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1. Introduction. This paper gives a simpler proof of two theorems

in Freedman (1963), characterizing mixtures of Markov chains in continuous

time with recurrent, stable states the (stationarity condition is

eliminated), as well as mixtures of processes with stationary independent

increments. To state the first result, let I be a countable set--the

state space. Let Q be the set of all functions from [0,co) to I,

with the product a-field F. Let {Xt} be the coordinate process on Q.

The law P of an I-valued stochastic process is thus a probability of F.

Fix i0 E I, the starting state.

Let II be the set of standard stochastic semigroups P on Ip C I,

such that i0 ci Ip and Ip is a single recurrent class of stable states;

1I is a standard Borel space. Let P. be the law of a Markov chain10
starting from i0 and moving according to P, so P. is a probability on

0 10
F.

THEOREM. P = JPiu(dP) for some probability U on II iff:
n 0

i) P{X0=i0} = 1

ii) {Xt} has no fixed points of discontinuity

iii) P{Xn=i0 for infinitely many integers n} = 1

iv) For each h > 0, the P-law of {Xnh: n= 0,l,2,...} depends

only on the transition counts, in the sense of Freedman (1962)

or Diaconis and Freedman (1980).

The mixing measure p is unique.

For the second result, let I be the real line with the Borel

a-field, Q the set of the functions from [0,oo) to I, and F the

product a-field in Q. Again, let {Xt} be the coordinate process on

I
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Q, and P a probability on F. This time, let P E I be the law of a

process with stationary, independent increments, starting from 0,

continuous in probability. Again, H is a standard Borel space.

THEOREM 2. P = | i(dP) for some probability v on II iff:

i) P{X0=O} = 1

ii) {Xt} is continuous in P-probability

iii) for each h > 0, the P-law of {Xnh-X(nl)h: n= 1,2,...}

is exchangeable.

The mixing measure V is unique.

In both theorems, necessity is obvious, and the uniqueness of V

follows from corresponding results in discrete time. Sufficiency is

proved by approximation through the binary rationals, and only h of the

form 1/2k are used. It is shown that conditional on a certain remote

a-field, the process is Markov (Theorem 1) or has stationary, independent

increments (Theorem 2). The two proofs are very similar. That for Theorem

1 is given in section 2. The modifications for Theorem 2 are sketched

in section 3, which also characterizes mixtures of Brownian motions or

Poisson processes. A connection is then made with the theory of the

Laplace transform, analogous to the connection between de Finetti's

theorem for coin-tossing and the Hausdorff moment problem. Theorem 2

could easily be extended to processes taking values in a Euclidean space,

or even a locally compact second countable abelian group, but such

generalizations will not be discussed here. It is worth noting that

neither theorem requires smoothness conditions on the sample paths.
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2. The proof of Theorem 1. The following easy fact will be useful.

LEMMA 2.1. Let So C EIC F

rcd given E0 and given EZ1 If

then Q(w,A) is an rcd given E.

be a-fields in Q. Let Q(w,A)

E is any other a-field with z0

PROOF. Q(.,A) is S -measurable, and therefore s-measurable.
0

Likewise, for any B C 1

|BQ(A) P(d&) = P(AnB)
.B

The display holds a fortiori for any B E E.

Turn now to the theorem. Let P satisfy the conditions.

h = 1/2 . Let Tnh be the time of the nth visit to i0 by

{Xmh: m=0,1,2,...}, with T h 0. Let {Yn h: n=0,l,...}

io-block in {Xml,h viz., the finite string

Consider

be the nth

{XTn,h+mh:
' m ' (n+l )h Tnh}

By convention, an io-block starts at

iO Let Fh be the tail a-field of

{Yn,h' Tn,h: n=0,1,2,...}. Let F0

of the form 1/2k are contemplated.

i02 and ends just before the next

the process of pai rs

= UhFh: here as elsewhere only h

LEMMA 2.2. Fh increases as h decreases.

The easy proof is omi tted.

LEMMA 2.3. Given Fh, the process {Xnh} is a Markov chain with

stationary transition matrix Ph,X and state space Ih ; here

i C I C I and I is a single recurrent class. Furthermore, I
O h,w h,w

be an

C C E1'
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is Fh measurable and unique a.e.

