j <J.

LEMMA 3. Let a € A. Then

J|aj| 5—2?!- (A-A(a)) for 1 <j<d.

v'e :

PROOF. According to (4), J|a|g < (A-A(a))/e. Let 1 <j < d.
By the definition of A, there is a u € R such that

[lurajl < [lal < ¥ [lalg < ABla)

Ve

Consequently by Lemma 2,

1 2 2V 2V
flagl <% J1ala; <5 [luraglay < §F lusag) < 2 aenian)

as desired.
Let li¢ll_ denote the L~ norm (supremum) of ¢.

LEMMA 4. Let M3 be a real constant. Then trere is a positive
constant M4 such that the followirg holds: If a €A and A(a) > M3,

there i¢ an a € A such that A(d) > Aa) and all < M4.

PROOF. In the following argument, M4, MS"" denote unspecified
positive constants which can be defined in terms of M3, vy, V, A, £ and J.

Choose a € A with A(a) > M3. It follows from Lemma 3 that

JIZ% aj(xj)lg(x)dxz.. .dX\J 5_?45 .



According to the definition of A(a), there is an x € [0,1] such

that if u = ay + a1(3(']), then
(8)  fib @+ 13 ay(xy bg(F(Ryaeeixy)) + (@ 13 a5(x)))]
g(Y],...,xJ)dxz‘..de > A(a) .
Consequently, by the first conclusion of Lemma 1
I[A-eli*- Z% aj(xj)|]g(7],...,xd)dxz.. .de > A(a)
and hence |u] < Mg. It follows from (5) that

() [iby @+ ay(x;))bg(F(Rueeaky)) + by(@+ I3 a5(x))) - Al

g(X],...,XJ)dXZ...dXJ2.'M7 .

According to the first conclusion of Lemma 1, the quantity in brackets

in (6) is nonpositive. Thus by Condition 1,

101+ 13 850603 (F(Ryaeeixg)) + b,(T+ 13 a5(x)) -

g(x)dxz.. .dx, > -M

J 8

anc hence, by the third conclusion of Lemma 1,

10y @+ 13 a5(x;)b3(F(x)) + by(@+ T a5(x;))]

g(x)dxz.. Ldxy > Mg .
Observe that if |a0+a](x])| > M]O’ then
[ty (@t b3(F1) + by(alx))Tg(x) dxy. . iy < Mg -

Define & on R by &(x;) =ay+a;(xy) if Jag+a;(x;)] < Mg

13



and S](x]) = u otherwise. MWrite 51(x]) Tagt a](x]), where

IEig] = 0. Then |Eb-+§}(x])|.§ My; for x €[0,1] and hence
(7) - Iaol .<.M'|]
and llagll, < My,. Also, if a is defined by
Alxya-eoxg) = 3+ 3y 0x) * I ay(x;)
then

(8) A(F) > Aa) .

14

By similarly modifying a3 2 <j<J, we obtain a €A where (7) and

(8) hold as well as

(9) @, <My, for 1<j<y.

By (7) and (9), IIE'II°° < M. This completes the proof of the lemma.

LEMMA 5. Given a positive constant M4 there are positive constants

for 0<t<1.

MS and Mo such that if 3 €A and llajlla° <My for j =1, 2, then
-M:lla,-a II2 < dz A(ta, + (1-t)a,) < -Mla,-a H2
5'917°2 —-;Z? 1 2/ = 7"6"'17%2

PROOF. Since

2
d _ 2, " "
;;? A(ta1+(1-t)a2) = I(a1-a2) [b](ta]-+(1-t)a2)b3(f) + bz(ta]+
the desired result follows from (2) and continuity.

PROOF OF THEOREM 1. It follows from (4) that the numbers

(1-t)aylg ,

A(a),

a € A, are bounded above by A. Let L denote the least upper bound of
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these numbers. Let a,, k > 1, denote a sequence of elements of A
such that limk A(ak) = L. By Lemma 4 it can be assumed that

lall, <M, for k>1. Itnow follows from Lemma 5 and the definition
of L théé la -a .l ~0 as k, k' = and hence that Hak-f*n +0
for some essentially bounded function f*. By Lemma 1 of Stone (1985),
f* can be chnsen to be in A. Clearly A(f*) = L. Suppose that T € A
and A(f) = L. It follows by an argument similar to a portion of the
proof of Lemma 4 that f is essentially bounded and hence from Lemma 5
that IF-fY = 0. Thus f* is essentially uniquely determined. Observe
that, for Ny € R, the function ¥ on R defined by

¥(n) = b1(n)b3(n0) + bz(n) has a unique maximum at n = n,. The last

statement of the theorem is a simple consequence of this observation.
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4. Proof of Theorem 2. Throughout this section it is assumed that

Conditions 1-5 hold and that N~ n'.

