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Abstract

This paper is about the asymptotic distribution of linear combina-
tions of stratum means in stratified sampling, with and without
replacement. Both the number of strata and their size is arbitrary.
Lindeberg conditions are shown to guarantee asymptotic normality and
consistency of variance estimators. The same conditions also guarantee
the validity of the bootstrap approximation for the distribution of the
t-statistic. Via a bound on the Mallows distance, situations will
be identified in which the bootstrap approximation works even though
the normal approximation fails. Without proper scaling, the naive

bootstrap fails.
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1. Introduction

Consider the problem of estimating a linear combination vy = X?:1 Ciky
of the means u],...,up of p numerical popu]ations X],...,Xp with
corresponding distributions F],...,Fp. For each i =1,...,p there is a
sample Xij from population Xi; the sample elements are indexed by
J =],...,n1. Thus, n; is the size of the sample from the ith popula-
tion. Two situations will be discussed:

(a) The populations X; are assumed arbitrary and the sampling is with

replacement: X for j =1,...,ni are identically distributed

LN
with common distribution Fi; all the Xij are independent.

(b) The populations are assumed finite; Xi has known size Ni;
sampling is without replacement and independent in 1i; in this

case, Fi is uniform. Enumerate X j as {Xi]""’xiN }.
1'

For simplicity, the populations are supposed univariate.
The natural unbiased estimate of +y is

(1) ¢= Ve,

TR A
i=1

Here, the dot is the averaging operator.

Let Ts or Tg denote the variance of ¥ under sampling schemes

(a) and (b) respectively. Let ?s or %E be the customary unbiased
variance estimates. Inference about <y can be based either on the
normal approximation to the distribution of (¥-y)/T or on bootstrap
approximations. This paper will discuss the validity of these approxi-
mations when the total sample size tends to «~ in any way whatsoever,

e.g., many small samples or a few large samples or some combination

thereof. More precisely: suppose p, the Cis the populations, the



N., and n, all depend on an index v such that n(v) = n](v) +oee +np(v)

i’ i
— o as v—ro, This index will be suppressed in the sequel.

Here are two examples.
(a) The Xij are unbiased measurements of the same quantity u,

taken with p different instruments. So the precision of Xij’ viz.,
ok = f(x-u)zdFi(x)

depends on i. If o? is known to be proportional to Fis then

. ni
N

<>

n
~
'1, =]
— —

is the natural estimate of .

(b) In the classical stratified sampling model a population X of
size N 1is broken up into disjoint strata X],,..,Xp of sizes
N
X

],...,Np respectively; Z?=] Ni = N. From stratum i the sample

i for j =]""’"i
ith stratum as {xi]""’xiN.}' The population mean is
i

is taken without replacement. Enumerate the

N.
=1ygp i - yP
YN A Lo Xy T B N/

and y = Z?=] N;X; /N s the usual estimate of .

We first take up the normal approximation in case (a). Suppose

(2) szdFi <w and n; 32 for i=1,...,p

Then

2 _op 2 2 2 _
Ty = Li=p €303/n; where of = var Xy



and
A2 _ ©p 2.2
Ta = i1 C589/M
where
2 _ -1 oo 2
S5 (ni 1) j=1(xij'xi-)
Let
d(x,e) = x for |x| > ¢
= 0 otherwise
&)(X,€) = X'¢(X,€)
Suppose that for all ¢ > 0,
-2 ¢p -12 2 -1
(3) Ta Z-l:] n-i C1- E{¢ (Xij'“i’eniTalcil }—0

By the Lindeberg-Feller theorem, (?-y)/ra converges in law to N(0,1),

the standard normal distribution.

According to the first main theorem of this paper, conditions
(2) and (3) are also sufficient to guarantee that ?g has the right
1imiting behavior. However, before giving a precise statement, it
may be helpful to reformulate condition (3). Let Yij = (Xij'”i)/oi‘

th

Define the "variance weight" of the i~ stratum by

2 _ 2 2 _
Wi = c3oy/nyT, = var {e X /1)

Clearly, 2?=] w? =1,



Condition (3) can then be written
(4) Z E{¢ ,e/rﬁ)}—-*O for all €>0

THEOREM 1. If (2) and (8) hold in case (a), then ?g/rg > 1 in

probability.
The proof is deferred.

COROLLARY. (?-Y)/?a tends to N(0,1) in law.

We consider next the bootstrap approximation in case (a); also see
Babu and Singh (1983). For i =1,...,p, let ?i be the empirical

Take samples of size n, with

distribution of X.. for j =1,...,n.. ;

ij i
replacement from ?i‘ That is, let {X?j} be conditionally independent

given F, the o-field spanned by {Xij}; let X:j have common distribution

A

Fi for j = 1,...,n1. Let

e B

*2 _ Ny 2
S1- = (n "'] z ](X .)
A%l - TP 2 x2

Ta = Li=y €jS§ /n

2 P 2

Ta = z1 =1 ¢ (n -l)s

THEOREM 2. If (2) and (4) hold in case (a), then the conditional
distribution of (§*-?)/?; converges weakly to N(0,1) in probability,

and ?;/?;— converges to 1 in probability.



