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SOME CONTRASTING EXAMPLES OF THE TIME AND FREQUENCY DOM'AIN
APPROACHES TO TIME SERIES ANALYSIS

DAVID R. BRILLINGER

University of California, Berkeley

ABSTRACT

Two distinct approaches to the analysis of time series data

are in common use - the time side and the frequency side. The

frequency approach involves essential use of sinusoids and bands

of (an&ular) frequency, with Fourier transforms playing an important
role. The time approach makec little use of these. Certain uceful

techniques are hybrids of thene two approaches. This work procecdinC

via examples, compares; aiid contrasto the two approaches withi

respect to mnodellinC, statistical inference and researcher-.'

aims.

1 I1TflODUCTIOCN
1'any, many time series analyocses hiave been carried out at this

point in time. Some of these analyses have been carried out totally
in the time donmain, some have proceeded essentially in the frequency
domain, and some have made substantial. use of both domains. There

are numerous examples in hydrolog' of each type of analysis. It

seems useful to examine some time series analyses to attempt to

recognize the strengths and weaknessies of each approach and to try
to discern just what lead the researchers involved to adopt the

particular approach that they did.

This work presents detc-riptions of a number of time series

analyses that the author has bt'enz in:volved with. Some of these

have- boen frequency side, some havvt' ben time si de and some have

been hybrids. Some hanve been pNir-nict tric, some hnave been nonparamet-

luvitod P'pcr, (Coniference on Slri-'s M-.Icethods in Ilydroscicnccs,
lurl i gton , Canada 6 - S Oct . 18 1 o. appe a in Dcvelopmencrits ill
h'atcr Scicnice.
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ric. Some have involved linear systems, some have been concerned

with nonlinear systems* None of the studies are hydrological,

however it is clear that analagous situations do arise in hydrology.

It seemed best to present examples that the author knew all details

concerning.

2 TIME SERIES ANALYSIS

Tu.key (1978) defines our field of study as follows:

"Time series analysis consists of all the techniques that,

when applied to time series data, yield, at least sometimes,
either insight or knowledge, AND everything that helps us

choose or understand these procedures-"

In that paper he further lists come of the aims of time oeries

analysis. These arc: 1. discovery of phenomena, 2. modellin(-,

3. prepa:ration for further inquiry, 4. reaching conclusions,

5. assesscmcnt of predictability and 6. description of variability-

As one attempts to understand the relative merits of the various

approaches and techniques of time series analysic, it is worthwhile

to keep the above definition anid aims in mind.

I:ost researchers would seem agrend on what iB a time side analysisB

There is uncertainty over sjust what constitutes the frequency side.

The following variant of a statement in Bloomfield et al (1981) is

helpful: frequency. side analysis is thinking of systems, their

inputs, outputs and behavior in oiunuruoidal terms.

It is easier to list technlques that are time side, frequency

cide or hybrids. On the time sidie one may list: state space,

autorerreLsive moving: average (ArT,'A) and econometric modellinr,

trend analysis, rer,rcssion, pulse probing of systems and empirical

orthogonal functions ztmonC other things. On the frequency side

one may lht: sp1ectral andt cepstral analysis, Beasonal adjustment,

h.armon.ic decomposition and sin-no:idal probing of systems8 Hybrid

techniqluxet include: complex demo.olullation, moving spectrum analysis

and the probing- of .Ystems b c-xrp. . In practice it scoms that

tlhcrc in xiounilly a froquenoeV vor: ionl of a tim.iee side procedure, and
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vice versa. It further seems that these techniques are generally

allies, rather than competitors.

A number of practical time series analyses will now be described
and their type of analysis commented on.