LEMMA 6. Let My Dbe a positive constant. Then there are positive

constants M, and M8 such that
*, 2 * * 2
-Mlla-f7I1" < A(a) - A(F7) < -Mglla- 7l
for all a € A such that llall_ < M4 .
PROOF. Given a € A with Jlall_ < Mp» set a(t) = ta + (1-t)f". Then
4 4a(t) -
gt Mat ) lgg = 0
and hence
1 2
Ma) - A(F¥) = Jo(l-t) 4 aalt) |

dt

Since llf*ll°° < o, the desired result now follows from Lemma 5.

LEMMA 7. There is a positive constant M9 such that

1
lall, < MgNJllall for n>1 and a €A .

PROOF. In this proof it can be assumed that Jajgj =0 for

1 <Jj<J. Observe that
2 _ [.2. _ .2 J 2
Il all fa g =ay+ J(Z] aj(xj)) g(x) dx
By Lemma 1 of Stone (1985) there is a positive constant M10 such that
J 2 J (.2
J(Z, a;(x;))%a(x) dx > M1 Jajgj

Let 1 <j<dJd. By Lemma 11 of the same paper there is a positive constant
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M such that

11

N

-9,

2
J7J

sup |a X )| < MpgNy JI ay9; < M, Ia

xjelnv nv

for 1 <v <N and hence HajILE < MW, Ja?gj. The desired result

follows from these observations.

According to (4), Lemma.5, and the definition of An, there is a

unique f: € A, such that A(f;) = max, o, Aa).
n
* ok 2 =2p * o .5-p
LEMMA 8. "fn-f = = O(Nh ) and "fn-f ll°° = O(Nn ).

PROOF. By Lemma 5 of Stone (1985), a result due to de Boor (1968), and
" : _f* -p.
Condition 5 there is an f € A~ such that IIf -fil_ < M;oN "5 here M,

is some positive constant. Consequently Ilfn-f*ll2 %ON Zp. Thus by
Lemma 6 there is a positive constant M1] such that
(10) ACF) = A(F%) > -MN-%P for n > 1

Let ¢ denote a large positive constant. Choose a € An with
Ila-f*]l2 = cNSZp. Then lla-fnll2 < 2(c+M$0)N;2p. Now p > .5 so by Lemma 7,
for n sufficiently large, llall_ g_nf*llao + 1 for all such a's. Thus by

Lemma 5 there is a positive constant M]2 such that, for n sufficiently large,

2p

(1) A(@) - A(F*) < -M,eN: P for all a €A with la-f") = 2P

Let ¢ be chosen so that M]Zc > M]]. It follows from (10) and (11)
that, for n sufficiently large,

A@) < A(f))  for all a €A with la-F*12 =

-2p
n an. .
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Therefore, by the concavity of A as a funetion of the parameters of a,
Ilf:-fﬂlz < CN;ZD for n sufficiently large. This verifies the first
conclusion of the Temma. Observe that ﬂf;-fnuz = O(NBZP) and hence by
Lemma 7 that llf;-fnll°° = O(Nas'p). Consequently, Hf:-f*"@ = 0(N65-D),

so the second conclusion of the lemma is also valid.

The next result follows from Conditions 3 and 4 (see the proof of

Lemma 12.26 in Breiman et al., 1984).

LEMMA 9. There are positive constants M10 and M]] such that

t(Y-b,(£(x))) )

Ele IX=x] <1 + Mttt for x€C and |t <My -

This lemma will be used to verify the next result.

. LEMMA 10. Given s > .5/(2p+1), ¢ >0 and € > 0, there is a

§ > 0 such that, for n sufficiently large,

1-2s

<

2 (a)-2 (f7)
pr{ |-t - (aga)-a(#2)

for all a €A with lla-fil = enS.