The proof is deferred. The theorem points to a problem in using the
bootstrap to make inferences: the scaling may go wrong. This is
because X:. has variance (ni-l)sf/ng , not s?/ni. To fix ideas,
suppose there are mény small strata: more particularly, that

ny< k forall i. Now

T (k-1)/k + B2~ (k-1)/k - C

The bootstrap distribution of ¥*-y -has asymptotic scale T, while

{-v has the scale Ty

We take up next the normal approximation in case (b). Suppose

(5) 2 ¢ny g N-1
Then
2 (N,-n,)
2 _gp 201 i
T = Li=1 Gim, TN
and
2
25 2 sj (Ny-ny)
T = 151 ¢ ;N

'y . 2 " ] s 1]
To state the regularity condition, Tet Vs be the "variance weight

2 2 = X, . Let o,
in case (b): v% = CEOi(Ni-ni)/nirb(Ni-l) var {c;X; . /tp} et o

be "the effective sample size:" pj = “i(Ni“])/(Ni‘"i)'



= . . "| « . = P . . nd
Let v, {yil""’y1Ni} where (x1J u1,)/o1 a

N.
2 _ -1 i 2 -
o; = N, Zj=](x1j‘“1.) - So Yij = (Xij'“i)/oi are sampled from Vi,
The condition is
(6) AN 57) =9
1i=1 4 j:] ¢ Viyijae‘pi

This may be compared with condition (4).

If lzgnglYi|3 is uniformly bounded independent of the hidden
index v, the Lindeberg conditions (4) and (6) are implied respectively
by the natural conditions m?x wi//ﬁ; -0 or m?x vi//E;'+ 0. Thus if
the standardized populations have reasonably light tails, asymptotic
normality holds if for each stratum the variance weight contribution is

small or the stratum is heavily sampled.
THEOREM 3. IF (5) and (6) hold in case (b), :then

and

ii) ?b/rb —1 <n probability

The proof is deferred.

COROLLARY. (?-Y)/%b—w(o,]) in law.

Finally, we consider the bootstrap in case (b). If Ni/ni = ki
an integer for each i, the natural bootstrap procedure was suggested by

Gross (1980): given {Xij}’ to create populations ii consisting
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. . . * .
of ki copies of each Xij for J ']""’"i’ then Xij for j ]""’"i
are generated as a sample without replacement from 21; the samples

being independent for different i=1,...,p. In general, if Ni = ki"i +ri
with 0 g r; <ng, form populations XiO and Xi]’ where XiO

consists of ki copies of each xij’ for j = 1,...,n1; while X1.1

consists of ki+] copies. Let

With probability Qs let (X:1""’X*in ) be a sample without replacement
i
of size n, from Qio; with probability l'ai’ let (X:I""’X:n ) be

R i
a sample without replacement of size n, from Xi]' The virtue of this

scheme is that both 21

0 and 211 have the same distribution ?i

and

n.-1 N.-n.
* o 2,79 i
Var(Xi.|{Xij}) = Si( N )

. i
i

The proof of the following theorem is similar to that of Theorem 2 and

is omitted. pefine J* as before, and ?32 by substituting X?j for
. ~2
Xij inoT.

THEOREM 4, Let ?ﬁ be the variance of Y= given the data. Then, 4§

(5) and (6) hold in case (b), the conditional distribution of (?*-?)/?b

P . .
converges weakly to N(0,1) and T /Ty > 1 4n probabiltity.



The same inference oroblem arises as in the case of Theorem 2. The
variance of Y* given the data is an inconsistent estimate of the variance of
? . We have side-stepped the issue by comouting the scale externally to the
bootstrap process. Other patches could be made: one is to rescale the ele-
ments of Xi ; another is to adjust the constants ;i - These fixes are all
a bit ad hoc.

If y stays bounded as Vv - » our results extend easily to pivots

where g is nonlinear continuously differentiable. The same issue as before
arises a fortiori for nonlinear functions. Neither the variance of g(¥*)

given the data nor its natural apnroximation [g'(?)]2 ?g are consistent
estimates of the asymptotic variance of g(y) . A fix which works if _g lci“i‘
stays bounded is as before to rescale the elements of Xi or the C; g;}ore
applying the bootstrap. Alternatives (the jackknife, linearization, BRR) are

discussed in Krewski and Rao (1981). For the case of one stratum, Theorem 4

was derived independently by Chao and Lo (1983).

