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Abstract. After the 1980 Census, New York State sued to compel the Bureau

of the Census to adjust the population counts, using a regression model.

The appropriateness of such models will be considered in this paper.
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1 . INTRODUCTION

Models are often used to decide issues in situations marked by

uncertainty. However, statistical inferences from data depend on assumptions

about the processes which generated those data. If the assumptions do not

hold, the inferences may not be so reliable either. This limitation is often

ignored by applied workers who fail to identify crucial assumptions or

subject them to any kind of empirical testing. In such circumstances, using

statistical procedures may only compound the uncertainty. To paraphrase

Freedman, Rothenberg and Sutch (1983);

It ain't what you don't know that gets you into trouble, it's
what you think you know that ain't so.

Statistical modeling seems likely to increase the stock of things you think

you know that ain't so. For this reason among others, we do not accept

the proposition that statistical models are useful, even compared to

nothing--unless the assumptions are made explicit and shown to be appropriate.

Our object in this note is to illustrate this general point by discussing an

example.
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2. THE CENSUS

Every tenth year since 1790, a Census has been taken to count

the people of the United States. The total population is determined,

and even more important nowadays, so are subtotals for each of the 50 states,

the 3,000-odd counties, and the 39,000 minor civil divisions. These

subtotals are used to apportion Congress, and to allocate entitlement funds,

amounting in the early 1980's to about $100 billion a year. Thus, great

interest attaches to these counts.

Demographic analysis suggested that in the 1970 Census, about 2% of

the total population was missed: the undercount. Also, there was some

evidence to show that the undercount varied across areas, with rural areas

and central cities having greater undercounts than suburbs. Similarly,

the undercount was thought to vary across population groups: poor people,

minorities, and illegal immigrants were considered the groups hardest to count.

As a result, the Bureau made intensive efforts to eliminate the undercount

for t.e 1980 Census, especially in problem areas. There were extensive

cormr;unity outreach programs as well as'flying souads to count people in pool

halls, b4s terminals, and flop houses. These efforts seem to have met with some

success. Indeed, demographic analysis indicated that at the national level,

there was an overcount of about ¼ of 1% of the legal population, although

some of the illegal population was probably missed.

Even so, many local governments were dissatisfied with the results

and sued to compel the Bureau to revise its counts. One such suit was filed

by the State of New York (Cuomo v. Baldrige, SDNY) and turned out to

involve a number of important statistical issues. (One author of the present

note appeared for the government in surrebuttal, as did Professor G. Koch.

Expert statisticians for New York in rebuttal included Professors E. Ericksen,

F. Fisher, and J. Kadane. )
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3. THE PEP ESTIMATES

Much of the detailed information about the undercount in the 1980

Census came from the Post Enumeration Program, or PEP. This involved two kinds

of studies. The first attempted to estimate the overcoverage due to double

counting, coding households to the wrong areas, and inclusion of fictitious

persons (called "curbstone cases" in the jargon of the Bureau). It was based

on the Esple, a probability sample of about 100,000 records drawn from

the 1980 Census. To verify Census information for persons in the E sample,

interviewers were sent into the field to locate and interview each of the

100,000 people in the sample.

For about 3% of the records in the E sample, it turned out to be

impossible on the basis of Census records and field interviews to determine

whether or not the person had been correctly counted on Census Day. Additional

information (not necessarily accurate) was available in many such cases

from local post offices, and decisions had to be made whether or not to use

this information.

The second kind of study attempted to estimate undercoverage using a

capture-recapture model. In this model, people who are counted in the

Census are deemed captured. Then a probability sample of the population,
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called a P sample, is taken. The people in the P sample who were counted

in the Census are deemed recaptured. The percentage of people in the P sample

who were not counted in the Census is used (along with other information) to

estimate the Census undercount. This procedure assumes that being counted in

the Census and being counted in the P sample are in probabilistic terms

independent events after stratification on suitable covariates.