PROOF. This follows from Diaconis and Freedman (1980), because

Fh is intermediate between the tail a-field and the exchangeable a-field

of {Yn,h}: see Lemma 2.1. 0

LEMMA 2.4. Let h < ½. Then P2 = p a.e.
- h, 2h,w

PROOF. By Lemma 2.3, given Fh, the process {X(2n)h} = {Xn(2h)}

is conditionally Markov with transitions P 2 It remains only toh,w&
show that P2, is F2h-measurable. But, e.g., for i1 # i0o p2 (i0,1)h,w 2h ~~~~~~~~h,w0,
is the limiting relative frequency of the io-blocks of {Xn2h} which

begin (io,i1), and is therefore F2h-measurable. The balance of the

argument is omitted. O

Of course, i E Ihs iff j is reachable from i0 relative to

Ph, ii.e., (Pn W)(i,j) > 0 for some n. If j E I2hI w then

0 < p(in,0j) = p2n j)9 so j E Ih i.e., Ih,w D I2h,!, In principle,

Ih , could have subclasses of period 2 relative to Ph ; then I2h,w
would be strictly smaller; as will be seen, however, in fact this cannot

happen.

LEMMA 2.. As h 0, lh i
~) 1 in probability.

LEMMA 2.5. As h * O, Ph,w(io,i

PROOF. jPh,j(iO3iO) P(dw) = P{Xh=iO} 1 as h -* 0 by conditions

(i-ii ). O

LEMMA 2.6. For P-almost all w:

) Ph,w 02i0) -+ 1 as h + 0 rapidly

) Ph, 0,'i0) > 0 for all h



c) 'h,w 1,

PROOF. Claim a) follows from Lemma 2.5; then b) is immediate, because

Ph (i00,i) > P (i,i)h/h for h' < h. To prove c), let j E Ih
so Pn (io,j) > 0 for some n. Find m such that (n+m)h is an

integer. Now

p ) (i0,j) = PhjwiO,j) > Phw(i h

Let I= I Plainly, {P h=1/2k and k is a nonnegative
wh,,w' ~~~hwc

integer} extends to a unique semigroup {Pr of stochastic matrices on

Iw, where r runs through the nonnegative binary rationals R, and PO X

is the identity matrix by convention. Recall that Fh increases to F0
.as h decreases.

LEMMA 2.7. Given Fo, the process {Xr: rERI is conditionally

Markov, with stationary transitions {Pr}.

PROOF. This is immediate from the forward martingale convergence

theorem. O

The next objective is to extend {Pr I to a standard stochastic

semigroup on [0,o).

LEMMA 2.8. For P-a.a. w , for each j E I , Pr (j,j) -+ 1 as

r -. 0. (The convergence need not be uniform in j.)

PROOF. Fix j and n. Given Xn = j, with probability 1, the

process {Xr} must stay in j on the interval [n,n+c), where E > 0

is random. This remains true given F0, and the lemma follows:

convergence a.e. implies convergence in probability. O
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LEMMA 2.9. For P-a.a. w:

a) P.,,,(j,k) is uniformly continuous for each j E I,,, and

extends to a continuous function Pt,w (j,k) of nonnegative real t.

b) Pt, is a substochastic matrix.

c ) Pt+s , (i ,k) > Ej Ptq,l( i 9i)PS w(jk)

PROOF. The argument is standard:

Claim a). From the semigroup property,

r+s,w (j,k) = z Ps,gw(ii)Pr (iI,k)

So

Pr+ ,,W(j,k) P (j,k) = [ PS (jji) - l] Pr w(j ,k) + j s,(i)Pr,(ik)

Now

I Pr+s w (isk) - Pr ,w (j,k)I < 1 P (j j)

Claims b) and d) follow by Fatou's lemma. 0
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LEMMA 2.10. Fix a sequence of times 0 = to < t1 <'.< tn and

states io,i1n...A . Let

A = {Xtm =im for m= O,...,n}

Let B E FO. Then

(2.1) P{A|AB m-n1tm,(i m'im+l) P(dw)

PROOF. Equation (2.1) holds for binary rational t by Lemma 2.7.

Now approximate real t by binary rationals. The left side of (2.1)

converges by condition (ii) of the theorem; the right side, by Lemma 2.9a

and dominated convergence. 0

We do not yet know that {Pt} is a stochastic semigroup, so (2.1)

does not say that {Xt} is Markov given F0.

LEMMA 2.11. For each t and each j E I
W

k Pt,a,(isk) = 1 a.e. P

PROOF. Define G = {w: j I} and G. = {w: Pn (i j)>O}PROOF.Define ~w j,n l,w O

so G. nlGjn Fix j and n. Now Lemma 2.10 shows:

(2.2) P{Xn=j} = TGjn Pn,w(0j) P(dw)

(2.3) P{Xn j and Xn+t= k} = fGj ,pn5w(iOi)Pt (j,k) P(dw)

The sum on k of the left side of (2.3) equals the left side of (2.2);

in view of Lemma 2.9b),

Ek Pt (j,k) = 1 a.e. on Gn
The balance of the argument is omitted. 0
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LEMMA 2.12. For P-a.a. w {Pt,x} is a standard stochastic semigroup.