3 THE CHANDLER WOBBLE

The point of intersection of the Earth's axis of rotation with

the polar cap does not remain fixed, rather it wandersabout within

a region of the approximate size of a tennis oourt. Let (X(t),y(t))
denote the coordinates of the point at time t, relative to its long
run averaee position. Set Z(t) - X(t) + iY(t), then (from Mtunk and

MacDonald (1960)) the equations of motion are

dZ()at(t) 4d (tat at

with 1(t) the excitation function whlioe increments dZ(t) describe

the change in the Ear-Th's incrtia tenuor in the time interval

(t,it-dt) . Supposing the process I to have stationary increments,

tne power cpectrum of the seri'es Z ir I,iven by

f,()\= i> ca f; (A\)

What is of interest here is to derive an estimate of a and to

derive characteristics of the excitation process . * It is known

that the excitation process contains an annual component, due to

the alternation of seasone in the southiern and northern hemispheres-

To build a specific model, suppose that the increments of seasonally

adjusted 4i are white noise with variance clr * The spectrum of the

seasoxnally ad'usted _ is then JiA - aj1 cf/2n . The data available

for analysis is :;(t) rerturbed by mea:urcemnt error for t - 0,...,

T-1l . (ln Brillintcr (1073) it is rncinthli data from 1902 to 1969.)
2S,uprpoL71in- the variance ol the me1t-.-ure-mrnt error series to be p

thle Power spoctri.. of tli serier of first differences of the

seaLoonan11v adnjust.^ed di:crote dnat: is tiven by
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o ' 2 l - e 2 ~ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ + 2fi;
2% 2p l - 2e 0cos(;-k ) + e*2 2 x

where a _ -f + ir . Given the data one would like estimates of the

parameters a,3,'p,p,a and to examine the validity of the model. These

things are possible on the frequency side.
TLet d(>) denote the finite Fourier transform of the series of

first differences of the seasonaly corrected data. The periodogram
T Tof this data is then I (\). The periodogram ordinates I (2ias/T),

8 - 1,2,... being approximately independent exponential variates

with means f(2ns/T), a - 1,2, .o.. respectively, estimatine the

parameters by maximiZing the "Gaussian" likelihood

nf(28) 1exp( _ T(2Tts,,f (2ns) ,

is one way to proceed. (In essence this procedure is sugeseted in

WXhittle (1954)-) Estimates derived in this fashion, and estimates

of their standard errors are presented in Brillinger (1973)*
Figure 4 of that paper is an estimate of the power spectrum derived

by smoothing the periodogram together with the estimated above

functional form. The fit is quite good-

However the nonparametric estimate does show a minor peak at

frequency .154 cycles/month that is suspiciously large. This frequency

was further investigated by the method of complex demodulation.

Complex demodulation is a hybrid frequential-temporal technique.

If X(t) denotes the series of concern, then the steps involved are:

i* form U(t) m X(t)exp(-0it) , for %;k the frequency of interest, ii-

smooth the series Il(t) to obtain the series V(t), this is the complex

demodulate at frequency A A iii. graph IV(t)l- and art V(t) . One

of the important uses of complex demodulation is the detection of

changes with time in a frequency band of interest. For the frequency

.154 special activity seems to be presncit only for the period 1905
to 1914 o
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The above analysis took place principally in the trequency

domain, but partially in the hybrid domain as well. The advantages

of the frequency domain included: a. operations on the series

(sampling, seasonal adjustment, differencing) could be handled

directly, b. measurement noise was easily dealt with, o. estimation

became a problem of maximizing an elementary function, do standard

errors were a byproduct of the estimation procedure. It is further

evident that a frequency component present for only a restricted

time period could only be discovered by a hybrid procedures This

was why complex demodulation was so useful.

