A NOTE ON WEAK STAR UNIFORMITIES

BY

P. DIACONIS AND D. FREEDMAN

TECHNICAL REPORT NO. 39 NOVEMBER 1984

RESEARCH PARTIALLY SUPPORTED BY
NATIONAL SCIENCE FOUNDATION
GRANTS MCS80-24629 AND MCS83-01812

DEPARTMENT OF STATISTICS
UNIVERSITY OF CALIFORNIA
BERKELEY, CALIFORNIA

A NOTE ON WEAK STAR UNIFORMITIES

by

P. Diaconis

Statistics Department

Stanford University

Palo Alto, California 94305

and

D. Freedman²
Statistics Department
University of California
Berkeley, California 94720

Abstract. Consider the set $\pi(Z)$ of countably additive probabilities on Z, the set of positive integers. Endow $\pi(Z)$ with the weak star topology. The finitely additive probabilities on Z form a compactification of Z, which is not the Stone Cech compactification. Indeed, there is a bounded continuous function on $\pi(Z)$ which cannot be uniformly approximated by polynomials. Furthermore, convolution of finitely additive probabilities is non-commutative.

Research supported by National Science Foundation Grant MCS80-24649.

²Research supported by National Science Foundation Grant MCS83-01812.

AMS 05 1980 classification numbers. 60B10, 54D35.

<u>Keywords and phrases</u>. Uniformities, weak star topology, approximation by polynomials.

Running head. Weak star uniformities.

1. Introduction.

In (Diaconis and Freedman, 1984, section 5), we investigated some conditions for the consistency of Bayes estimates. A key idea turned out to be the "merging" of two sequences of probabilities $\{\alpha_n\}$ and $\{\beta_n\}$, in the sense that α_n and β_n become indistinguishable from the point of view of integrating bounded continuous functions. A formal treatment involves the uniformities compatible with the weak star topology.

To review briefly, let (Z,ρ) be a metric space. Let α_n , α be probabilities in Z. Then $\alpha_n \to \alpha$ weak star iff $\int f d\alpha_n \to \int f d\alpha$ for all bounded continuous functions on Z. This defines the weak star topology T on $X = \pi(Z)$, the set of probabilities in Z. For more information, see Billingsley (1968) or Parthasarathy (1967).

Let (X,T) be any topological space. A uniformity U is a nonempty collection of subsets of $X \times X$, satisfying the following conditions:

- a) Each member of U includes the diagonal $\{(x,x): x \in X\}$.
- b) If $U \in U$ then $U^{-1} \in U$, where $U^{-1} = \{(x,y): (y,x) \in U\}$.
- c) If $U \in U$ then $V \cdot V \subset U$ for some $V \in U$, where $V \cdot W = \{(x,y): (x,z) \in W \text{ and } (z,y) \in V \text{ for some } z \in X\}.$
- d) If U and V are members of U, then $U \cap V \in U$.
- e) If $U \in U$ and $U \subset V \subset X \times X$, then $V \in U$.

If $A \subset X \times Y$, write $A[x] = \{y: (x,y) \in A\}$ for the x-section of A. We will say the uniformity U is <u>consistent</u> with the topology T iff for any open set W, and $X \in W$, there is a $U \in U$ with $U[x] \subseteq W$.

The idea is that a real-valued function f on X is uniformly continuous iff for all $\varepsilon > 0$ there is a $U_{\varepsilon} \in U$ such that x, $y \in U_{\varepsilon}$ implies $|f(x)-f(y)| < \varepsilon$. If U is consistent with T, a uniformly continuous function is continuous.

A metric ρ on X defines a natural uniformity U_{ρ} as follows: $U \in U_{\rho}$ iff $U \supset \{(x,y): \rho(x,y) < \delta\}$ for some δ positive. Likewise, a family of pseudo-metrics $\{\rho_{\alpha}: \alpha \in A\}$ on X defines a natural uniformity U_{A} as follows: $U \in U_{A}$ iff $U \supset \{(x,y): \rho_{\alpha}(x,y)\} < \delta$ for all $\alpha \in F\}$, for some positive δ and finite $F \subset A$. For more information, see (Kelley, 1955, pp. 175ff).

Our main result turns out to involve the Stone Cech compactification \tilde{X} of X. This is the largest possible compactification of Y; any bounded continuous function on X extends to a continuous function on \tilde{X} . For more information, see (Dunford and Schwartz, 1958, p. 279) or (Kelley, 1955, p. 152).

