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SOME CONTRASTING EXAMPLES OF THE TIME AND FREQUENCY DOMAIN
APPROACHES TO TIME SERIES ANALYSIS

DAVID R« BRILLINGER
University of California, Berkeley

ABSTRACT

Two distinct approaches to the analysis of time series data
are in common use = the time side and the frequency side. The
frequency approach involveevesaential use of sinusoids and bands
of (angular) frequency, with Fourier transforms playing an important
role. The time approach makes little use of theses Certain uccful
techniques are hybrids of these two approaches. This work procecding
via examples, compares and conirastc the two approaches with

respect to modelling, statistical inference and researcherc!'
air_ns .

1 INTRODUCTION

¥any, many time series analyses have been carried out at this
roint in time. Some‘of these analyses have becn carried out totally
in the time domain, some have pfocordod essentially in the freguency
domain, and some have made substantial use of both domainse There
are numcrous examples in hydrolomy of each type of analysise. 1t
seems useful to examine some time series analyses to attempt to
recognize the strengths and weaknesses of each approach and to try
to discern just what lead the rescarchers involved to adopt the
particular approach that they did.

This work presents descriptions of a number of time series
analyses that the author has been involved withe. Some of these

have been frequency side, some have Yboen time side and some have

bVeen hybridse. Some have been parametric, some have been nonparamet-
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rice Some have involved linear systems, some have been concerned
with nonlinear systemse. None of the studies are hydrological,
however it is clear that analagous situations do arise in hydrology-

It seemed best to present examples that the author knew all details
concerninge.

2 TIME SERIES ANALYSIS
Tukey (1978) defines our field of study as follows:

"Time series analysis consists of all the techniques that,

when applied to time series data, yield, at least sometimes,

either ingight or knowledge, AND everything that helps us

choose or understand these proccduress"
In that paper he further lists some of the aims of time series
analysis. These arc: l. discovery of phenomena, 2. modelling,
3. preparation for further inquiry; 4+ reaching conclusions,
S5« assescment of predictability and 6. description of variabilitye
As one attempts to understand the relative merits of the various
approaches and technigues of time scries analysic, it is worthwhile
to keep the above definition and aims in minde.

108t researchers would scem agread on what is a time side analysis-

There is uncertainty over juct what constitutes the frequency side:.
The following variant of a statcment in Bloomfield et al (1981) is
helpful: frequency side analysis is thinking of systems, their
inputs, outputs and behavior in sinucoidal terms.

It is easier to list technigques that are time side, f{requency

side or hydbridse. Cn the time cidc one may list: state space,

autoresressive moving average (ARFA) and econometric modelling,

trend analysis, regression, pulne probing of systems and empirical

orthogonal functions among other thingse On the frequency side

onc may list: spectral and cepstral analysis,

seasonal adjustment,
harmonic decomposition and sinuanoidal prodbing of systemse Hybrid

technigues include: complex demodulntion, moving spectrum analysis
and the probing of systeme by chirpse. 1In practice it scoms that

there is unually a froguency version of a time side proccdure, and



vice versas It further seems that these techniques are generally
allies, rather than competitorse.

A number of practical time series analyses will now be desocribed
and their type of analysis commented one

3 THE CHANDLER WOBBLE
The point of intersection of the Earth's axis of rotation with

the polar cap does not remain fixed, rather it wanders about within
a region of the approximate size of a tennis court. Let (X(t),Y(t))
denote the coordinates of the point at time t, relative to its long

run average positione Set Z(t) = X(t) + iY(%), then (from Nunk and
MacDonald (1960)) the equations of motion are

dao(t) - az(t) + dl(t)

dt dt

with 2(t) the excitation function whose increments di(t) describe
the change in the Earfth's incrtia tensor in the time interval

(t,t+dt) « Supposing the process § to have stationary increments,

the power scpeccirum of the scries < it given by
-
£..,(0) = lA=-al™7r,, () .

What is of interest hero is to derive an estimate of a and to
derive characteristicsc of the excitation process § « It is known
that the excitation process contains an annual component, due to
the alternation of seusons in the southern and northern hemispherese

To build a specific model, suppose that the increments of seasonally
: ~
adjusted ¢ are white noise with varianoe o+« The spectrum of the

seasonally adjurted U is then i) - Q|-262/2ﬂ « The data availabdle
for analyeis is (t) perturbed by measurcment error for t = O,.-.,
T™1 + (1n Brillinger (1973) it is menthly data from 1902 to 1969.)
Surrosing the variance of the measurcement error series to be p2,
tha power spectrum of the series of fairst differences of the

ceavenally adjusted discerete data is gmaven by



gi 1 0-23 1 p2|1 - e-ia|2

> - £(Q)
28 1 - 26 Pcos(n -3) + 2P * 2= A

»

where a =« =8 + ix e Given the data one would like estimates of the
parameters «,B,%,p,o and to examine the validity of the models These
things are possible on the frequency sidee.