Two P samples were used in this study. They were the April and August

samples from the 1980 Current Population Survey, or CPS. The CPS is a

monthly survey done by the Bureau of the Census for the Bureau of Labor

Statistics; in 1980, the sample size was about 150,000 persons. For more

information on the CPS, see Freedman, Pisani, Purves (1978, Chapter 22), or

Bureau of the Census (1978).

An attempt was made to match each person in the P sample against the

Census to see if he or she had been counted. Those cases for which a match

could not be made were followed up by sending an interviewer into the field to

obtain additional information, for instance, an exact address or the correct

spelling of a name. After follow-up most of the cases were declared to be

matched or nonmatched to the Census. However, for about 4% of the cases, match

status could not be determined on the basis of records or field interview.

Several sets of imputation rules were developed for handling the unresolved

cases: for example, use the match status of the last resolved case with the

same sex, race, age, and area of residence. Each set of rules led, of course,

to a different undercount estimate. For an additional 4% of the cases, the

CPS interview was not completed. Since the CPS is a panel study, information

(not necessarily accurate) was available from previous interviews, and a

decision had to be made whether or not to use that information.

About two dozen different series of PEP estimates were developed. Each
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series contained undercount estimates for each of 66 areas (states and large

central cities). There was considerable variation across the series.

About half the series were discarded for one reason or another, but even

the remaining dozen were quite inconsistent with one another: for

instance, the estimated undercount for New York City ranged from 1% to

8% . This large variation may seem surprising, but in a major area like a

central city or a state, the undercount will only be a few percentage points.

With around 10% of the data missing, the choice of imputation rules

has a serious impact on the estimates, as does the decision on use of previous

CPS interviews or post office responses, or the choice between the two P-samples.

There were other problems too. The probabilistic basis for the estimate,

independence of being counted in the Census and being counted in the CPS,

was open to serious question: someone hard to find for the Census

may also be hard to find for the CPS. Also, since the P and E samples

were drawn by probability methods, standard errors for the estimates could

be computed by variants of the split-sample technique: these turned out to

be quite large. For all these reasons, the Bureau of the Census was unwilling

to use PEP to adjust the population counts.
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4. THE REGRESSION ESTIMATES

The PEP estimates, as discussed in the previous section, were

judged unreliable by the Bureau. In an attempt to improve the

reliability, New York turned to the regression model described in Ericksen

and Kadane (1984). This analysis involved 66 areas, to be indexed by i.

The study areas were of 3 types: states, like Alaska or Wyoming; central

cities, like New York, Los Angeles or Chicago; and states apart from their

central cities, like New York State apart from New York City, or California

apart from Los Angeles, San Diego, and San Francisco. The regression model

was applied to 3 of the PEP series, the principal one favored by New York being

PEP 2/9. (The 2 refers to the treatment of the P-sample, the 9 to the E-sample.)

Let yi denote the PEP estimate for undercount in area i, expressed

as a percent. Thus, yi = 3.12 indicates an estimated undercount of 3.12%

for area i, while y. = -1.79 indicates an estimated overcount of 1.79%.

Let yi denote the true undercount in area i, expressed as a percent; y

is not observable.

New York began the analysis with eicht explanatory variables, and built

a regression model using the three that best fit the PEP estimates by

ordinary least squares. These three variables were: min ,- the percentage

of the population in area i who were black or Hispanic; crime., the crime

rate in area i; and conv., the percentage of the population in area i who

were conventionally enumerated. In certain counties (mostly rural), the

Census Bureau enumerated the population conventionally, that is, in a

face-to-face interview with an enumerator. In other counties, the population

was enumerated unconventionally, by mail. Thus, for each county, the percent

conventionally enumerated was either 0% or 100%. Different states have
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different mixes of counties, so the percent conventionally enumerated in

a state ranged from 0% to 100%.