Let Z be the set of positive integers, $\pi(Z)$ the set of countably additive probabilities on Z, and $\overline{\pi}(Z)$ the set of finitely additive probabilities on Z. Endow π and $\overline{\pi}$ with the weak star topology. Thus, $\overline{\pi}$ is a compactification of π . The main result of this note is the following proposition, which will be proved in Section 3.

Proposition 1.1. $\overline{\pi}(Z)$ is not the Stone Cech compactification of $\pi(Z)$. This issue came up in connection with work reported in Diaconis and Freedman (1984), where we considered two uniformities on $\pi(Z)$:

 u_1 induced by the pseudometrics $\rho_f(\mu, \nu) = |\int f d\mu - \int f d\nu|$ for $f \in C(Z)$

 u_2 induced by the pseudometrics $\rho_{\phi}(\mu, \nu) = |\phi(\mu) - \phi(\nu)|$ for $\phi \in C[\pi(Z)]$.

Here, C(X) is the set of bounded, continuous functions on X; by C(Z) we just mean the bounded functions on Z. Clearly, u_2 is finer than u_1 . That the two are really different is not so obvious.

Proposition 1.2. $u_1 \neq u_2$.

This is fairly immediate from Proposition 1.1. Indeed, consider the

algebra A_0 of functions on $\pi(Z)$ generated by the basic linear functions $\mu \to \int f d\mu$, as f varies over C(Z). Thus, $A_0 \subseteq C[\pi(Z)]$. We will call A_0 the "polynomials." Of course, any polynomial $\phi \in A_0$ extends to $\overline{\phi} \in C[\overline{\pi}(Z)]$, and

(1)
$$\sup \{|\phi(\mu)|: \mu \in \pi(Z)\} = \sup \{|\overline{\phi}(\mu)|: \mu \in \overline{\pi}(Z)\}$$

Let $A \subseteq C[\pi(Z)]$ be the closure of A_0 in the sup norm. As (1) implies, any $\phi \in A$ also extends to $\overline{\phi} \in C[\overline{\pi}(Z)]$.. Let $\overline{A} = \{\overline{\phi} : \phi \in A\}$.

LEMMA 1.1. $\overline{A} = C[\overline{\pi}(Z)]$.

PROOF. Use the Stone-Weierstrass theorem.

By Proposition 1.1, A is a proper subset of $C[\pi(Z)]$. Less formally, there are bounded continuous functions ϕ on $\pi(Z)$ which cannot be uniformly approximated by the polynomials A_0 .) Corollary 2.2 below completes the derivation of Proposition 1.2; the object in section 2 is to establish this corollary. (That A separates points and closed sets follows from Lemma 1.1.) Along the way, we discovered that convolution in $\overline{\pi}(Z)$ is noncommutative; we report on this in section 4. Our results can be extended to any noncompact metric space X: just identify Z with a sequence X_j : $j \in Z$ having no convergent subsequences.

2. On uniformities.

Let X be a Hausdorff space, completely regular in the sense that the bounded continuous functions separate points and closed sets, i.e., given $x \in X$ and a closed subset C with $x \notin C$, there is a continuous function C with C with C with C and C be a closed subalgebra of C which also separates points and closed sets.

LEMMA 2.1.

- a) If f(x) = f(y) for all $f \in A$, then x = y.
- b) If $\{x_{\alpha}\}$ is a net, and $f(x_{\alpha}) \rightarrow f(x)$ for all $f \in A$, then $x_{\alpha} \rightarrow x$.

<u>LEMMA 2.2.</u> X can be homeomorphically embedded as a subset of a compact Hausdorff space \overline{X}_A , such that A is the restriction to X of $C(\overline{X})$.

<u>PROOF.</u> For $f \in A$, let I_f be the closed interval [inf f, sup f]. Let $\Omega = \Pi_f I_f$, a compact Hausdorff space. Let η map X into Ω as follows:

$$[\eta(x)](f) = f(x)$$

Clearly, η is continuous. It is 1 - 1 by Lemma 2.1a, and η^{-1} is continuous by Lemma 2.1b.

