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1. Introduction. Let Xi, X2,... be independent fRd_valued random

variables having common unknown density p and consider the random sample

X1,... xnof size n . In this paper we will study the asymptotic

behavior as the sample size tends to infinity of a certain window selection

rule for kernel estimates of the unknown density based on the random

sample.

The kernel estimates are of the form

Pnh(X) =n El Kh(x-Xi)

where Kh(x) = vh K(x/h). Here the "window" h = (h1,...,hd) belongs to

lRd , the collection of d-tuples of positive numbers; vh *hd

is the corresponding volume; x/h = (x1/h1,...,xd/hd) for

x = (x1.. . xd) E lRd; and K is a function on IRdhaving integral

one and satisfying some mild restrictions, which will be described in

Section 2.

The integrated squared error loss Lnh = (P P)2 of the estimate

Pnh can be written as

Lnh = Jnh 2PnhP + fp

The goal of minimizing this loss is equivalent to that of minimizing

Lnh fP 2Pnh= 2JfpnhP
but this goal cannot be realized in practice, since fpnhP is unknown.

Observe, however, that

JPnhP = n 1 fKh(x-x.)p(x)dx
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and hence that

Efpfnhp = ffp(x)p(y)Kh(x-y)dxdy = EKh(X-Y)

where X and Y are independent random variables each having density

p . Consequently,

EIPnhP = E[(nl) EE Kh(Xi-Xi)1~j
where i and j are understood to range over {l,...,n} . This leads

to the unbiased estimate

1 ZE K (Xj) c

of fpnhP A slight simplification leads to the estimate

EE Kh(Xj-Xj)n2 i~j 1 3

of 1pnhP ; to the corresponding estimate

Mnh = 2 - 2 ZE K (X.-X) 7 E E K 2)(X-xJ) - n E Kh(Xi-Xj)

of Lnh -p2 ; and to the window selection rule, "choose the window h

to minimize the criterion Mnh " This and other asymptotically equivalent

criteria have been proposed and studied by Rudemo (1982), Bowman 31984),

and Hall (1983a, 1983b). They point out that such criteria can also be

thought of in terms of cross-validation. Specifically, let pnih be

the kernel estimate of p based on the random sample with the i th case

removed:

Pnih(X n-I # Kh(-)
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Then

in
n l Pnih(Xi) - n(n-1) EE Kh(X.-X.)

is the cross-validation estimate of fpnhP -

An alternative, asymptotically equivalent, cross-validation criterion

(estimate of Lnh - fp2) considered by these authors is

ln 2 2 ~n
n El fpnih - 1 Pnih(Xi) -

Hall showed that choosing h E Hn to,minimize this cross-validation

criterion is asymptotically optimal under certain conditions on K, Hn

and p . In particular, K is assumed to be nonnegative. (If p is

sufficiently smooth,then faster rates of convergence of the integrated

squared error loss to zero can be obtained when the nonnegativity

restriction on K is dropped.) The unknown density p is assumed to

have a uniformly continuous square-integrable second derivative and to

have finite second moment. Moreover, Hn = {(h1,...,hh): C <nl/(4+d)h <X}

where 0 < C < X < c. On the other hand, two of the restrictions imposed

on K in Section 2 of this paper, compact support and Holder continuity,

are not required in Hall's results. (No serious attempt has been made

here to eliminate or weaken these restrictions on K . For it is numerically

more efficient to compute Mnh when K is a suitably chosen function with

compact support; also minimizing Mnh by a numerical search technique

is more attractive when K is at least mildly smooth. When d = 1 these

two considerations suggest using the triangular kernel K defined by

K(x) = 1 - {xl for ixi < 1 and K(x) = 0 elsewhere; with this choice

of K , after a preliminary sort of X1*.**,Xn , the determination of Mnh

for any given value of h requires only O(n) computations.)
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The purpose of this paper is to show that choosing h E Rd+ to

minimize Mnh is asymptotically optimal under a surprisingly mild assumption

on p ; namely that p and its one-dimensional marginals are bounded.

In this level of generality, there are no known theoretical results on

the asymptotic behavior of the optimal window h or the optimal rate of

convergence to zero of the integrated squared error of estimation.

The main result is described in Section 2 and proven in Section 3.

The formulation of the result and the method of proof were influenced to

some extent by several recent theoretical investigations of the Final

Prediction Error (FPE) and other closely related model selection criteria

in the regression context: Shibata (1981), Breiman and Freedman (1983),

Rice (1983) and Chen (1983). The relatively long proof of Lemma 3 in

Section 3 is given in Section 4. It uses "Poissonization", which has

been employed by Rosenblatt (1975) and Krieger and Pickands (1981) in

related contexts; interestingly, it also uses multiple stochastic integration

with respect to a Poisson process.