Let dT()) denote the finite Fourier transform of the series of
first differences of the seasonaly corrected data. The periodogram
of this data is then IT(})- The periodogram ordinates IT(Zna/T),

8 ->1,2,--- being approximately independent exponential variates
with means f(2ns/T), 8 = 1,2,+++ respectively, estimating the

parameters by maximizing the "Gaussian" likelihood
2n8\=1 T,2ns8 218
TsTf( ) exp(-17 (=) /1(55)

is one way to proceed. (In esscnce this procedure is suggested in
Whittle (1954)-) Estimates derived in this fashion, and estimates
of their standard errors are presented in Brillinger (1973).

Figure 4 of that paper is an estimate of the power spectrum derived
by smoothing the periodogram together with the estimated above
functional forme. The fit is quite good-.

However the nonparametric estimate does show a minor peak at
frequency 154 cycles/month that is suspiciously largee. This frequency
was further investigated by the method of complex demodulatione
Complex demodulation is a hybrid frequential-temporal techniquee
If X(t) denotes the series of concern, then the steps involved are:
i+ form U(t) = X(t)exp(-iAt) , for A the frequency of interest, ii.
smooth the series U(t) to obtain the series V(t), this is the complex
raph lv(t)\e and arg V(t) . One

demodulation is the detection of

demodulate at frequency A, iiie
of the important uses of complex

changes with time in a frcguency band of interest. For the frequency

154 special activity seems to be prescent only for the period 1905
to 1914 .



The above analysis took place principally in the frequency
domain, but partially in the hybrid domain as well. The advantages
of the frequency domain included: a+ operations on the series
(aampling, seasonal adjustment, differencing) could be handled
directly, be measurement noise was easily dealt with, oe estimation
became a prodblem of maximizing an elementary function, d. standard
errors were a byproduct of the estimation procedure. It is further
evident that a frequency component present for only a restricted
time period could only be discovered by a hybrid procedure. This
was why complex demodulation was so usefule

4 FREE OSCILLATIONS OF THE EARTH

For a time interval after a major earthquake the Earth rings at
certain fundamental frequencies. This motion is called its free
oscillations+. The frequencies are cualled its eigenfrequencieuvs The
estimation of the values of the cigenfrequencies and their associated
decay rates is a problem of fundamental importance to gcophycictc
building models of the Earthe. The prodblem is that of how to esctinmate
these parameters given the scismogram of a major earthguake. The
fregquency domain provides an effcctive means of doing thise Complex

demodulation provides an effcctive mecans of checking the mechanical
model »

Dynamical considerations sugreat the following model for the
selsmogranm,

K

X(t) = RE] akexp(-ﬁkt) COS(XLt + ék\ + e(t)

for t > O, with the Xk the cigenfregucencies of interest, the

R
"k
thelr decay rates, a

K and Sk constants and € a2 noise seriese
Crude estimates of the Xk may be derived dy graphing the pericodo-

gram of a data stretche The model may Ve examined by complex demodu-

lating at estimated A ° If the ecmocothing filter has a bandwidth

emall ecnourh to exclude other eigenfrejuencies, and if the abdove

model holds with the noise neot too sudstantial, then a grarh of



log |V(t)| will fall off in a linear fashion (slope approximately
-5k) and arg V(t) will be approximately constant (if the estimated
frequency is close enough to the true one.) Bolt and Brillinger
(1979) present such graphs for the record made at Trieste of the
great Chilean earthquake of 1960. The model seems confirmede What
is needed now are precise estimates of the unknown parameters and

estimates of their standard errorse. These may be constructed as
followse

Let a = ¥+ iB, b = aexp(if),

T™~1 Tl
di(}\) = ¢ X(t) exp(-iAt) and AT(N = T exp(-iAt)
t=0 =0

L]

. o T ) T
For A in an interval I, near Y, , one has dXCA) - bkl>(2‘- ak) +

dz(}) « Now if the noise series, ¢, is stationary and such that
well—-separated values are only weakly dependent, then the finite
Fourier transform values dZ(ch/T) , for & an integer with 2ns/T
near A , will be approximately independent complex normal variates
with mean O and variance 2anCL(A) « (See Brillinger (1981) for
examples) The maximum likelihood estimates of the unknown parameters

are thus the least squares estimatec found by minimizing

tlap(328) - b ANEE - )1’

where the summation is over frequencies 21s/T in I, « Further the
acymptotic distribution of thcse estimates may be found directly

and so standard errors estimated and confidence intervals construct-
ed. Details are given in Bolt and Rrillinger (1979)-

Once again, by goins over to the frequency domain a direct estim-
ation procedure has Vbeen found. Recause estimates of standard errors
are part of the procedure, estimated cigenfrequencies from different
seismograms may now be comdined cfficiently. Further the approximate
sampling properties of the estimates are clear, being based on normal

variateses A hydbrid pfocedura allowed confirmation of the model-.