Let \overline{X} be the closure in Ω of $\eta(X)$. Then \overline{X} is compact Hausdorff; for $f \in A$ define \overline{f} on \overline{X} by the formula $\overline{f}(\xi) = \xi(f)$ for $\xi \in \overline{X}$. In particular, \overline{f} is continuous and $\overline{f}[\eta(x)] = f(x)$ extends f.

Let $\overline{A} = \{\overline{f}: f \in A\}$. Then \overline{A} is a closed subalgebra of $C(\overline{X})$ which separates points, so $\overline{A} = C(\overline{X})$ by the Stone-Weierstrass theorem.

 \overline{X}_A is unique up to a homeomorphism. See (Dunford and

Schwartz, 1958, Part I, Corollary 27 on page 279). The space \overline{X}_A is essentially the Stone Cech compactification of X, relative to A not C(X).

Recall that A is a closed subalgebra of C(X), separating points and closed sets. Let U_A be the uniformity generated by the seminorms $\rho_f(x,y) = |f(x)-f(y)|$ as f varies over A. Thus, any $f \in A$ is bounded and U_A -uniformly continuous. There are no other such functions.

COROLLARY 2.1. If g is bounded and u_A -uniformly continuous, then $g \in A$.

<u>PROOF.</u> We apply Lemma 2.2, and claim that g extends to $\overline{g} \in C(\overline{X}_A)$. Indeed let $\xi \in \overline{X}_A$, and $x_\alpha \in X$ with $x_\alpha \to \xi$. Then $g(x_\alpha)$ is a Cauchy net of real numbers because g is u_A -uniformly continuous, and the net is bounded because g is. Let $\overline{g}(\xi) = \lim_\alpha g(x_\alpha)$. By standard arguments, \overline{g} is well defined and continuous. So $\overline{g} \in C(\overline{X}) = \overline{A}$, and $g \in A$, as required.

COROLLARY 2.2. U_A determines A.

3. The proof of Proposition 1.1.

Let X be a metric space. Let K be a closed subset of X. Let K be a bounded, continuous function on K. The next result is a special case of Tietze's extension theorem. See (Dunford and Schwartz, 1958, pp. 15-17).

<u>LEMMA 3.1.</u> f extends to a continuous function \overline{f} on X, with no change of inf or sup.

Let ξ and ζ be remote, finitely additive, 0-1 measures on Z, with ξ assigning mass 1 to the evens and ζ to the odds. So $\frac{1}{2}(\xi+\zeta)\,\epsilon\,\overline{\pi}(Z)$. Let $\delta_{j_\alpha}\to\xi$ and $\delta_{k_\beta}\to\zeta$ weak star: α and β run through directed sets. So $\mu_{\alpha\beta}=\frac{1}{2}(\delta_{j_\alpha}+\delta_{k_\beta})\to\frac{1}{2}(\xi+\zeta)$ weak star.

We will now construct $\phi \in \mathcal{C}[\pi(Z)]$ such that $\phi(\mu_{\alpha\beta})$ fails to converge. More specifically,

(3.1)
$$\lim_{\alpha} \lim_{\beta} \phi(\mu_{\alpha\beta}) = 1$$

while

(3.2)
$$\lim_{\beta} \lim_{\alpha} \phi(\mu_{\alpha\beta}) = 0$$

To begin with, these equations hold with $\,\phi$ replaced by the discontinuous function $\,l_Q^{}$. Indeed, in e.g. (3.1), the double limit is just

$$\int_{Z} \int_{Q} \left[\frac{1}{2} (\delta_{j} + \delta_{k}) \right] \zeta(dk) \xi(dj) .$$

Without changing anything, we any confine j to the evens and k to the odds. For j even, $l_Q[\frac{1}{2}(\delta_j + \delta_k)] = 1$ except for finitely many odd k, so the double integral is 1. Finally, to get ϕ , smooth l_Q using Lemma 3.1. More specifically, take $K = \{\frac{1}{2}(\delta_j + \delta_k): j, k = 1, 2, ...\}$. Then l_Q is continuous on K because the latter has no points of accumulation. \square

Note. This ϕ is a bounded continuous function on $\pi(Z)$ which does not extend to $\overline{\pi}(A)$, i.e., which cannot be uniformly approximated by polynomials.

4. Convolutions

While trying to prove Proposition 1.1, we came across the following point. Let ξ and ζ be finitely additive probabilities on Z. The convolution $\xi \star \zeta$ can be defined as usual

$$(\xi \star \zeta)(A) = \int_{Z} \zeta(A - j)\xi(dj)$$

where $A - j = \{a - j: a \in A\}$. This set function is finitely additive; if ξ and ζ are 0 - 1, so is $\xi * \zeta$. However, * is not commutative. Here is a preliminary.