PROOF. Observe that
2a(a) = L70by (a(X;))Y; +bylalX;))]
= T70by (a(X;)) (Y4 - by (£(X;))) +by(alX;)) + by (alX;))by(F(X,))]
Consequently

2,(a) = 2,(F7) - n(A(a) - A(FD) = 3708 (X)) (¥, - E(Y]X{)) *+By(X{)]



where

and

By(x) = by(a(x)) + by(al(x))bs(F(x)) - A(a)

- (by(F1(x)) + by (Fr(x))bs(f(x)) - A(FF)) .

It follows from Lemma 9 that if ltB](x)l < Mygs then

tB,(x) (Y-E(Y[X=x)) 2,2
Ele (X=X < T+ My t787(x)

and hence

(B, (x)(Y-E(Y|X=x))+8B,(x)) tB,(x)

Ele | X =x] _<_(1+M t B](x))e

Thus if tz(Bf(x)+B§(x)) < Mo then

t(B Y-E(Y|[X=x)+B .
Ele (B O (Y-E(Y[X=x)+ 2(X))|X==x] <1+ B,(x) + M]3t2(8$(x)+B§(X)) .

(Here M]Z’ M]3,... etc. are unspecified positive constants.)

Since EB(X) = 0 it follows that if tZ(IB{IZ+1B,N2) < My,, then

(B, (X)(Y=E(Y|X))+B,(X
e (B4 (X)(Y-E(Y[X))+B,(X)) < +M]3t2J(B.]2+B§)gie

2¢/n2.n2
M5t f(81+82)g
Consequently, if tz(lIB1II°2°+IIBZII£) < M]znz, then

Eet:Z"(a) 13tzf(Bz-i-B )g/n

where

19
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L (a)-2 (F%)

z,(a) = n - (K(a)-A(f)) .

Set Sg =S - .5/(2p+1) > 0. Suppose now that a € An with

- -s
||a_fm| = cn”S. Then IIa-fr""ll°° §.M14n 0 by Lemma 7 and hence

-2s -

18,12 + 18,112 < Mycn O and J(B%B%)g < Myn™25. Therefore
2 -1-2s
tZ (a) M,,tn
Ee N <e 17
if |t] < Mygn . It follows easily that if ¢/2M,, < M,.n ~, then
= Mg 17 Mg
1-2s
Pr(]Z,(a)| zen™%) < 2e™" T,

where § = 52/4M]7. This completes the proof of the Temma.

It is a consequence of Conditions 3 and 4 that n']Z?IYi-E(YiIXi)l is

bounded in probability and hence that the following result holds.

LEMMA 11. Givem € > 0 and M‘IZ > 0, there tsa § > 0 such

that, except on an event whose probability tends to zero with n,

for all ay, a, €A, with llayll, < Myps lasll 5-M12 and IIa]-azll°° < &n

as

of

My

ean be covered by 0(e

én

ILn(az).p“n(a]) ) 2s

n

(A(az)-A(a])) < en

-2s

It is convenient to define the "diameter" of a subset B of An

suplllay-a,ll : a;,a,SB}. The next result is an obvious consequence
Lemma 7 and the definition of An‘
LEMMA 12. Givenm ¢ >0, 6§ >0 and S >.5/(2p+1) there is an
3> 0 such that the following property is valid: {aEAn: lla-f:‘ll =cn~%}

M]3anog n
) subsets each having diameter at most

-2s
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The next result follows from the analog of Lemma 6 with £* replaced

by f; and Lemmas 10-12. (Note that 1-2s >y if s < 1/(2p+1).)

LEMMA-13. rLet .5/(2p+1)<s < 1/(2p+1) and ¢ > 0 be given. Then,

except on an event whose probability tends to zero with n,

* o _ -S
Zn(a) < ln(fn? for all a € An such that Ha-fn" = .

The next result follows from Lemma 13 and the strict concavity of

A on {aGAn: lla-f;II<cn°s}.

LEMMA 14. The maximum quasi likelihood additive spline estimate

%n of f* exists and is unique, except on an event whose probability

tends to zero with n. Moreover, | ?n-f;ll = Opr(n-s) for s < 1/(2p+1).