New York's model had two equations: the first said that PEP gave an

unbiased estimate of the true undercount; the second, that the true undercounts

were linearly related to the explanatory variables. To begin with, we will

discuss these equations somewhat informally. The first says

PEP estimate - true undercount + .
for area i in area i i

The second says

true undercount = a + b percent crime percenttruunercunt= a+ bminority + c rate + d conventionally + ~iaraiiaraiin area i enumerated in 1in areai in area iarea i

Informally, the assumptions of the disturbance terms 6 and e can

be stated as follows: there are 2 boxes of tickets for each area, one

representing the possible 6's and the other the possible E's. These tickets

follow the normal curve, with mean 0. For area i, the 6-box has variance

Ki, the split-sample variance estimate produced by the Bureau. All the e-boxes

have the same variance a2. The 6. is drawn at random from the 6-box for

area i; the e£j, from the s-box.

The first equation says that the PEP estimated undercount for area i

equals the true undercount for that area, plus a draw made at random from the

6-box for that area: PEP is unbiased, and the errors in PEP are unrelated

from area to area. The second equation says that the true undercount for an

area equals the displayed linear function of the explanatory variables, but

is driven off this expected value by a random error drawn from the s-box.

These errors are unrelated from area to area, and unrelated to the 6's.

More formally, the model can be stated as follows:
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(1) y. = Y. + 3.

(2) yi = a + b min. + c crimei + d convj + E.

The assumptions on the disturbance terms are as follows:

(3) E(6.) = E(s.i) = 0

(4) var 6. = K.

(5) var E = a2

(6) 61'62,...,666'1,2,...66 are independent

(7) 6i and £ji are normally distributed -

New York did not make these assumptions explicit, nor did it give any

empirical foundation for them. We defer our critique of the assumptions to

the next section, and explain here what New York did with the model.

New York's first objective was to find an estimate more accurate than PEP

for y = (yl,.--,y66), the 66x1 column vector of true undercounts. The

suggested procedure was as follows: Let X be the 66x4 design matrix,

whose jth row lists the explanatory variables (1, min, crime., convj)
for the ith area. Let H = X(XTX) 1XT, the projection matrix onto the

column space of X. Let K = cov 6 be the covariance matrix of the column

vector 6 = (6 ' '666)' so K.. = K. and K.. =0 for i 7 j. Let a2
2 ^ ~~~~~~~~~2be an estimate of a2. (Some methods for computing a are discussed in

Section 7.)

Define the 66x 66 matrix r as follows:

(8) r =l K-1 + 2(I-H)

where I is the 66x66 identity matrix. New York proposed the estimator
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(9) y = rK y

where y is the 66xl column vector of PEP estimates (Yl,... ,y66).

This was justified on Bayesian grounds, as in Lindley and Smith (1972).

If a, b, c, and d are given a diffuse prior, and if K and a2 are

treated as known constants with a2 C2, then the posterior distribution of

y is normal with mean y and covariance matrix r. This covariance matrix

has a frequentist interpretation: if the specification is correct, and if

CY CY2, it is easily seen that

(10) cov(Q-y) = r

For a frequentist justification of y, see Lemma 7.3 below. The focus

of the present paper is not the Bayesian-frequentist controversy,

but the use of inappropriate statistical models no matter how they may be

estimated.

New York's second objective was to estimate undercounts for subareas

(e.g., counties) of the 66 areas in the study. To accomplish this, New

York proposed the following procedure: Combine equations (1) and (2) to

get

(11) yi = a + b mini + c crimei + d conv + n

where nT =6. + Ej has mean 0 and variance K. + a2; the ni are independent

in i by assumption. Let 6 = (a, b, c, d) be the column vector of parameters

in (11). Then a generalized least squares (GLS) estimator of 6 is

(12) = (XT lX)~lxTEly

where Z = K + a2I. (This 3 is the Bayes estimate too, with a diffuse
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prior on the parameters.) If T= 2, then

(13) cov = (X lX)

New York proposed to estimate undercounts for subareas by substitution

into (2): if j is a subarea with percent minority mini, crime rate

crimej, and percent conventionally enumerated convy, the proposed estimate

for the undercount there is

(14) a + b minm + c crime. + d convy

The implications of this idea will be discussed below.
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5. A CRITIQUE 0

Granting assumptions (1-7), New York did have a good way of adjusting

the Census. However, no evidence was presented to show the assumptions were

true , and all seemed suspect. This section will discuss the assumptions

from a theoretical point of view; empirical evidence will be presented in

the next section.