S THE BUMAN PUPILLARY SYSTEM

The pupil of the eye exhibits a number of nonlinear character-
isticse When it is probed with narrow bandwidth sinusoidal light,
the motions of its diameter display second and possidly third order
harmonics of the fundamental frequencye Further the shape of the
tranafer function estimated by such sinusoidal probing changes as
the amplitude of the stimulus is varied and finally a dynamic
asymmetry is exhibited between responses to on and off stimuli.

It is apparent that a nonlinear model needs to be developed in order

to describe the pupillary systems

A useful model for nonlinear systems is the following one discuss=—
ed by Tick (1961),

Y(t) = a + S a(t-u)X(u)au + JJ b(t-u,t-v)X(u)x(v)dudv + (%)
with X, the system input stationary and Gaussian, with Y the system
output and with £ a Btationary noise seriese. Let A and B denote the

linear and quadratic transfer functions of this system,
A()) = S a(u)exp(-iAu)du
B(A,n) = J b(u,v)exp(=iAu —ipv)dudv ,

then, in this case of Caussian stimulation, one has the relationships

Fex(A) = AL, (A

fxxy(-%-u) = 2RQL )T (AN (W) -

Here fYX is the power spcctrum of the i1nput, fo the cross—spectirum

of the input and the ocutput and f

XYY the cross-bispectrum of the
input and the outpute.

This last is the Fourier transform of the
third order cross—moment function.)

These last rclaticnships allow the cuﬁputation of estimates of



A and B once estimates of the spectra involved have been computed.
The spectral estimates may be based directly on the Fourier trans-
forms of the data stretches availables Az a final step a and b may
be estimated by back Pourier transforming the estimates of A and B,
taking care to insert convergence factors in the processe. Hung et al
(1979) present the specific computational formulas involved and
present an example of this system identification procedure for the
human pupillary systeme. The estimated a and b are found to make
sense physiologically and to be consistent with characteristics
noted in other types of experiment with the system.

The extent of linearity of the system may be measured by the
(1inear) coherence

2 2
Ry = 100125 Ny (V)

with |R|2,$ 1 and the nearer it is to 1, the more strongly linear

the systcm. Setting W(t) = f/b(t=u,t-v)X(u)X(v)dudv , the quadratic
coherence is defined as

R 1£, o Q=) 12
12 1 XXY
lR‘Y'.\'(;\H = 2rn.(,\) frxx()-u)fxx(u)d” )

This too is bounded by 1, with its nearness to 1 indicating how
purely quadratic the system ise The strength of linear plus pure
quadratic relationship ie measurcd by ‘RYX|2 + \Rlez « Estimates

of the linear and quadratic coherence for the human pupil are
prescnted in Hung et al (1979)« The linear coherence is larger, bdbut
the quadratic is important as welle.

The above analysis is a frejqucncy dorain onee Had the input series
becn Gaussian white noisc, a and b could have been estimated directly
by cross—correlation, however 1n the experiments of Hung et al X
could not be taken to be white ncisc. (A side remark is that even in
the white noise case, the cross-corrclations might be better computed

via a (fast) Fourier transform.) ln the non-white case a form of

deconvolution needs {0 be carried out and this is done effectively



via frequency domain procedurese

Proceeding via the frequency domain lead to the definition of the
linear and quadratic coherences. These are frequency side parameters

that prove exceedingly useful in practice. There seem to be no useful
time side analogs.

6 A LINEAR DESCRIPTION OF NEURON FIRING

In an important class of neurophysiological experiments a sequence
of constant amplitude electrical impulses is taken as input to a
neurone The neuron in turn emits a train of near constant amplitude
electrical impulses. The neurophysiologist is interested in descri-
bing and understanding the process by which an input train is
converted to an output traine.

To dcvelop a formal description of such a process it is convenient
to assimilate the input and output pulse trains to point processes
l and N with ¥(t) the number of input pulsec in the time interval
(0,t) and N(t) the cdrresponding number of output pulses. A linear
model relating two point processecs is deécribed by
Prob(N point in (t,t+h) | ¥ ) ~ [u < L a(t - crj)_]h

J

for small h, where the dj are the times of

input pulsese It is of

interest to estimate the function a and to construct a measure of

how appropriate this model is in practical situationse These things
may be done by means of a frequency side approache.