A result similar to Theorem 1 was obtained for histogram density

estimates in Stone (1983). The method of proof was also similar, except that

the Poissonization argument used to prove the analog of Lemma 3 was much

simpler.

Under various restrictions, Krieger and Pickands (1981) and Sacks

and Ylvisaker (1981) obtained asymptotically optimal selection rules for

kernel estimates of the density at a fixed point. In the later paper the

entire kernel, not just the window, was optimized.
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2. Statement of the main result. As mentioned above, the kernel K is

required to have integral one. In addition, it is required to be symmetric

about the origin, to have compact support, and to be Holder continuous;

that is, such that for some positive constants 6 and c

IK(y)-K(x)I < cly-xjI for x,y GE Rd

(here |xi = (x2+...+x2)½ for x = (xl,.. .xd) E ¶Rd ). The function K

is not required to be nonnegative. Let K(2) denote the convolution of

K with itself, so that K(2)(x) = fK(x-y)K(y)dy . Then K(2) satisfies

the same assumptions as K ; in addition, K(2)(0) = fK2(y)dy > 0 . The

kernel K is further restricted by requiring that K(2)(0) < 2K(O)

(which necessarily holds if K is nonnegative and K(O) = maxx K(x) ).

Let h, vh, x/h and Kh be defined as in Section 1 and note that

<hd Alodfn (~2) (2) V-1 (2)0 < vh < ih . Also defhneKh by Kh (x) = vh K ((x/h) . Then

K and K(2) each have integral one and Kh2) is the convolution of
Kh Kh h~ i h onouino
Kh with itself. Let Pnh and Lnh be defined as in Section 1, and

observe that fP 2 and Lnh are both continuous on IRd
A window selection rule hn is a 1R+-valued function of Xs X

Clearly

Lnh
-------> 1.
mlnh Lnh

The indicated minimum is actually taken on at some h GE . For it

is easily seen that

lim inf (Lnh-p2) °0
d nhS

also if the coordinates of h are all large, then
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p2h vvhK(2)(0) and fPnhP vh'K(O)

so

Lnh - fp2 ' v_1(K(2)(0)-2K(O)) < 0n

(Here we have used the restriction that K(2)(0) < 2K(O) .) The window

selection rule h n is said to be asymptotically optimal provided that

Lnh
lim minh n = 1 with probability one.
n mnhLnh

Consider the window selection rule hn defined to be a value of

h E Rd that minimizes the criterion Mnh introduced in Section 1.

(It follows as in the previous paragraph that the minimum of Mnh is

taken on at some h E d+ The one-dimensional marginals of p are

defined to be the densities of the coordinates of X , where X has

density p . The main result of this paper can now be stated simply as

fo 11 ows.

THEOREM 1. If p ccnd its one-dimensional marginals are bounded,

then hn is asymptotically optimaZ.

Suppose p satisfies the assumptions of Theorem 1. Then, in the

notation of Section 3, fl Ph-P 0 as h - 0 . Thus it follows from

Theorem 1 together with Lemma 1 and Lemma 4 of Section 3 that hn and

Lnh both converge to zero with probability one as n - X . Fornlhn
contrasting results when the Fourier transform of p vanishes outside a

compact set C and the Fourier transform of K is the indicator function

of C , see Ibragimov and Khasminskii (1982).

Burman (1984) has concurrently used the arguments of Shibata
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(1980, 1981) to obtain a more general asymptotic optimality result for

density estimation (with "in probability" instead of "with probability

one" in the definition of asymptotic optimality). When specialized to

kernel density estimation, the window h is selected from a finite set

Hn l{h',...hN } subject to certain restrictions on Nn and the

deterministic sequence hl,h2,... ; p is assumed to be bounded; and K

is required to have finite 8th moment, but K is not required to be

symmetric or continuous or to have compact support.

For related work in which integrated squared error loss is replaced

by other measures of loss see Chow, Geman and Wu (1983); Devroye and

Gyorfi (1983); Stone (1983); Birge (1983); Marron (1984); and Bowman,

Hall and Titterington (1984). For a recent review of a wide variety of

smoothing techniques in statistics see Titterington (1984).
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3. Proof of Theorem 1. Throughout this section and the next one,

it is assumed that p is bounded. Let Ph denote the convolution of

Kh and p , so that

Ph(X) = fKh(x-y)p(y)dy = EPnh(x)

Set IIPh-Pti = (f(ph-p)2)2 and let s A' t denote the minimum of

s, t E E .