Bias. Most persons in the CPS were counted in the Census; only a small

percentage were not. On the other hand, matching huge data files is a

complex and error-prone process, and imputations for missing data leave

plenty of room for error as well. Since the great majority of persons were

counted in the Census, it can be argued that mistakes tend to inflate rather

than deflate the estimated undercount. Thus, the PEP estimates are biased

to some degree. Indeed, it is the differences in bias which seem to cause

such a spread in the estimates across the different PEP series. Bias in

the PEP estimates that is well related to the explanatory variables is not

removed by New York's adjustment method. Nor is bias in the E's of equation

(2) orthogonal to those variables.

More technically, assume (1) and (2) but not (3). Instead, let

= E(6) and v = E(£) be the 66x1 vectors of means. As is easily seen

(Lemma 7.1)

(15) 1K-1X = X

So

(16) y - y = rK -y-y = rK + (rK -I)E

E{y-y} = rK-I + (rK- -I )v(17)
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If Vi is in the column space of X, or has a relatively large projection

into that space, 9 will be badly biased; the parallel discussion of v

is omitted. In effect, New York was taking the position that bias in the

Census--the undercount--was well related to the three explanatory variables,

but bias in PEP was not.

Subareas. New York wanted to apply the model to subareas not in the

study. However, this seems to be a logical contradiction. For example,

subdivide each of the 66 study areas in to blocks of 100,000 people. Suppose

(2) and the assumptions on e hold for the blocks. We would get the analog

of (2) for a state by averaging the equations for the blocks making up that

state. The more populous states would have more blocks, and their E's will

have smaller variances. In short, if the model holds for the blocks, it

cannot hold for the states.

Omitted variables and measurement error. Suppose the variable xi
belongs in equation (2) and is omitted. Through one of its experts, New

York conceded that this could bias the coefficient estimates and hence the

adjustment process for subareas, although this was not made explicit. On

the other hand, New York argued that y would not be biased. To reach this

conclusion, New York made the assumption that the omitted variable was

linearly related to the variables in the equation, plus a random error:

(18) xi = a++ a, mini + a2 crimei + a3 convi + i 9

the ~i having mean 0, constant variance, and being independent of other

errors. This argument seems circular. Equation (18) is just as suspect

as (2): in fact, it is exactly the same equation with x; in place of yi
on the left hand side. Similar considerations apply to the possibility of

measurement error in the right hand side variables.
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The standard errors. New York argued that 9 was a good estimator

for y because the standard errors were small. Indeed, treating K and

a2 as constant, £ and 6 as independent,

(19) cov{y-y} = rK (cov 6)KC1r + ( I-rK71 )(cov sE) (I-K 1r)

and -%2 =C2If further cov 6 = K and cov e = a2I a=na then

(20) cov{y-y} = rK_ r + c2(I-rK- )(I-K- r) =r

(The second equality can be verified on multiplying by r- and simplifying:

Lemma 7.2.)

On the other hand, if C and 6 are dependent, or cov 6 # K, or

cov E a2 I, then cov{y-y} o r, and printing out the diagonal elements of

r tells us very little about the size of the random errors in y - y, even

leaving bias aside. The Census has 3 data processing centers and 12 regional

offices servicing different parts of the country. Mistakes in administrative

procedures or in data processing (including, for instance, spilling coffee on

a box of forms) will inevitably affect more than one area. Likewise, random

events that affect the Census or the CPS in one area seem very likely to

affect adjacent areas: for example, a snowstorm in the northern Rocky

Mountains in April could easily affect the CPS in Idaho, Montana, and Wyoming.

Finally, specification errors in (2), e.g., omitted variables or region-specific

coefficients, will cause correlation across areas. For such reasons, the

independence assumption (6) seems quite suspect.