PROOF. Let H = {t: E. P (i ,j) = 1 for all iEl 1. By Lemma 2.11w 3 t,W w

and Fubini's theorem, for a.a. w, the complement of H is a

Lebesgue-null set. On the other hand, H,, is closed under addition, by

Lemma 2.9c). Thus, H, = [O,oo), i.e., Pt W
is a stochastic matrix.

Now sum the inequality in Lemma 2.9c) over k, to see that equality holds,

i.e., Pt , is a semigroup. That Pt , is standard follows from

Lemma 2.9a). C

Clearly, i E I and IX C I is a single recurrent class of

stable states for P ,,, Lemma 2.10 implies the following result, which

gives the theorem.

PROPOSITION 2.1. Given Fo0 the process {Xt} is conditionally

Markov with transition {Pt }.

The argument really shows the existence of E E Fo0 such that

P(E) = 1 for all P satisfying the conditions of the theorem, and the

existence of the standard stochastic semigroup {Pt } for all w E E.

Mixtures of processes with instantaneous states can probably be

characterized the same way, replacing condition (ii) by continuity in

probability.

The definition of Fh may seem a bit complicated, but neither the tail

a-field nor the exchangeable a-fields are nested. We discuss the tail a-field

in discrete time. Let Xo,X1,X2,... be I-valued, starting form io, with
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infinitely many visits to io0 on even times. Let El be the tail

a-field of the i0-blocks in {XO,X1,X23...}. Let E1 be the tail

a-field of the io-blocks of {Xo,X2,X4,... }. If 1 D E2 then atoms of

El cannot split atoms of E2 This is false by example.

Let il,i2,... be any infinite sequence in I - {i0}. Consider the

Xn-sequence

X2n = i0 for all n

1 i, X3 i1, X5= iO, X7= i2, X9= i0, X11 =

The io-blocks of xn are then

io, io, ioil ,io, io, ioi2, io, io, ioi3,...

An atom of E consists of all X n-sequences whose io-blocks eventually

agree with this. Consider the clock time for the start of the doublets

i i For an w in our atom, this is eventually even, or eventually odd.0 j*"
If even, the io-blocks in {X 2n} end up identically i i0i . If odd,

then io-blocks in {X2n } end up agreeing from some point on with

i0il, i0i2, i0i3,... Thus a Z1-atom splits a E2-atom and E1 PE2.
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3. The proof of Theorem 2. This follows the same general pattern

for Theorem 1, but is much easier. For Fh, use the tail or exchangeable

a-field of {Xnh-X(n_l)h: n=1,2,...}. Clearly, Fn increases as h + 0;

call the limit F0o Given Fhp the differences are iid with common

distribution F ; and F * F = F Then we have a convolutionh,w h,w h,w 2h,w T
semigroup S = {Frw: rER}, and given F0, the process {Xr: rE R} has

stationary independent increments governed by S . Now there is a

simplification.

LEMMA 3.1. If {Xr: rElR} has stationary, independent increments,

then for each fixed real t, as r -+" t, Xr converges a.e.

PROOF. This is well known; the restriction of the time domain to a

countable set is crucial. Perhaps the simplest direct argument involves

considering the martingale

exp(iuXr)E{exp(iuXr)}

where exp(x) = e .

LEMMA 3.2. Let Q(w,A) be a regular conditional P-distribution

for {Xr: re R} given F0. Suppose that for each real t, as r y t,

{Xr} is fundamental in Q(w,-) probability. Suppose too that

{Xt: 0< t reall is continuous in P-probability.

a) Q(w,.) extends to F; call the extension Q(w,.).