LEMMA 1. There are positive constants b and C such that

2 > c(IhIbd Al) > C(v A 1 for h E Ed

PROOF. Let p and p denote the Fourier transforms of K and

p respectively. Then ¢ is bounded and continuous; it is real-valued

since K is symmetric; it vanishes at infinity by the Riemann-Lebesgue

lemma; it equals one at the origin and is not identically one on any

neighborhood of the origin. The Fourier transform Xh of Kh is given

by fh(t) = ¢(ht) , where ht = (h1t1,..., hdtd) ; and the Fourier transform

of Ph is hp According to Parseval's identity and the boundness of

the density p , fjlpl2 = (2Tr)d p2 < and

(27)d ,Ph _P1I2= IflhP Pl2 = f(l-_h)2Ip!2

Now p is continuous and p(O) = 1 , so there is a nonempty bounded open

ball C centered at the origin of ERd such that |P|2 > ½ on C .

Also 2{h-P't is bounded away from zero for h outside any neighborhood

of the origin. Suppose the desired conclusion is false. It then follows

easily from the power series for the cosine function and a compactness

argument that there is a unit vector u E Rd such that
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f dt(Jf(ut.x)kK(x)dx)2 = 0
C

for every positive even integer k . By continuity, for each such k

f(ut.x)kK(x)dx = 0 for all t E C .

Choose j E {l,... ,d} such that u; # 0 . By proper choice of t it

follows that

IxiK(x)dx = 0

for every even integer k . By the symmetry of K , this equality holds

for every positive integer k . But this is clearly impossible since K

has integral one and compact support. (Suppose, say, that j = 1 and

define K1 by

Kl(xl) = f .fK(xlI...xd)dx2--dxd.

Then K1 has integral one and compact support and fI xkK (x1)dxl = 0

for every positive integer k . Consequently the Fourier transform of

K1 is identically equal to one, which contradicts the conclusion of the

Riemann-Lebesgue lemma.)

Set

2
Jnh = Ph-P + l/nvh 9

3nhr = vr A 1 + l/nvh for r > 0 ,

Gh n-1 E nGnh = InE1 ph(Xi) Eph(X) 9

and

Gn = n 1 1 p(Xi) - Ep(X)
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A modified form of Theorem 1 will first be proven, in which h ranges

over a finite subset Hn of ¶Rd the number of whose elements increases

at most algebraically fast in n ; the original form of the theorem then

follows (see the end of this section).

CONDITION 1. #(H ) < Ana for n > 1 ,where A and a aren

positive constants.

LEMMA 2. If Condition 1 holds, then

ln hmeaH nh Inh GnI with probability one

and

lim max JnhIf(Pnh(Ph)(Ph-P)I = 0 with probabiZity one
n En

PROOF. Set

Zih= Ph(Xi) - p(X.) -(EPh(X)-Ep(X))

Then Zih i > 1 , are independent and identicalty distributed random

variables each having mean zero. Since p is bounded, there is a

positive constant c independent of h such that JZh' < c and

Var (ih' cuh2 , where uh = | II * Observe that

Gnh n nh (Zlh+...+Znh)/n . By Bernstein's inequality (see

Hoeffding, 1963)

Pr(iZfhK>t) < 2 exp[-TX/2(1+X/3)]

where 0 < X < t/u2 and T = nt/c . Choose E > 0 . Suppose thatUhnS nn<eh

luh >nE 2 Set t=n-n -2Uh and X=n'2/Uh<l1 Then kT =n2/c
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Suppose instead that uh < nC 2 Set t= n2 and X = 1 Again,

XT = n2S/c Thus in either case it follows from Bernstein's inequality

that

Pr(IZnhi>t) < 2 exp(-n2/3c)

Hence by Condit-ion 1.

lim Pr(IZnhl > nE h + n2 1 for some h E Hn) = 0
n

Thus to verify the first conclusion of Lemma 2 it is enough to show that

for some £ > 0

lim max 0
n u>O u2+l/nu 2/b

where the positive number b is defined as in Lemma 1. For

O < C < 1/2(1+b) , this result is easily shown by considering separately:

O < u < nE , n 2 < u < n b/2(1+b) , and u > n-b/2(1+b) Th d

conclusion of the Lemma follows from the same argument applied to

Zih =(Kh(xhxi )-Ph(x))(ph(x)-p(x))dx

Let Pn denote the empirical distribution of X1,. . .Xn defined by

Pn(B) = n1 #{i: 1 < i < n and X E B} for BC¶R

The proof of the next result is postponed to Section 4.