New York's procedure for computing standard errors treats var = K

as known and fixed. This is contrary to fact. The Bureau estimates K.

by the split-sample technique, so that estimate is itself affected by sampling

error. (In some of the 66 study areas, there were only a few hundred people
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in the CPS, of whom only a dozen or so were not matched to the Census, so

sampling error in K. is nontrivial.) Furthermore, the Bureau's technique

for estimating K. is known to miss some components of nonsampling error,

and even some components of sampling error in smaller areas. Similarly,

New York's procedure for computing standard errors treats a2 as known.

However, even granting assumptions (1-7), the parameter a2 must be

estimated from the data, and that estimate is subject to appreciable random

error, a component of variance missing from New York's formula.

In short, the stochastic assumptions in the model were far from logically

inevitable. New York did not make these assumptions explicit, let alone

justifying them or explaining what happened if they failed.
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6. EMPIRICAL RESULTS

Recall that y is the 66 x1 vector of PEP estimated undercounts,
1 -

and Kr= [K +&C2(I-H)f'1 is a 66 x 66 matrix. The estimator proposed

by New York was 9 = rK1y: with this estimator, y for each area is a

linear combination of the PEP estimated undercounts for all 66 areas.

To make this a bit more vivid, Table 1 shows (for the PEP 2/9 series) a

lOx 10 submatrix of rKi. Take San Francisco, for example. To compute

y for that area, take -.028 times the PEP estimate for Alabama, +.036

times the PEP estimate for Alaska, and so forth, all the way through to

-0.010 times the estimate for Wyoming. The algebraic sum of these 66 products

is 9 for San Francisco, and the corresponding row of Table 1 shows 10 of

the 66 coefficients.
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As Table 1 shows, San Francisco contributes relatively little to its

own estimate (its coefficient is .071); Florida contributes rather more

(.105); and North Dakota takes away (-.110). The numbers for Wyoming caught

the Court's attention: North Dakota and South Dakota contribute fairly

heavily to Wyoming, but get very little in return. To sum up, New York's

procedure does not have much intuitive appeal. A strong theory is needed

to establish relationships among the PEP estimates for the 65 areas, in order

to derive the coefficients reported in Table 1 and the standard errors of

the resulting estimates.

In the previous section, we argued on a priori grounds that New York's

theory was quite weak; this section will present some empirical evidence.

The first point is that rK-1 preserves the column space of X, so any

bias in y that is linearly related to X will not be corrected by New

York's procedure. On this score, there was general agreement among the

experts. Does such bias exist, and if so, how much impact does it have on

the estimates?

New York preferred the PEP 2/9 series; we wanted a comparison series

that had not been so intensively studied, and chose the PEP 10/8 series

because it was listed next to 2/9 on the computer printout we were given.

Fitting the two series by GLS gives:

(21) PEP 2/9 = -3.09 + .058 min + .056 crime + .026 conv + error
.52 .014 .010 .006

(22) PEP 10/8 = -2.23 + .022 min + .032 crime + .031 conv + error
.45 .011 .009 .005

The numbers appearing below the estimated coefficients are the standard

errors of those estimates. A preliminary OLS fit is used to estimate a2;
details are explained in the next section. There was little to distinguish
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the quality of fit between (21) and (22). A

We then examined the difference between the two series. An OLS fit

gives

(23) (PEP 10/8) - (PEP 2/9) = 1.79 - .010 min - .044 crime + .14 conv + error
.56 .014 .010 .01

R2 = .4 F = 14 P < 5/10,000,000

The difference between the two series is therefore well related to New York's

explanatory variables. We conclude that at least one of the two series is

biased, and the bias is related to X.

We then ran New York's adjustment process, starting from 10/8 rather

than 2/9. The estimates turned out to be quite different and on the whole

the results from 10/8 had smaller standard errors: see Table 2.

Table 2. New York's adjustment process, starting
from PEP 2/9 or PEP 10/8.