4 FREE OSCILLATIONS OF THE EARTH

For a time intcrval after a major earthquake the Earth rings at

certain fundancntal frequencies. T'hire motion is called its free

o;cillations. The frequencies are called its eigenfrecqucncieu* The

estimation of the values of the cigonfrequcncies and tlhcir associated

decay rates is a problem of fundamental importance to geophyciotO
building models of the Earthi. The -problem is that of how to estirm.atc

these parameters given the BeismotgraM.. of a major earthquake. The

frequency domain provides an effective means of doin, this. Co-.plex

demodulation provides an feffcctive MC:eTans of checking the mechanical

model.,

Dynamical considerations suggest the following model for the

s e i smo gram,

X( t) 1a e xp (- k;t) C0O ('1 t £(t)

for t > 0, with the the elgenfroluencies of interest, the K-

their decay rates, ac and g constants and a noise scries-
Crude estimates of the may le (erived by graphing the pcriocdo-

grr of a data stretch. Thie mnodcl n;.iv be exxa.mined by complex de.modu-

lating at es-timated If 'the tr.-.,othlnu filter has a bandwidth

small enoughi to exclude otlhor eigeonfreiuencies, and if the above

model holds w ith! thie noise necot t .,":us tantial, then a graph of
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log Iv(t) I will fall off in a linear fashion (slope approximately

-8Pk) and arg V(t) will be approximately constant (if the estimated

frequency is close enough to the true one.) Bolt and Brillinger

(1979) present such graphs for the record made at Trieste of the

great Chilean earthquake of 1960. The model seems confirmed. What

is needed now are precise estimates of the unknown parameters and

estimates of their standard errors. These may be constructed as

follows.

Let a . 1+i, b - aexp(iS),

dx(2) - z X(t) exp(-i\t) and aT() - n exp(-iAt)
two t=O

For > in an interval Ik near gk one has d( ')gm bk4J(%- ak) +

dT(>) . Now if the noise series, E, is stationary and such that

well-separated values are only weal:ly dependent, then the finite

Fourier transform values dT(2ns/T), for s an integer with 2ns/T

near , will be approximately independent complex normal variates

with mean 0 and variance 2nTr (A>) * (See Brillinger (1981) for

example.) The maximum likelihood estimates of the unknown parameters

are thus the least squares estimatec found by minimizing

z dXT k4) T

where the summation is over frequenciets 2ts/T in Ik Further the

asymptotic distribution of these estim.ates may be found directly

and so standard errors estimated and confidence intervals construct-

eds Details are given in Bo]t and Brillinger (1979).

Once again, by going over to the frequency domain a direct estini-

ation procedure has been founid. B8ecause estimates of standard errors

are part of the procedure, estimated cigenfrequenci es from different

scismoe-rams may now be combinied rfficicntlye Further the approximate

sampling properties of the estiminates are clear, being based on normal

variates* A hybria procedure &llowed confirmation of the model-
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5 THE HUMAN PUPILLARY SYSTEM
The pupil of the eye exhibits a number of nonlinear character-

istics. When it is probed with narrow bandwidth sinusoidal light,
the motions of its diameter display second and possibly third order

harmonics of the fundamental frequency*. Further the shape of the

transfer function estimated by such sinusoidal probing changes as

the amplitude of the stimulus is varied and finally a dynamic

asymmetry is exhibited between responses to on and off stimuli.

It is apparent that a nonlinear model needs to be developed in order

to describe the pupillary system.

A useful model for nonlinear systems is the following one discuss-

ed by Tick (1961),

Y(t) * a + f a(t-u)X(u)du + ffb(t-u,t-v)X(u)X(v)dudv + c(t)

with X, the systcr. input stationary and Gaussian, with Y the system

output and with E a ttationary noise series. Let A and B denote the

linear and quadratic transfer functionnr of this system,

A(>) m J a(u)exp(-iAu)du

>fwb(u,v)exp(-icu -ipv)dudv

then, in this case of Gaussian stimulation, one has the relationships

fE'X(;) mg A (>)frXX(

XXY(~) § ~")- 2B(A, >r xY(A)f (P)

Here fX is the power spr%ctrum of the iuiput, frx the cross-spectrum

of the input and the outtpiut and fVXX the cross-bispectrum of the

input and the output. (This lant is tlhe 'ourier transform of the

third order cross-moment functioi.)
These last relationsliips allow thet' cemputation of estimates of
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A asnd B once estimates of the spectra inolved have been computed*
The spectral estimates may be based directly on the Fourier trans-

forms of the data stretches available. As a final step a and .b may
be estimated by back Pourier transforming the estimates of A and 3,
taking care to insert convergence factors in the process. Hung et al

(1979) present the specific computational formulas involved and
present an example of this system identification procedure for the
human pupillary system* The estimated a and b are found to make
sense physiologically and to be consistent with characteristics

noted in other types of experiment with the system.