There is a basis B 1<71<T of SN consisting of B-splines

n’
(see Chapter IX of de Boor, 1978). Here T < MMN » wWhere M]4"“

nt’

are positive constants. These functions are nonnegative and sum to one

on [0,1]. Also each Bm: is zero outside an interval J of length

nt
-1 -1

at most M]an whose end points are in {O,Nn .,1-N;‘],1}. If

1<, GT_<_ T, and |s-1| > Mig> then J__ and J o are disjoint.
If s=95."bB €Sy, then
Z] T NnT Nn

2 2

2
|b_]® < My sup, s“< M N J S
T 17 Jn'r 18"'n Jm_

(see page 155 of de Boor's book and Lemma 11 of Stone, 1985). Consequently

2

T
2 n
< MZONn 2] bT .

“1¢n 2 . n
(12) Mighn 2y B2 J|z1 bBnel

Set K =4JT ., let A, , 1<k<K., be, in some order, the

n
functions defined by Ank(x) = Bnt(xj), and write Ank as A for short.
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The An's span An, but they are not a basis of An since 1 can be
represented in J 1linearly independent ways as a linear combination of

the Aés. Given a Kn dimensional column vector B8 = (Bk), set

Kn

ag = I} BA Then 2a,/38 = A. Let g = (8%) be such that

B
£*

Kn *
n Z] BnkAk‘
It is convenient to write 1n(a8) as zn(B). Observe that

oL

(13) ‘a‘sf = 17 AXIby (ag (X3))Y; + bylag(X)))]
and
322
n - ©n " "
(]4) __38;( 3Bk = Z] Ak](xi)Akz(Xi)[ b](aB(Xi))Y‘i +b2(a8(xi))]
1 2 '

Let §n = (énk) be such that ?n = Z1n énkAk' The maximum 1ikelihood

equations for §n are

In light of Taylor's theorem, these equations can be rewritten as
R _a*y = _ *

(15) CalBp-By) = -D2 (B.) ,

where

1
_ 2 %* A *
Co = [ D%nlen v e(B-ep)) at
Here Dln(B) is the K, dimensional vector of elements azn(e)/aek
and Dzln(s) is the Kp X Kn dimensional matrix of elements
2

9 zn(s)/aek]aekz.

Let - and | | denote the usual inner product and corresponding

norm on Rk . It follows from (15) that



(16) (B,-8n) * Co(B-81) = -(B-60) - D2, (B)) .

It will be shown shortly that

*y 12 _
(17) |D2,,(8;) 1€ = 0,.(n)

and that §n and S; can be chosen so that (for some positive constant

My1)
A * . A * _] - *2
(18) (8,-8,) * C(B-8,) < -MyyN "n[8 -8 |

except on an event whose probability tends to zero with n. It follows

from (16)-(18) that

A *2= 2

8, = 8,17 = Opp(Np/n)
and. hence from (12) that

2 * 2 _ _ -2r

(19) IF - fll = 05 (Ny/n) = 0, (n™°7)
It now follows from Lemma 8 that
(n"2") .

A *2—
(20) e -£71° = opr

Let f: be written in the form
* _ ek Jd %
fn(X],o-o,XJ) - fno + Z] fnj(xj) Y

where If:jgj =0 for 1<j<dJ. It follows from Lemma 8 together with

Lemma 1 of Stone (1985) that
(21) NF* =12 =0 (n"%") for 1<j<d,
ni~ ' 3"j pr+. -V =

*

(22) (Frg-fo)2 = 0. (n"2")

23



and
1 - -4y _ -r .
(23) Z'I f (X Opr(n ) opr(n ) for 1 <j<Jd.
Let ?n -temporarﬂy be written similarly as
(24) f (x],...,xd) =fot 2] (x )

where anJgJ =0 for 1 <j<J. It follows from (19) and Lemma 1

of Stone (1985) that

2 * 02 _ -2r ;
(25) Ifp5=Taslly = Opr(n ™) for 1 <j <y
and
| 2 _ex 12 _ -2r
(26) (Fro=fno) " = Oprln™ )

Choose € > 0. It follows from Lemma 12 of Stone (1985) that

2 N 1-¢
gt (2) )

pr(n-Zr)

(3 I (% 5) = Fry (0N
=0
and hence from (23) that
1 cn 2 - -r .
(27) sz] fnj(xij) = Opr(n ) for 1 <j<Jd.
Let ?n be rewritten in the form (24) with

1 con 2 _ .
= 1 fnj(xij)°0 for 1 <j<dJd.