Area Adjustment Standard Error
2/9 10/8 2/9 10/8

Al abama .78 -.10 .55 .24
Alaska 3.30 2.96 .69 .45
Los Angeles 5.56 1.90 .65 .33
San Diego 2.61 .86 .64 .20
San Francisco 4.35 1.70 .75 .38
Rest of California 3.10 .76 .44 .16
Chicago 3.96 1.04 .72 .43
Rest of Illinois 1.01 -.53 .42 .14
New York City 5.57 1.94 .65 .33
Rest of New York -1.12 -.53 .31 .14
Wyoming 2.88 2.58 .69 .42

Note: Los Angeles, Chicago, and New York are the largest
cities in the U.S. We elected to fill out the
table with the other cities in California and the
rest of that state and of Illinois.
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Of course, if 2/9 were unbiased and all the bias were in 10/8, Table 2

would be irrelevant to New York's case. However, -it is hard to see why that

should be so. The two series may be compared as follows: 2/9 was based on

the April CPS, 10/8 on August. Using the August survey may reduce the

dependence of CPS and Census, but increase the errors caused by people moving

between Census Day and the CPS interview. There were minor differences in

handling certain kinds of nonresponse (use of post office data or prior CPS

interviews), but the same imputation rules after follow-up were used in the two

series. All in all, it is by no means obvious which series is better, if either.

Of course, direct evidence on bias in 2/9 is not available, because the

true undercounts are unknown. However, the Bureau did have good evidence to

show that the strengths of various likely sources of bias were well related to

X. For example, let imp. be the percentage of cases in area i with imputed

CPS-Census match status. For April series (including PEP 2/9), by OLS,

(24) imp = 1.40 + .047 min + .024 crime + .014 conv + error
.61 .016 .011 .0085

R2 = .4 F = 12 P < 2 *10 6

Imputation is clearly a potential source of bias, and the amount of imputation

by area is well related to the explanatory variables chosen by New York. This

completes our discussion of bias.

New York's choice of variables and of functional form seemed quite

arbitrary. Too, New York seemed to ignore the problems created by measurement

error in the explanatory variables. Since crime rate statistics are notoriously

unreliable, it occurred to us to run New York's adjustment process with crime

rate replaced by urbanization, that is, the percentage of the population in

an area living in urban communities. (There is strong opinion in the

Bureau that urban and rural areas present very different kinds of enumeration

problems.) The equation fitted by GLS is
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(25) PEP 10/8 = -2.27 + .031 min + .025 urb + .031 conv + error
.57 .011 .009 .005

We saw little difference in quality of fit between this and (22). The

adjustments and standard errors for certain areas are shown in Table 3. On

the whole, replacing crime by urbanization seems to represent an improvement,

in terms of reducing bias due to measurement error, and even making a

marginal reduction in standard errors.

Table 3. New York's adjustnent process based on
PEP 10/8: crime rate vs. urbanization.

Area Adjustment Standard Error
Crime Urb Crime Urb

Alabama -.10 .02 .24 .24
Alaska 2.96 2.59 .45 .42
Los Angeles 1.90 1.56 .33 .30
San Diego .86 .93 .20 .24
San Francisco 1.70 .97 .38 .24
Rest of California .76 .80 .16 .18
Chicago 1.04 1.85 .43 .37
Rest of Illinois -.53 -.11 .14 .15
New York City 1.94 1.55 .33 .30
Rest of New York -.53 -.19 .14 .14
Wyoming 2.58 2.55 .42 .42

For the 66 areas in the study, the choice of variables has some impact

on the adjustments, but not a major one since both sets of variables span

essentially the same column space. On the other hand, when extrapolating

to subareas, the choice of variables matters a lot. The point is illustrated

in Table 4, for 14 counties. The first two are hypothetical: A is a suburb

with a low crime rate; B is a rural high-crime area. The next 12 counties

are real, and were chosen to match county A or B, with some variation in

the conventionality variable. As will be seen, when it comes to subareas,

the explanatory variables make quite a difference. There seems to us no
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rational ground for choosing crime rate over urbanization, and the choice has

major political implications: the former variable helps high-crime areas, like

central cities; the latter, low-crime areas like suburbs. This completes our

discussion of the impact of New York's rather arbitrary choice of specification.

