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1. Introduction.

In (Diaconis and Freedman, 1984, section 5), we investigated some

conditions for the consistency of Bayes estimates. A key idea turned out

to be the "merging" of two sequences of probabilities {an} and {6nil
in the sense that an and Sn become indistinguishable from the point of

view of integrating bounded continuous functions. A formal treatment

involves the uniformities compatible with the weak star topology.

To review briefly, let (Z,p) be a metric space. Let an9 a be

probabilities in Z. Then an + a weak star iff ffdan - Jfda for all

bounded continuous functions on Z. This defines the weak star topology

T on X = 7T(Z), the set of probabilities in Z. For more information,

see Billingsley (1968) or Parthasarathy (1967).

Let (X,T) be any topological space. A uniformity U is a nonempty

collection of subsets of xxX, satisfying the following conditions:

a) Each member of U includes the diagonal {(x,x): xe X}.

b) If Ue U then U 1e U, where U 1 = {(x,y): (y,x)e U}.

c) If Ue U then V * V C U for some Ve U, where

V W = {(x,y): (x,z)e W and (z,y)e V for some ze Xi.

d) If U and V are members of U, then U n Ve U.

e) If Ue U and U C V C xx X, then Ve U.

If A C X xY, write A[x] = {y: (x,y)e A} for the x-section of A.

We will say the uniformity U is consistent with the topology T iff

for any open set W, and xe W, there is a Ue U with U[xl C W.

The idea is that a real-valued function f on X is uniformly

continuous iff for all C > 0 there is a UEe U such that x, ye UE
implies lf(x)-f(y)l < c. If U is consistent with T, a uniformly

continuous function is continuous.
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A metric p on X defines a natural uniformity Up as follows:
p

Ue U iff U D {(x,y): p(x,y) <6} for some 6 positive. Likewise, ap
family of pseudo-metrics {p a: a e A} on X defines a natural uniformity

uA as follows: U e UA iff U D {(x,y): pa(x,y)} < 6 for al l c e F}, for

some positive 6 and finite F C A. For more information, see (Kelley,

1955, pp. 175ff).

Our main result turns out to involve the Stone Cech compactification

X of X. This is the largest possible compactification of Y; any

bounded continuous function on X extends to a continuous function on X.

For more information, see (Dunford and Schwartz, 1958, p. 279) or (Kelley,

1955, p. 152).

Let Z be the set of positive integers, Tr(Z) the set of countably

additive probabilities on Z, and r(Z) the set of finitely additive

probabilities on Z. Endow rr and T with the weak star topology.

Thus, if is a compactification of ir. The main result of this note is

the following proposition, which will be proved in Section 3.

Proposition 1.1. ir(Z) is not the Stone Cech compactification of 1r(Z).

This issue came up in connection with work reported in Diaconis and

Freedman (1984), where we considered two uniformities on Tr(:

U1 induced by the pseudometrics pf(1J,v) = If fdvi-f fdvl for feC(Z)

U2 induced by the pseudometrics p N(l,v) = I (p)- (v)I for eC[r7(Z)]

Here, C(X) is the set of bounded, continuous functions on X; by C(Z)

we just mean the bounded functions on Z. Clearly, U2 is finer than

U1. That the two are really different is not so obvious.

Proposition 1.2. U # U2.1 2f
This is fairly immnediate from Proposition 1.1. Indeed, consider the



3

algebra A0 of functions on Tr(Z) generated by the basic linear functions

+ f fdu, as f varies over C(Z) . Thus, A0 C C[ITrr(Z)I . We will call

A0 the "polynomials." Of course, any polynomial pe A0 extends to

e C Trr(Z)] , and

(1) sup {t4)(vi)1: Pe 7r(Z)} = sup {IT(v)I: PeTr(Z)}

Let A C CQ r(Z)J be the closure of A0 in the sup norm. As (1)

implies, any 4e A also extends to 4)e C[II'r(Z)].. Let A= {4: ce A}.

LEMMA 1.1. A = CF(Z)I ..