24

It follows from (27) that (25) and (26) continue to hold. It follows from

(21), (22), (25) and (26) that
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(28) "%nj'f3"§ = Opr(n'zr) for 1 <j<J
and

. 2 *2 _ -2r
(29) (Fro-fo)? = 0 (n72") .

It follows from (28) and Lemma 8 of Stone (1985) that
(30) ll?(m)-(f*)(m)ll2 =0 (n—Zrm) for 0 <mc«< and 1 < j <J
ng T g T pr =%=9 Iz

Formulas (20), (29) and (30) together constitute the conclusion of

Theorem 2.
It remains to verify (17) and (18). To verify (17) note that

EA (X)[by (Fr(X))Y +by(fr(X))] =0 .
Consequently,
*y 12 Kn n Log* Yoe* 2
E[De (B )™ = 277 ELLy A (X)0by (FL(Xi))Y; + by (F (X5))1}

Kn n v, v, ok 2
= 3" I EGA (X 0B (XX )Y, + by (FR) (X )1}

Kn 2 Lok VoK 2
n 2y ECAL(X)Iby (F (X)Y +by(f (X))]“}

K
< Mpon Z]n E{AE(X)}

by Conditions 3 and 4, Theorem liand Lemma 8. It follows from the
. 2 - 2 -1
properties of B-splines that EAk(X) = EBm,(XJ.) < MygN."  and hence that
*, 02
EIDzn(Bn)l < Myun. Therefore (17) holds.
Finally, (18) will be verified. According to Conditions 2 and 3 there is
a compact subinterval Sg of S such that E(Y|X=x) € Sg for x €cC.

Choose € > 0. It now follows from Conditions 2 and 4 that there are
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subintervals S, and S, of S such that S, 1is closed and bounded on

the left, S, 1is closed and bounded on the right and Pr(YES] IX=x) > ¢

2
and Pr(YGSZIX=x)Ze for x€C. Given n0>0 set

S3 = {y€S: by(nly+by(n)<-e for [n|<ng} .
Then e can be chosen sufficiently small so that
(31) Pr(Y€S5]X=x) > for x€C.
By Theorem 1, Lemmas 7 and 8, and (20), ng can be chosen so that

. * $ =
(32) l;m Pr(ifili<ng and Ifll_<n;) =1 .

Set In = {i: 1<i<n and YiES3}. It follows from (14) and (32) that,

except on an event whose probability tends to zero with n,
(33) B-C B < -eJ., a(X.)
n° = In BY7i’

_ - o
Let B8 = (8,) (bjr) so that ag(x) 1 aBj(xj),where

Tn
aBJ.(xj) = Z] bthnr(xj)‘ Let B now be chosen so that

(34) ZIn aBJ'(Xij) =0 for 2<j<d.
It follows from (12), (31), (33), (34), Lemma 12 of Stone (1985) and an

extension of Lemma 3 of the same paper that, except on an event whose

probability tends to zero with n,

J 2
1 2
5]



Therefore (18) holds if én and B: are chosen so that B8 = 8

n

-8

satisfies (34). This completes the proof of (18) and hence that of

Theorem 2.

*
n
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THE DIMENSIONALITY REDUCTION PRINCIPLE

FOR GENERALIZED ADDITIVE MODELS‘I

By Charles J. Stone

University of California, Berkeley

Summary

Let (X,Y) be a pair of random variables such that X = (X],...,XJ)

ranges over C = [0,1]J. The conditional distribution of Y given

X = x 1is assumed to belong to a suitable exponential family having
parameter n € R. Let n = f(x) denote the dependence of n on x.
Let f* denote the additive approximation to f having the maximum
possible expected log-likelihood under the model. Maximum 1likelihood

is used to fit an additive spline estimate of f* based on a random
sample of size n from the distribution of (X,Y). Under suitable
conditions such an estimate can be constructed which achieves the same

(optimal) rate of convergence for general J as for J = 1.

1This research was supported in part by National Science Foundation

Grant MCS83-01257.
AMS 1980 subject classifications. Primary 62G20; secondary 62G0S5.

Key words and phrasés. Exponential family, nonparametric model, additivity,
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