The basic statistic is once again a finite Fourier transform,

T
dg(/\) - > exp(—=iAg.) = J exp(-iAt)am(t) .
‘ 0<o< T J 0

The periocdogram of the data is defined as IEK(}O = (2nT)—l\d$(A)\2 .
The power spectrum, ftm(A)' may be defined for A ¥ O as the limit,

T going to «, of E IKK(A) « At A = 0 it may be defined by continuity.
As in the case of ordinary time reries, the power spectrum may be

estimated by smoothing the periodograme The cross—periodogram and
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cross-spectrum may be defined and estimated in a similar fashione.

The model leads directly to the relationship f . (A) = A(A)fux()o'
with A the Fourier transform of a « This relationship provides
estimates of A and a in turne. Quite a number of such estimates are
given in Brillinger et al (1976) for neurons of the sea hare. One
factor causing the forms of A and a to vary substantially is whether
the synapse is excitatory (input tends to increase the output rate)
or inhibitory (input decreases the output rate). The time lag from
input to output shows up in the estimates as well, as does the
refractory period (output pulses may not be spaced arbitrarily
closely together).

The degree to which the ocutput train may be determined from the
input via the model presented isc conveniently measured by the
coherence function, IRNK(})\2 - \fNH(A)lz/fNN(A)fKK(}), once again.
In the examples of Brillinger et al (1976) this function ic found
to vary substantially with frequencys Generally it ie much larger &t
the lower frequencies. 1t is scurprisingly large in many cases given
the essential nonlinearity of the system under studye ‘

The frequency side approach is naturally effective in detecting
periodicities that are present and in one of the Brillinger 31_51
(1976) examples the estimated power rpectrum displays a minor penh
corresponding to a periodicity that really could not be seen on the
time side. However, as the above devclopmcnt makes clear, the frequ-
ency approach further allows the deconvolution of input from system
characteristics and leads to the definition of a useful measure of
linear time invariant associatione.

The cited reference presentr a frejuency side solution to an
important problem for which no other solution is presently known. 1t
concerncd the physiological connections of three necurons, L2, L3 and
L1C, of the sea hare. The three ncurons were clearly related (there
was rsubstaniial coherence botween all pairs of covarying pulse tro-
1ns)- 1t war known that L10C was the driving ncuron; however it was
not known if the neurons were in series L10 —1L2—>1.2 or L10 —12—

L3 or if L3 and L2 kad neo direct conncction, but L10 —L2 and
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L10—L3 only.

Partial coherence analysis is a useful tool for examining such
questions e+ Denote the spike trains by A, B, C respectivelye. The
partial coherence between trains A and B is defined to be the coher-
ence between the trains A and B with the linear time invariant eff-

ects of C removeds It is given by the modulus—squared of

(focfap = facfen) ¥/ (Tocfap = faefen) (focfan ~ fealfac)

In this expression dependence on A has been suppressed for conveni-
encee In the case referred to, the partial coherence of L3 and L2
with the effects of 110 removed was not significant and the presence

of a direct L2 to L3 connector could be ruled out essentiallye.

1 THE THRESHOLD MODEL OF NEURON FIRIXG

Suppose that a neuron reccives as input the fluctuating electric-

al signal X(t). Physioclogical considerations suggest the following
description of its firinge A membrane potential

B(1t)
u(t) = é a(u)X(t=u)du

is formed internally, where a(+) describes a summation process and

B(t) denotes the time, at %, since the ncuron last fired. The neuron

then fires when U(%) crosses a threshold @ + ¢(t), ¢ being a noise
process. Given experimental data it is of interest to verify and fit
this model .

Frequency analyses may be carried out in the manner of the previ-
ous section given stretches of input and corresponding output datae.
However given the esscntial nonlinearity of the system and the feed-
back from output to input (due to the presence of B(t)) these may
not be expected to be effecctives (As will be mentioned later, in the
case that X can be taken to be Gaussian stationary they are of some

use.) In Brillinger and Segundo (1979) a time side solution is pro-
vided e
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Let Xt, Ut' Yt' t = 0,+#41,+¢¢ denote the sampled versions of the
series involved. One has Yt = 1 if the neuron fired at time t and

It = O otherwise. Suppose that the noise is Caussian white, then
Prob(!t -1 | nt) - §(ut - 9)

with § the normal cumulativee Further, conditional on the given
input the likelihood function of the data is

Tﬁ; 2(v, - e)Yt (1 - #(u, - ::a))l-]rt .