PROOF. Use the Stone-Weierstrass theorem. 0

By Proposition 1.1, A is a proper subset of C[Irr(Z)] . Less formally,

there are bounded continuous functions 4 on 7r(Z) which cannot be uniformly

approximated by the polynomials AO.) Corollary 2.2 below completes the

derivation of Proposition 1.2; the object in section 2 is to establish this

corollary. (That A separates points and closed sets follows from Lemma

1.1.) Along the way, we discovered that convolution in ir(Z) is

noncommutative; we report on this in section 4. Our results can be extended

to any noncompact metric space X : just identify Z with a sequence

x : je Z having no convergent subsequences.
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2. On uniformities.

Let X be a Hausdorff space, completely regular in the sense that

the bounded continuous functions separate points and closed sets, i.e., given

xe X and a closed subset C with xi C, there is a continuous function

f with O < f 6 1, f(x) = 1 , and f = O on C. Let A be a closed

subalgebra of C(x) , which also separates points and closed sets.

LEMMA 2.1.

a) If f(x) = f(y) for all fe A, then x = y .

b) If {xa} is a net, and f(xa) f(x) for all fe A, then x - x.

LEMMA 2.2. X can be homeomorphically embedded as a subset of a compact

Hausdorff space XA, such that A is the restriction to X of C(X).

PROOF. For fe A, let If be the closed interval [inf f, sup fl.

Let Q = lIfIf, a compact Hausdorff space. Let n map X into Q as

follows:

[n(x)](f) = f(x)

Clearly, n is continuous. It is 1 - 1 by Lemma 2.1a, and n1 is

continuous by Lemma 2.1b.

Let X be the closure in Q of n(X). Then X is compact Hausdorff;

for fe A define f on X by the formula T(E) = i(f) for 4eX. In

particular, f is continuous and f[n(x)] = f(x) extends f.

Let A = {f: fe A} . Then A is a closed subalgebra of C(X) which

separates points, so A= C(X) by the Stone-Weierstrass theorem. 0

Notes. XA is unique up to a homeomorphism. See (Dunford and
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Schwartz, 1958, Part I, Corollary 27 on page 279). The space X isA
essentially the Stone Cech compactification of X , relative to A not C(x).

Recall that A is a closed subalgebra of C(X) , separating points and

closed sets. Let UA be the uniformity generated by the seminorms

pf(x,y) = jf(x)- f(y)j as f varies over A. Thus, any fe A is

bounded and UA-uniformly continuous. There are no other such functions.

COROLLARY 2.1. If g is bounded and UA-uniformly continuous, then

ge A.

PROOF. We apply Lemma 2.2, and claim that g extends to -e C(A)
Indeed let geXA, and xa eX with xa -*i. Then g(x ,) is a Cauchy

net of real numbers because g is UA-uniformly continuous, and the net

is bounded because g is. Let 9(i) = limO g(xO). By standard

arguments, g is well defined and continuous. So ge C(X) = A, and

ge A, as required. C]

COROLLARY 2. 2. UA determines A.
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3. The proof of Proposition 1.1.

Let X be a metric space. Let K be a closed subset of X. Let

f be a bounded, continuous function on K. The next result is a special

case of Tietze's extension theorem. See (Dunford and Schwartz, 1958,

pp. 15-17).

LEMMA 3.1. f extends to a continuous function f on X, with no

change of inf or sup.

PROOF OF PROPOSITION 1.1. We define a subset Q of rr(Z) as follows:

eQ iff v = ½ (6j+6k) for some pair of integers j,k with 1 < j < k,

j even, k odd. As usual, 6. is point mass at j, so 6je Tr(Z).
Let i and G be remote, finitely additive, 0 - 1 measures on

Z, with C assigning mass 1 to the evens and C to the odds. So

½(t,+ )e7r(Z) . Let 6* +i and 6k - G weak star: a and S run

through directed sets. So = ½(6j+6k5) + ½(g+G) weak star.