Table 4. New York's adjustment process applied to
starting from PEP 10/8, using crime rate

DATA
County mi n conv crime urb

Hypothetical 0 0 0 100

Hypothetical 0 0 100 0

Treutlen, GA 32 0 1.5 49

St. Bernard, LA 12 0 3.6 96

Chickasaw, MISS 36 0 4.2 40

Nuckolls, NEB 0 100 3.3 36

Pierce, ND 0 100 4.9 54

Tripp, SD 0 100 4.6 48

Alpine, CA 4 100 252 0

Giltin, COLO 5 100 102 0

Summit, COLO 2 100 171 0

Lake, MICH 18 0 105 0

Menominee, WISC 0 100 153 0

subareas,
or urbanization.

ADJUSTMENT
crime urb

-2.2 .2

+1.0 -2.3

-1.5 -.1

-1.9 .5

-1.3 -.2

1.0 1.7

1.0 2.2

1.0 2.0

9.0 1.0

4.2 1.0

6.4 .9

1.5 -1.7

5.8 .8

Finally, we discuss a simulation experiment which makes three points:

i) The variables which belong in the equation cannot be identified from

the data; ii) a2 cannot be reliably estimated from the data; iii) New

York's standard errors are much too optimistic. The experiment takes the

vector y of true undercounts as fixed not random (more about this later);

indeed, y was taken equal to the PEP 10/8 series. The PEP estimates were

simulated as

(26) y = y + 6
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where the 5* are independent normal variables with mean 0, and var 6* = K.,

the Bureau's split-sample variance for 10/8. In effect, this grants (1)

and the assumptions on 6, but takes an agnostic position on (2) and C.

We then generated 100 artificial data sets from (26). For each data

set, we followed New York's procedure of choosing the best three variables out

of the given eight by OLS, and estimating a2 = var ei in (2). The results

for the first ten data sets are shown in Table 5. It will be seen that there

is no consistency in the choice of variables, or the estimate of a2.

Table 5. A simulation experiment on varjable
selection and estimation of a .

run min crime conv cc mu pov ed eng-d __

1 X X X .61

2 X X X .00

3 X X X .23

4 X X X 1.20

5 X X X 1.64

6 X X X 1.46

7 X X X 3.44

8 X X X 3.65

9 X X X .40

10 X X X 4.53

Note: cc is an indicator for central cities
mu is the percentage of multiple-unit housing
pov is the percentage below the poverty line
ed is the percentage with a high school degree

eng-d is the percentage who have difficulty speaking english

For each of the 100 data sets, we have so far chosen the three variables

that define the.design matrix X, and have estimated a2. We then use

(8), (9), and (10) to get an adjustment ^* for each area, with nominal
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variance rf. The covariance matrix K for 6 -was fixed throughout the

simulation; for each artificial data set, however, there was a separate

estimate a* for c, and a separate projection matrix H* because the

best three variables change from data set to data set: then
= ".,*-2 * -* [K1 +a* (I-H*)]- , according to (8).

The real rms error for area i is E*{(j- y)2}I estimated by taking

the root-mean-square over the 100 replications; likewise, the nominal rms

error is E*{Pj.}.2 These quantities are shown in Table 6, along with KI
the PEP SE. As will be seen, the nominal standard errors are often (but not

always) quite misleading. Taking the root-mean-square over all 66 areas:

real rms error = 1.17

nominal rms error = .82

rms PEP SE = 6_16i KS = 1.59

Thus, the nominal rms error is too small, by about 40%. The reduction in

error is exaggerated by a factor of (1.59-.82)/(1.59-1.17), which is

nearly 2. (This bias seems to be due in part to the usual problems caused

by variable selection; and in part to components of error not recognized by

New York, including the variability in G.) Whatever improvement 9 does

make on y is contingent on the assumed independence of the 6's and knowledge

of their variances, both assumptions being open to serious question.
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Table 6. A simulation experiment on s-tandard errors.