The extent of linearity of the system may be measured by the

(linear) coherence

IR (;>\2 2(A) I2/f CA)f CA)

with IRI2 $ 1 and the nearcr it is to 1, the more strongly linear

the systcm. Setting W(t) - JJb(t-u,t-v)x(u)x(v)dudv, the quadratic

coherence is defined as

lfx- ~~2

IR.Yj'(;J) I 2f2YEP(A ) fXE:Ax fx %A#)d

This too is bounded by 1, with its nearness to 1 indicating how

purely quadratic the system is. The strength of linear plus pure

quadratic relationship isrmeasurcd by JRYX12 + JRYWI2 a Estimates

of the linear and quadratic coherence for the human pupil are

presented in lHung et al (1979). The linear coherence is larger, but

the quadratic is important as well.

The above analysis is a frrlucncy doc;ain one. Had the input series

been Gaussian white noise, a and b could have been estimated directly

by cross-correlation, howevc'r in tti cxperiments of Hung et al X

could not be taken to be white nuoise. (A side remark is that even in

the white noise case, the crost-corrolations might be better computed

via a (fast) Fourier transform.) In the non-white case a form of

deconvolution needs to be carried oxit and this is done effectively
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via frequency domain procedures .

Proceeding via the frequency domain lead to the definition of the

linear and quadratic coherences. These are frequency side parameters
that prove exceedingly useful in practice. There seem to be no useful

time side analogs-

6 A LINEAR DESCRIPTION OF NEURON FIRING
In an important class of neurophysiological experiments a sequence

of constant amplitude electrical impulses is taken as input to a

neuron. The neuron in turn emits a train of near constant amplitude

electrical impulseso The neurophysiologist is interested in descri-
bing and understanding the process by which an input train is

converted to an output train.

To dcvelop a formal description of such a process it is convenient

to assimilate the input and output pulse trains to point processes

I; and N with Y.(t) the number of input pulsec in the time interval

(O,tj and N(t) the correspondinC number of output pulses. A linear

model relating two point processes is described by

Prob(N point in (t,"t+h) 4i' ) - a(t - cjrh

for small h, where the cr are the times of input pulses. It is of

interest to estimate the function a and to construct a measure of

how appropriate this model is in practical situations. These things

may be done by means of a frequency side approach.

The basic statistic is once again a finite Fourier transform.,

T Td. (A) -
z exp(-iA. ) T

f XP(.-i;kt)dM(t)
' O~< cr.< T O

The periodo&ram of the data is defined as ITT (2nT)i Ta>(Q)12
The power spectrum, f may bo defined for 0 as the limit,

1 going to on,of E I At 0 it may be defined by continuity.
As in the case of ordinary time series, the power spectrum may be

estimated by smoothing the periodo -ram. The cross-periodogram and
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cross-spectrum may be defined and estimated in a similar fashion.

The model leads directly to the relationship fNMUOJA(A)XfVY A)-
with A the Fourier transform of a This relationship provides

estimates of A and a in turn. Quite a number of such estimates are

given in Brillinger et al (1976) for neurons of the sea hare- One

factor causing the forms of A and a to vary substantially is whether

the synapse is excitatory (input tends to increase the output rate)

or inhibitory (input decreases the output rate). The time lag from

input to output shows up in the estimates as well , as does the

refractory period (output pulses may not be spaced arbitrarily

closely together).