b) Q(w,A) is an rcd for {X } given F0

PROOF. Fix positive real times t1 < t2 <... tk and bounded

continuous functions fI-*-fk Let r. - t. through R. Now the

Q(w,dw') integral of I.j=1 fj [Xt ()J can be defined as

lim Jll.=fj[Xr (w')] Q(w,dw')
19i i r3

Integrate over F E F0 and use dominated convergence:
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IT.kfFJiJ wd~)=un{ JlXJrJ Q(w,dw')
JFJ=1 jt W)1 Q(w,dw r)= lim fFJljr=l(dw)

~~~~F ~~~~Fj= j[r() ()

= limk= f[Xt (w)]P(dw)

by the continuity assumption on P. O

Two special cases of Theorem 2 are worth considering.

1) Suppose {Xt} has continuous sample paths. Then, Q, is defined

in the space of sample paths on the binary rationals; it assigns measure 1

to the paths which are uniformly continuous on compacts. Thus, Qw
concentrates on the continuous sample paths. And, a process with continuous

paths and exchangeable increments is a scale-drift mixture of Brownian

motions: indeed, a process with continuous sample paths and stationary,

independent increments is a Brownian motion.

2) Suppose {Xt} has exchangeable increments and sample paths which

are counting functions. Then it is a mixture of Poisson processes.

David Aldous and Persi Diaconis remark that the last observation

enables us to develop the theory of the Laplace transform, just as

de Finetti's theorem for coin tossing solves the Hausdorff moment problem

(Feller, 1971, p. 228). For instance, let L be defined on [O,oo). When

is there a probability pi on [Q,oo) such that:

L(t) = fiet1(dX) ?

Necessary conditions are that L(O) = 1 and L is C ; while

L' < 0, L" > 0, etc.

According to Bernstein's theorem, these conditions are also sufficient:

for instance, see (Feller, 1971, p. 439). Here is a rough sketch of the idea

for a probabilistic proof. Initially, we tried to construct a process
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{Xt} with exchangeable increments and counting sample functions, having

X(O) 0 and L(t) = prob{Xt0}. This seemed hard to do. Instead,

we made a "completely exchangeable" process of binary trees T0,T1,T2,...
of random variables; the variables take two values, 0 and 1. More

specifically, Tn = {X ns} where Xns = 0 or 1 and the node ns consists

of the nonnegative integer n followed by a finite string s (perhaps

empty) of O's and l's. These Tn are required to be exchangeable. Also,

each Tn splits into TnO and Tnl the left half and right half.

These are required to be exchangeable too. And so forth. That is our

definition of "completely exchangeable." Technically, TnO for example

is the tree {TnOs}, where Os denotes 0 followed by the string s.

We require that each variable be the maximum of the variables at the

two successor nodes, so Xns = XnsO V Xnsl' Finally, we require

Prob{l St variables at level k are 0} = L(j/2k) -

Here, the nodes are ordered lexicographically: the first three nodes

at level 0 are 0, 1, 2; the first five nodes at level 1 are 00, 01, 10,

11, 20; and so on.

Informally, the nodes correspond to intervals, e.g., the node n

corresponds to the interval [n,n+l] , the node n0 to [n,n+½J , the node

n01 to [n+¼,n+½fJ , and so forth. The variable Xns=0 iff there is no dot

in the corresponding interval for the desired counting process.

Formally, we can construct the tree distributions consistently down

to any finite level, and then use the Kolmogorov consistency theorem to

get the infinite trees. For example, for levels 0 and 1, we define

{in: n=0,1,...} to be exchangeable and

P{i =... = iN-1 =0} = L(N/2)
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See (Feller, 1971, p. 228). We use the pair i0 i for X00, Xoi; the

pair 2' 63 for X109 Xill And so on. We set

X0 = X V X01, X1 = V X ll. This is consistent because

P{XO=* N-1X = 0} = P{iO=1El2N-2 =

2N-l =°}

= L(2N - 2) = L(N)

We now condition on the tail a-field E of {Tn }. The fragments

are iid trees. Clearly, Tn is a 1-1 function of (TnO Tnl). So the

tail a-field of Tn equals the tail a-field of Tns, where ns is

lexigraphically ordered along any fixed level k, i.e., strings s of

length k=O,l,... Given E, we have at level k iid variables

X which are 0 with probability Pk Clearly, 2k,x= sk+l,w'5o

Pk, = (pO,9) . If p = 0 then P = 0 for all k; then let

At = 0, else let pO,= exp(-X ,) and then Pk,w = exp(Xw/2k), where

0 < X < . Now for j 1,

L(j/2k) - p{lst j variables at level k are 0}

-X/k= | dP
X<oo

On X = o, all variables are 1, and L = 0. Thus, for t > 0,

L(t) e-f tdP

Let t + 0, so P(X<oo) = L(O+) = 1. This completes the proof of the

sufficiency of the condition for L to be a Laplace transform, using

de Finetti's theorem for trees--but not Theorem 2. For a derivation

through the Martin boundary, see Watanabe (1960).
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4. Other literature. Theorem 2 goes back to Buhlmann (1960). For

another exposition, see Aldous (1984, sec. 10). For a stopping-time

approach to Theorems 1 and 2, see Kallenberg (1982).
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