We will now construct qe Clrr(Z)J such that ¢U'B) fails to

converge. More specifically,

(3.1) lima lim5 (v3)= 1

while

(3.2) lim5 lima P(v$) =°

To begin with, these equations hold with q replaced by the

discontinuous function 1Q. Indeed, in e.g. (3.1), the double limit

is just

I I lQ +½ 6k c(dk)E(dj)
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Without changing anything, we any confine j to the evens and k to the

odds. For j even, lQ[½;(6j + 6k)] = 1 except for finitely many odd k ,

so the double integral is 1. Finally, to get , smooth 1Q using Lemnma

3.1. More specifically, take K = {½(6J+5k): j,k=1,2,...}. Then1Q
is continuous on K because the latter has no points of accumulation. O

Note. This f is a bounded continuous function on rr(Z) which

does not extend to IT(A), i.e., which cannot be uniformly approximated

by polynomials.
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4. Convolutions

While trying to prove Proposition 1.1, we came across the following

point. Let E and C be finitely additive probabilities on Z. The

convolution E*r can be defined as usual

( * C)(A) = c(A- j)f(dj)

where A - j = {a- j: as A}. This set function is finitely additive; if

i and G are 0 - 1 , so is i * . However, * is not commutative.

Here is a preliminary.

LEMMA 4.1. There is an infinite subset S of the positive even

integers and T of the odds, such that (s,t) - (s+t) is I - 1 on

S x T.

PROOF. Inductively, we define increasing functions f and g from

Z to the evens and odds respectively, such that f(j) + g(k) determines

(j,k) ; then S = f(Z) and T = g(Z). Let f(l) = 2 and g(l) = 3.

Suppose f(j) and g(k) defined for j,k S n . Then

f(n+l) = f(n) + g(n) - 1

g(n+l) = f(n+l) + g(n)

As is easily seen,

min [f(n+l ) + g(k)] > max [f(j) + g(k)]
k=l, n j=l, ..,n

k=l , . ..,n

min [f(j)+g(n+l)] > max [f(j) + g(k)] 0
j=l , . . . , n+l j=lk,. .. ,n+l

k=l .,. .,n

Proposition 4.1. There are finitely additive 0 - 1 measures g
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and G on Z such that i *

PROOF. Construct S and T as in Lemma 4.1. Let i(S) = 1 and

c(T) = 1. Let Q = {s+t: se S and te T and s< tl. Then

(4.1) (E *C(Q) = 1

(4.2) (C*O(Q) = 0

Only (4.2) will be argued. By definition,

(c*E)(Q) f=f (Q- k)C(dk) = J E(Q- t)C(dt)
Z T

because r(T) = 1. If te T, however, Q - t includes only se S

with s < t; this is where we need the fact that s + t determines s

and t. So V(Q- t) = 0. °

Remarks.

i) With bar for Stone Cech, Zx Z seems really bigger than zx Z,

by present construction. So a bounded function on Zx Z is not in the

uniform closure of the algebra generated by (x,y) -+ u(x) or v(y)

u and v bounded.

ii) Likewise, there seems to be a bounded continuous function on

Z not uniformly approximable by finitary functions, i.e. bounded and of

the form u(x1,...,xn) as u and n vary, but maybe a new idea is needed,

along the following lines.

Let V be any remote 0 - 1 finitely additive measure on Z, and

let 6n > U with nae Z. Let pk, a finitely additive 0 - 1 measure

on Zk be the law of the finite sequence

n+l,n+2,...,n+k

with n chosen at random from vi. Likewise for Vi" on Z . Define
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an bbn Z as follows:

an = (n+l,n+2,...,2n,2n+1,2n+2,...)

bn = (n+l,n+2,...,2n,0,0,...) I

Then A = {an} and B = {bn} are disjoint closed

fe C(fZ) with 0 6 f < 1 , f = 1 on A, f = 0

not a uniform limit of finitary functions. Indeed,

large a, the infinite sequences a(a) = an and
k plcs rjcedo k hna

k places. Projected on Zk. then,

sets in Z . Let

on B. Then f is

for any k, for all

b(a) = bn agree to
a

lima 6a(o) = limam b((a)

On Z , however, f(a(a)) = 1 and f(b(oa)) = 0.
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