The degree to which the output train may be determined from the

input via the model presented is conveniently measured by the

coherence function, 1N. 0 - |If (M If ()f( once aCain-
In the examples of l3rillinger et al (1976) this function ic found

to vary substantially with frequency. General2yj it is much larger a t

the lower frequencies. I t is curprisingly large in many catues C-ven
the essential nonlinearity of the system under study.

The frequency side approach is naturally effective in detecting

periodicities that are prcsent and in one of the Brillinger et al

(1976) examples the estimated power rpectrurm displays a minor per.':

corresponding to a periodicity that really could not be seen on the

time side. However, as the above developnment makes clear, the frequ-

ency approach further allows the deconvolution of input from systern

characteristics and leads to the definition of a useful measure of

linear time invariant associatioT.

Tile cited reference presento a frequency side solution to ani

important problem for which no other solution is presently known. lt

conicernied thio physiolog-ical conniecti ons of three neurons, L?, L3 and

L10, of the sea hare. The threte neui-onis wcre clearly related. (tlicre

was cu>- .r.ial colherence betwoen all oairv of covarying pulse tri-

in. It was known tllat LlO wa-s the drivin- n;uron; however it wais'

not known if the neuirons were in series L1O-0L2--21.- or LlI0 L2'2

L3 o. if L. anti LZ had no diieet comiectiun, but L10 L2' and
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L10l L3 only .

Partial coherence analysis is a useful tool for examining such

questions. Denote the spike trains by A, B, C respectively* The

partial coherence between trains A and B is defined to be the coher-
ence between the trains A and B with the linear time invariant err-

ects of C removed* It is given by the mrodulas-squared of

(fCCfAB - fCfCB) fcB-rCfCBC f(CCfAA - fCAfAC)

In this expression dependence on ;\ has been suppressed for conveni-

ence. In the case referred to, the partial coherence of L3 and L2

with the effects of L10 removed was not significant and the presence

of a direct L2 to L3 connector could be ruled out essentially.

'1 THE THRESHOLD ?t'ODI,L OF V1737TRO1IrFI 11NG

Suppose that a neuron receives as input the fluctuatinr electric-

al. signal X(t)- Physiological consi(ierations sugCe t the following

description of its firing. A membrane potuntial

B5( t)
u(t) K J a(u)X( t-u)dl

0

is formed internally, where a(.) describes a summation process and

B(t) denotes the time, at t, since the neuron last fired. The neuron

then fires when uI(t) crosses a thresihold 4 + (t), t being a noise

process. Given experimental data it is of interest to verify and fit

this model .

Frequency analyses may be carried oxut in the manner of the previ-
ous section given stretches of input and corresponding output data*

However given the esscntial nonlinearity of the system and the feed-

back from output to input (due to the presence of B(t)) these may

not be expected to be cft'ective. (As will be mentioned later, in the

case that X can be tzaken to be Gaussan stationary they are of some

use.) In Brillinger and Semindo (10op) n time side solution is pro-

vided.
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Let Xt, Ut, Tt t * O,l,..o denote the sampled versions of- the

series involved. One has T - 1 if the neuron tired at time t and

Tt - 0 otherwise. Suppose that the noise is Gaussian white, then

Prob(Tt ' 1 1 )- I(Ut

with I the normal cumulativeo Further, conditional on the given
input the likelihood function of the data is

fT(Ut _t (1 EN(t - G))

The parameters a and 4 may now be estimated by maximizing this

likelihood. Brillinger and Segundo (1979) present a number of esti-

mates found in this fashion for the neurons R2 and L5 of the sea

hare. Once these estimates have been obtained, the function

Prob(Y = 1 I u) may be estimated. This was done. It wao found to

have the sifnnoidal shape of

In the case that the input X is Gaussian and the feedback effect

is not large, it may be skown that the estimated au derived via

cross-spectral analysis are, up to sampling fluctuations, proporti-

onal to the desired a . (See Brillinror (1977).) Such estimates are

given in Brillinger and Segundo (1979) and good agreement found-

For this problem, a frequency analysis could not suffice. The

system had a nonlinearity and a feedback was present. By choice of

special input, (Gaussian), auid if the feedback was not strong, the

frequency analysis gave approximate answers; however it is better

to address the system direct]v.