<u>LEMMA 4.1.</u> There is an infinite subset S of the positive even integers and T of the odds, such that $(s,t) \rightarrow (s+t)$ is 1-1 on $S \times T$.

<u>PROOF.</u> Inductively, we define increasing functions f and g from Z to the evens and odds respectively, such that f(j) + g(k) determines (j,k); then S = f(Z) and T = g(Z). Let f(1) = 2 and g(1) = 3. Suppose f(j) and g(k) defined for $j,k \le n$. Then

$$f(n+1) = f(n) + g(n) - 1$$

 $g(n+1) = f(n+1) + g(n)$

As is easily seen,

<u>Proposition 4.1.</u> There are finitely additive 0 - 1 measures ξ

and ζ on Z such that $\xi * \zeta \neq \zeta * \xi$.

<u>PROOF.</u> Construct S and T as in Lemma 4.1. Let $\xi(S) = 1$ and $\zeta(T) = 1$. Let Q = {s+t: s ϵ S and t ϵ T and s < t}. Then

$$(4.1) \qquad (\xi \star \zeta)(Q) = 1$$

$$(4.2) \qquad (\zeta \star \xi)(Q) = 0$$

Only (4.2) will be argued. By definition,

$$(\zeta * \xi)(Q) = \int_{Z} \xi(Q - k)\zeta(dk) = \int_{T} \xi(Q - t)\zeta(dt)$$

because $\zeta(T)=1$. If $t\in T$, however, Q-t includes only $s\in S$ with s< t; this is where we need the fact that s+t determines s and t. So $\xi(Q-t)=0$.

Remarks.

- i) With bar for Stone Cech, $\overline{Z} \times \overline{Z}$ seems really bigger than $\overline{Z} \times \overline{Z}$, by present construction. So a bounded function on $Z \times Z$ is not in the uniform closure of the algebra generated by $(x,y) \to u(x)$ or v(y), u and v bounded.
- ii) Likewise, there seems to be a bounded continuous function on Z^{∞} not uniformly approximable by finitary functions, i.e. bounded and of the form $u(x_1, ..., x_n)$ as u and n vary, but maybe a new idea is needed, along the following lines.

Let μ be any remote 0 - 1 finitely additive measure on Z, and let $\delta_{n_\alpha} \to \mu$ with $n_\alpha \, \epsilon \, Z$. Let μ^k , a finitely additive 0 - 1 measure on Z^k , be the law of the finite sequence

$$n + 1, n + 2, ..., n + k$$

with n chosen at random from μ . Likewise for μ^{∞} on Z^{∞} . Define

 $a_n, b_n \in Z^{\infty}$ as follows:

$$a_n = (n+1,n+2,...,2n,2n+1,2n+2,...)$$
 $b_n = (n+1,n+2,...,2n,0,0,...)$

Then $A=\{a_n\}$ and $B=\{b_n\}$ are disjoint closed sets in Z^∞ . Let $f \in C(Z^\infty)$ with $0 \le f \le 1$, f=1 on A, f=0 on B. Then f is not a uniform limit of finitary functions. Indeed, for any k, for all large α , the infinite sequences $a(\alpha)=a_n$ and $b(\alpha)=b_n$ agree to k places. Projected on Z^k , then,

$$\lim_{\alpha} \delta_{a(\alpha)} = \lim_{\alpha} \delta_{b(\alpha)}.$$

On Z^{∞} , however, $f(a(\alpha)) \equiv 1$ and $f(b(\alpha)) \equiv 0$.

REFERENCES

- P. BILLINGSLEY (1968). Convergence of Probability Measures. Wiley, New York.
- P. DIACONIS and D. FREEDMAN (1984). On the consistency of Bayes estimates. Technical report no. 213, Department of Statistics, Stanford. To appear in Ann. Statist.
- N. DUNFORD and J.T. SCHWARTZ (1958). <u>Linear Operators, Part I, General</u>
 Theory, Wiley Interscience, New York.
- J. L. KELLEY (1955). Topology. Van Nostrand, New York.
- K. R. PARTHASARATHY (1967). Probability Measures in Metric Spaces. Academic Press, New York.