LEMMA 3. If Condition 1 holds, then for aZZ r > 0

lim max J - 1ff K (x-y)(Pf(dx)-P(dx))(P (dy)-P(dy))l = 0
n hEHn nhrxpb Zity on.

with probability one.



13

LEMMA 4. If Condition 1 holds, then for all r > 0

urn max JnhrIf(PnhPh) K( (O)/nvhl = 0 with probabiZity one.

nROOFh bhn

PROOF. Observe that

f(pnh-Ph)2 =Jf(fKh(z-x)(Pn(dx)-P(dx)))2dz
= fK(2)(x-y)(P (dx)-P(dx))(P (dy)-P(dy))

= *I'fK(2)(x-y)(Pn(dx)-P(dx))(Pn(dy)-P(dy))
x~y
+ K(2) (O)/nvh

so the desired result follows from Lemma 3 (applied to K(2) insteadh
of Kh )

Suppose now that h is constrained to lie in Hn that hn
minimizes Mnh over Hn , and that Condition 1 holds. To verify that

hn is asymptotically optimal, it suffices to show that with probability

one

ILnhI Lnh (MnhI'Mnh)Ilim max L +L=0 .

n h,h' EH nh nh'
n

.For this it is enough to show that

(3) liminf mm Lnhliminf mlH nh 0 with probability one
n h GEHn

and

(4) lim max
n h ,h' E Hn

ILnhI Lnh (Mnht'Mnh)I
i nh jnh'

= 0 with probability one.

Since
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Lnh = (PnhP) =(Pnh Ph)2+ 11 Ph-PI2 + 2f(Pnh-Ph)(ph-p) 1

(3) follows from Lemmas 1, 2 and 4. Observe next (see Section 1) that

Lnh - Mnh - 2G-P = 2(Gnh Gn) + 2ffKh(x-Y)(Pn (dx)-P(dx))(Pn(dy)-P(dy))
xfly

Thus (4) follows from Lemmas 1, 2 and 3.

Since K is Holder continuous, the original form of Theorem 1 is

easily reduced to the modified form based on Condition 1, the details

being left to the reader. (Recall the assumption that the one-dimensional

marginals of p are bounded. Accordingly, for givpn n , if one of the

coordinates of h is very small, then K(2)(X -Xi) = Kh(Xi-XJ) = 0 for

1 < i < j < n except on an event having very small probability.)
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4. Proof of Lemma 3. The proof is based on "Poissonization."

Given a positive number X , let N(dx) be a Poisson process on ¶Rd

with EN(B) = XP(B) . By definition, N(B) has a Poisson distribution;

and if B1,... Bk are disjoint, then N(B1),...,N(Bk) are independent.

Set M(dx) = N(dx) - XP(dx) . Also, given a positive integer Q , let

Pt denote the probability measure on RZd defined by

PI(dx1 *...*dx9) = P(dx ).. P(dx9)

Let k and Q denote positive integers with Q < k . Let rP0
k9,

denote the collection of all k-tuples' il ,04**ik of integers in

{1 ,... .,Q} such that:

(a) each i E {1,.0..,} appears one or more times among i1,...,ikk
(b) if i , i' E {1,... ,Q} and i < i , then i appears before

1 among 1l' ' k E

Given x E (xl,...,xk) E Rk and y = (i i u kr , set

xy= (xi ,...,x.j) . Let rkz denote the subcollection of all
0

y = (i1l,..,ik) E r kP such that each i E {1,...,Q} appears two or

more times among iI,... ,ik . Observe that rk9 is empty for Q > [k/21

where [c] is the greatest integer no greater than c . By definition,

rkl = {(1,...,1)} for k > 2 ; while r42 consists of the three 4-tuples

(1,19,2,2) , (11,2,1,2) and (1,2,2,1) .