The parameters a, and © may now be estimated by maximizing this

likelihood. Brillinger and Segundo (1979) present a number of esti-
mates found in this fashion for the neurons R2 and LS of the sea
hare. Once these estimates have béen'obtained, the function
Prob(Y = 1 | u) may be estimated. This was dones It was found to
have the sigmoidal shape of & .

In the case that the input X is Gaussian and the feedback effect

is not large, it may be chown that the cstimated a, derived via

cross—-spectral analysis are, up to sampling fluctuationg, proporti-
onal to the desired a e (See Rrillinger (1977).) Such estimates are
given in Brillinger and Segundo (1979) and good agreement found.
For this problem, a frequency analysis could not suffice- The
system had a nonlinearity and a feedback was presentes By choice of
special input, (Gaussian), and if the feedback was not strong, the

frequency analysis gave approximate answers; however it is better
to address the system dircctly.

8 . NICHOLSON'S DATA ON SHEMP RLOUFLIRS
During the 19%0's the Australian cntomologist A<Je Nicholson

carried out an extensive series of cxperiments concerning the pop—

ulation variation of Lucilia currina (the cheep blowfly) under var-

ious conditionse Nichelson maintained populations of the flies on

various dicts (some constant, scome fluctuating), experiencing
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different forms of competition (between larvae and adults, for egg
laying space, etc~), and other many other conditions. The paper
Brillinger et al (1980) reports the analysis of population data for
a cage maintained under constant conditions. The basic data were the
numbers of flies emerging and flies dieing in successive two day
intervals+. From these series, and the initial conditions, the number
of adults alive at time t could be computed+ The amount of food
provided the flies was constant and limited. This caused the popula-
tion size to oscillate dramatically, for when many flies were pres—
ent the females did not receive enough protein to realize their max-
imum fecundity. In consequence many fewer eggs were laid and the
next generation smallere. Nicholson ran the experiment for approxima-
tely 700 days-

The life cycle of a blowfly lastc 3% to 40 days. The agcregate
numbers displayed an oscillation with this period throughout much of
the experiment. Oster (1977) prescnis the Fourier spectrum of the
data and a peak does stand out. liowever, while the data doec have
substantial stationary fcaturec, it also has a chaotic appearance in
one stretche. Spectrum analysis docs not take notice of alternate
behavior in separate stretches. Complex dcmodulation was not espec—

ially informative cithere. A cross—apectrum analysis of the number of

deaths, Dt' on the number of emergances, Et' led to a plausible

shape for the impulse response, however the coherence was not high-
It seemed that a much better description must be obtainadble for such
fine experimental datae.

Considerations of the bioloy involved suggested that the probab-
ility of a bdlowfly diecing, in a two day period, would depend con 1its

age, i, on the number, N, 1t was competing with, and the number, k-,
it had competed with last tim.

well wac

periode An expression that worked

4G yn=(8) = 1 =a)Q =3 = 9x-)

with € denoting the unknown parameter values a, B, Y+ A ntate space
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approach,(Cupta and Mehra (1974), Lipster and Shiryayev (1978)), was

then taken for the description of the data. A state vector §¢ was
defined whose entries gave the (unobservable except for age O) mem—

bers of each age groupe The Kalman-Bucy filtier was set up for

my = E(F, | Ny, uet)

and maximum likelihood estimation came down to choosing & to minimize

T I

A (Dt -z

2,2
q,_ (@) my_y ,_4)°/NS,
oo oy Y1, j=1,t-1 t-1

t-1'N42

Specific details may be found in Brillinger et al (1980). The model
was found to provide an effective descriptione.

For this data nonlinearities were presente Further different subdb-
groups of the populatibn were bchaving differently. Despite the pre-

sence of understood oscillatione, a frequency approach was not very
revealing.

9 DISCUSSIION

This paper has described a number of time series analyses procecd-
ing from a freguency side analycis to a time side analysis with some
hybrid analyses in between. In each case no initial commitment was

made to one side or the other, rather at some stage one approach

became much more revealing than the othere.

Recause of space limitations some of the bases for deciding on the
final approach will simply be listede These are: goals and circum-—
stances, ease of (physical) interpretation, simplicity and parsimony,
sampling fluctuations, computational difficuliy, sensitivity, physi-
cal theory (versus black box), data quality, data quantity, ease in
dealing with complications, expertness available, real time versus
dead time, efficiency, dangers (ege overtight parametcrization),

bandwidth of phenomenon, preuence and type of nonlinearities, type
of nonstationarity.
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