8 . NI CHOLSON 'DDATA ONC S1{ET' 'LO;6'FL1IE'

During, the 101O' 8 the Australian entomologist A.J. Nicholson

carried oxit an extonsive series of exNerimcnits concerning the pot

ulation variation of Lucilin currinn (tlhe sheep blowfly) under var-

ious coidi tions. Nichol son maint,aince( populations of the flies on

Various diets (sonmi constant,t;Sme fluctuating), exneriencing
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different forms of competition (between larvae and adults, for egg

laying space, etc.), and other many other conditionis. The paper

Brillinger et al (1980) reports the analysis of population data for
a cage maintained under constant conditions. The basic data were the

numbers of flies emerging and flies dieing in successive two day
intervals* From these series, and the initial conditions, the number

of adults alive at time t could be computedc The amount of food

provided the flies was constant and limited. This caused the popula-
tion size to oscillate dramatically, for when many flies were pres-

ent the females did not receive enough protein to realize their max-

imum fecundity. In consequence many fewer eggs were laid and the

next generation smaller. Nicholson ran the experiment for approxima-
tely 700 days.

The life cycle of a blowfly lasts 3r to 40 days. The aCCreCate
numbers displayed an oscillation with this period throughout much of

the experiment. Ostor (1977) prcscnto the Fourier spectrum of the

data and a peak doe_ stand out. lowever, while the data doec have

substantial stationary featurez, it also has a chaotic appearance in

one stretch. Spectrum analyais doco not take notice of alternate

behavior in separate stretchen. Complex demodulation was not espec-
ially inforniative cither.. A cross-r;pectrurrt analysis of the number of

deaths, Dt, on the number of emergonces, itt led to a plausible

shape for the impulse response, bowever the coherence was not high.

It seemed that a much better description must be obtainable for such

fine experintental data.

Considerations of the biolorv involved suggested that the probab-
ility of a blowfly daeing, ir a two diaiy period, would deDend on its

a-e , i on the nubrcr, N, it w ccor.peting with, and the number, Ni,
it had competed with last tai:i p0riod. An expression that worked

well wall

qi,N,N'- ) (1 - a1)(l - -

with Q denoting the unknowni p:xamt'nLter values a,, t- A ntate space



14

approach,(Gupta and Jehra (1974), Lipeter and Shiryayev (1978)), was

then taken for the description of the data. A state vector N was

defined whose entries gave the (unobservable except for age 0) mem-

bers of each age group. The Xalman-Bucy filter was set up for

mt E(N Nu, uSt)

and maximum likelihood estimation came down to choosing 0 to minimize

T I
z (Dt E -lN (4;) m t12Nt_2 i.l _,,Nt_2 i-lt t-1

Specific details may be found in Brillinger et al (1980). The model

was found to provide an effective description.

For this data nonlinearities were present. Further different sub-

groups of the population were behaving differently. Despite the pre-

sence of understood oEcillationc, a frequency approach was not very

revealinC.

9 DISCUSSION

This paper has described a number of time series analyses proceed-

ing from a frequency side analvsic to a time side analysis witlh some

hybrid analyses in be tween. In each case no initial commitment was

made to one side or the other rather at some stage one approach

became much more revealing than the other.

Because of space limitations some of the bases for deciding on the

final approach will simply be listed. These are: Coals and circum-

stances, ease of (physical) interpretation, simplicity and parsimony,

sam.pling fluctuations, compuitntional difficulty, sensitivity, physi-
cal theory (versus black box), dzata quality, data quantity, ease in

dealing with complications, oxpertness available, real time versus

dead time, efficiency, danziers (eg. overtirzht parameterization),

bandwidth of plcnomenon, prottencet and type of nonlinearities, type

of nonstationarity.
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