LEMMA 5. Let g be a (Bore1) function on IRk such that

k 9
E g(xy )|PZ(dx) <X

k9.
Then

Efl- lfg(x 1
- gxk)M(dxl) .M(dxk) = [21 z fg(x)P9(dx)
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PROOF. It suffices to prove the result for functions g of the
kproduct for) =1l(xk I ) , where Ty , 1 < j < k , are

bounded; the general result follows by the usual L approximation

argument. For functions of the indicated product form the desired

result follows in a straightforward manner from the formula

El tj |fT dM

where

: t.'T.
= x (e 11--t.'Y.)dP

(Observe that

k ake
1 1 k

here Io means that t, =. ..= tk = 0 . Note that 10= 0 and

ac/atj 0 = . Thus it follows, for example, that

a2efE fT1dM Jf 2dM = at1 t2 l

1~ ~ =9li2 atQat-2Io
1 2tat atl at 0

a2

X f\TP 2dP

X J g(xl,x )dP

where g(xl,x2) = T{1(xl1)>2(x2) *)

For results related to Lemma 5 see Ogura (1972) and Krausz (1975).
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LEMMA 6. For each positive integer k there is a positive constant

Ck such that

2k ~~2k 2k [(,l)2E[(ffKh(x-y)M(dx)M(dy))k] < ckvh E X Vh

dfor X > O and h ER+

PROOF. It follows from Lemma 5 that the indicated expectation is a

finite linear combination of terms of the form

Xf f TI K'M(x -Xj )P(dxl ) ..P(dx,,)
where l < im < Z and vm > 0 for all m 2 < < 2k, mvm = 2k

and each i E {I,... ,Z} appears. at least once in the sequence il ,jil 'i2'j2'

It follows easily from the boundedness of p and the definition of Kh

that terms of this form are bounded in absolute value by a constant

multiple of XhPkv[(l )/2 . The desired result now follows immediately.

Set N = N(¶Rd) -

LEMMA 7. For each positive integer k there is a positive constant

ck such that

E[ ( ff K (x-y) (N(dx)-NP(dx))(N(dy)-NP(dy))2kJ
xSy

ck(X+X+ 2k 2k Z[ (Z+l )/21 g¶d< ck(X+X+vh 2 E Xh ) for X > 0 and h +

PROOF. Observe first that

ff Kh(x-y)(N(dx)-NP(dx))(N(dy)-NP(dy))
x=y

= 1Kh(x-y)M(dx)M(dy) - 2(N-X)fPhdM + (N-X)2fPhP
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Now | is bounded in h and E(N-X)4k is bounded above by a

constant multiple of X + X2k Also Ph(x) is bounded in h and

x and

tfphdM tPh
Ee exp(Xf(e -l-tph)p)

so each cumulant of fphdM is a multiple of X that is bounded

in h . Since this random variable has mean zero, its 4kth moment

is bounded above by a constant multiple of X + x2k The desired

result now follows from Lemma 6.

LEMMA 8. For each positive integer k there is a positive constant

ck such that

E[ ( IKh(x-Y)(Pn(dx)-P(dx))(Pn(dy)-P(dy))) 2k

ckn (2k -2k 2k k [(Z+1l 2
< ckn k(n +vh n vh )/2h ) for n > 1 and hE1R+

PROOF. Set N n(dx) = nP n(dx) and

Z = I4Kh(x-y) (Nn(dx)-nP(dx))(Nn(dy)-nP(dy))

Let Wn denote the 2kth moment of Z and set = 0. Let R(X)

denote the 2kth moment of the random variable obtained through replacing

n in the definition of Z by a Poisson random number N having mean

X , N being independent of Xi, i > 1. Then

= n
R(X) = E Pr(N=n)v n n! e Vin

n n

determines a polynomial of degree 2k in X with R(O) = 0 , and by
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Lemma 7 there is a positive constant cl such that

0 2kR(1 (0) Xj = R(X) < C(X+X2k+v-2k 2k XZv[ (+l)/21)0 < Ej! R(X) < ~~h E Vh
j=1 Z= 1

dfor X > 0 and h E+ . Thus there is a positive constant c' such

that

for X > 0

fixed c >

2k R(j X(0) < cI(X+X2k+v2k 2kE 9[(9+l)/21)
j__ k h h

and h E R . (For suppose otherwise and note that for each

0 , if

IRMi(OI>>cXj+Xv-2k 2k 9£ [ (£+1)/2])

(where a >>b > 0 means that a/b is "very large"), then

R O) (c)i >> 2k
P ~~~~j=l

by a compactness argument, there would

c of degree 2k which equals zero at

Consequently,

2kR1j)(0 <

n j=l n- !j -

RW(c)i(cX)3 > 0 ;

then be a nonzero polynomial in

more than 2k distinct points.)

2k R(j)(O)I i
jl j! n

j=l

< c'k(n+ 2k+ 72k 2k n9v[ (z+1 )/2]_ kn h Z=l h

which yields the desired result.

Lemma 3 follows from Lemma 8 and a Chebychev type inequality involving

the 2kth moment by considering four cases separately: vh > 1 ,

nl/(r+l) vh < 1 n2 < vh < nl/(r+l) and 0 < vh < n 2
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