Real Nominal PEP
rms Error rms Error SE

Alabama .90 .69 .90
Alaska 1.77 1.26 2.80
Los Angeles .65 .84 1.20
San Diego 1.92 1.13 2.62
San Francisco 1.61 .88 1.30
Rest of California .49 .41 .45
Chicago 1.35 1.05 1.61
Rest of Illinois .49 .55 .67
New York City .71 .77 1.03
Rest of New York .59 .67 .88
Wyoming .73 .77 .96

A comment may be in order on the randomness in y. For area i, let

N. be the population on Census Day, and N. the Census estimate. Then

y= (N -N )/Ni x 1OO%. From a Bayesian point of view, it may be proper to

treat y. as unknown and therefore random. Even from the frequentist viewpoint,

it may conceivably be proper to view the 1980 Census as a measuring device,

subject to bias X$ and random error E. New York's calculations then relate

not only to the actual 1980 Census, but to all the other ways it could have

turned out but did not. From our point of view, this seems a bit fanciful.

We prefer to consider N. as fixed and unknown, while N. is fixed and

known, so y is not stochastic. This preference is partly because the

Census was in fact taken and did come out the way it came out. But the main

reason is that the indeterminacy of the Census numbers seems to us far too

complicated to model in terms of random draws from a box. Our simulation was

done conditionally on N1 because the randomness in the Census is too complex

to model.
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7. TECHNICAL DETAILS-

We begin by describing more carefully the procedure for estimating a2
Consider the OLS regression of y on X; let H be the projection matrix;

the residual vector is e = (I-H)(E+6). Using (3-6), it is easy to compute

- E{e 112el = E{trace eeT}

= trace (I-H)(K+a2)(I-H)
= [trace (I-H)Ki- + (n-4)a2

Now

^2 1 2_a = n{4 {|e 11-trace (I-H)K}

This estimator is the one used in the simulation experiments.

We also considered an iterative procedure suggested by New York. Starting

from, say, a0 one forms = K + a02I, and regresses y on ^ZO X;

let X be the mean square for error; if X is close to 1, stop; if not,

revise a02 and iterate. Convergence seemed-fairly rapid, but the procedure

was hard to automate for the simulation.

We now present three lemmas.

LEMMA 1. rK-1 X = X.

PROOF. Let M = I + a 2K(I-H). Thus, rKP1 = M1. If v is in the

column space of X, clearly Mv = v, so rK7 v = v. O

LEMMA 2. If (1-6) hold, and a2 = a2 then cov (r-.y)= r.

PROOF. By Lemma 1, rK 1 H = H, so

rKC1 + (I-rK 1)(I-H) = I
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Multiply on the right by r and note

r Hr = (I r)

because

a (I-H) = r- K

LEMMA 3. If (1-6) holds, and a2 E2 then y is the minimum-variance

unbiased Linear estimate of y.

PROOF. This follows from Goldberger (1962). There is an unfortunate

conflict of notation: the £ in his (2.1) is our C + 6, so S in his

(2.3) is K + a2I. The y* in his (2.4) is y., and s*=s-: thus, his w

is all O's except for a in position i. His optimal predictor is c'y,

where c' is defined in his (3.11); to verify that c' is the i th row

of rK 1 amounts to proving that

(27) rK 1 = G + a2 E-1(I-G)

where G is the GLS projection matrix

(28) G =X(XT E1 X)1xTT -1

This reduces to verifying that

(29) KrP1G + a2KrP1 E_1(I-G) = I

Now Kr-lX = X as in Lemrna 1, so Kr-G = G. One also verifies that

(30) a2Kr 1 lI = I KH E 1

Substitution into ( 29) reduces the problem to showing
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(31 ) KH Z 1 G = KH Z 1

This can be verified by substituting the definitions of G and H.
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