The bootstrap can work even when Theorem 4 fails but the circumstances are
artificial. Suppose we have only one stratum and N] -n s k for all v i.e.,
all but k members are sampled. Since Z:l](x]j-u]) = 0 , the pivot (?-y)/Tb
is distributed as the standardized mean of a sample of size k taken without
replacement from the population V] . No matter how large N] is, if k s

small and V] nonnormal we would not expect the normal approximation to apply

to ? . To be specific let FV be the uniform distribution on V] and suppose
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(7) FV converges to F in the Mallows dz—metric,

j.e., F. >~ F weakly and JdeFv *:[xzdF. Then (?-Y)/Tb is distributed in

v
the 1imit as the standardized mean of k independent variables identically
distributed according to F . On the other hand since we have sampled nearly

the whole population we expect the bootstrap to work.

THEOREM 5. If (7) holds the conditional distribution of (;*-;)/%b converges
weakly in probability to the same limit as that of the unconditional distribution

A A ~ * )
of (Y-Y)/Tb . Moreover, Tb/Tb and Tb/Tb both tend to 1 <in probability.

We can extend this result somewhat by reb]acing (7) with a compactness-

in-d2 condition on {Fv}
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T Tim s ] o2(v. y.., m) =0
Mo u L 3=1 17137
This condition is evidentally weaker than (6) for b = 1. The conclusion
now is that the dz-distance between the conditional distribution of
(?*-?)/?g and the unconditional distribution of (?-—Y)/?b tends in

probability to 0. A further extension to an arbitrary number of strata

which includes both Theorems 4 and 5 is also possible but not worthwhile.

2. Some lemmas

Recall the truncation operator ¢ from section 1.

LEMMA 1. a) l¢(%—2?=] yi’€)| §Z$=]|¢(yi,e/k)|; equivalently,
k k 2
|¢(2] ‘yi’e)l = kzi=] |¢(.Y1-a€/k )I
b) Let Y],Yz,... be independent and identically distributed.

K Yoot s sz{¢2(Y1,e/k)}

Then E{¢2(]F Zi=]

Proof. Claim a). As is easily verified,

1 ok 1 ok
10(x Loy Yio8) | < ol Lo 1y;1se)

Without loss of generality, suppose all Y; 2 0. Let y(k) be the
largest Yy If y(k) < e/k, both sides of the inequality vanish. If
y(k) > €/k, the left side is the average of the Y;» oOr zero; the
right side is at least the maximum Y(k)*

Claim b) follows by the Cauchy-Schwarz inequality. a

LEMMA 2. Let (X',...,Xh) and (X]”"’Xn) be distributed respectively

as samvles with and without replacement from a finite population. Then
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2 n
E{6"( I Xi»e)} < E{¢ (

1
X',—f)}
i=1 i 2

“MD

1

Proof. By a theorem of Hoeffding (1963), if g is convex, then

E{g(]X;)} < E{g(]x})}

Let

2
g(x,e) = x for x| > €

2e]| x| -52 for %e < Ix] <€

=0 otherwise.
Then g 1is convex and
¢2(x,e) < g(x,¢e) < ¢2(x,%€)
So
ECo7(TX;»e)} < E{g(IX;»e)} £ Eda(IX}.e) < EL62(TXY 3e)} O

The next result involves the Mallows metric d2; see Mallows (1972)

or Bickel and Freedman (1981).

LEMMA 3. Let X and Y be two finite populations of real nunbers, of
the same size N. Let F and G be the uniform distributions on X

and Y. Suppose F and G have the same means. Let X]""’Xn be a

sample of size n, drawn at random without replacement from X; let

F(n) be the law of X]+"'+Xn. Likewise for Y]""’Yn and G(n)'

Then

dz[F(n),G(n)]z "(ﬁ F) d, (F, 8)°
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Proof. Enumerate X as Xp$Xp< .- sxy and YV oas y,<y,g e S YN

Then
)2 )2

1 N
N Liz1 (X37y4)7 = dp(F,G

This follows from Bickel and Freedman (1981, Lemmas 8.2 and 8.3). Let
Z=1{1,...,N}. Let Z],...,Zn be a sample of size n, drawn at random

without replacement from Z. Set X; = x and Y. =y, . Now
i Zi i Zi

ECLTT (- 1%

N- 2
= Iﬁﬁi%ll EL(X;-Y4)7]

UA

2
d2[F(n),G(n)]

- nllen) g (F,6)2 0
Here is an easy generalization of Lemma 3.

LEMMA 4, For i = 0,1 ZLet 'Xi = {Xil""’xiN.} be finite populations
i
and F, the associated uniform distributions on X;. Let F . be the

distribution of zg=1 X; when Xq,....X 46 a sample without neplace-

n
ment from X.. Let n g Nys N If J 48 asubset of {1,...,N¢},

Let Fq be the unigorm distrnibution on {X]j: j €J}. Then,

n(N,-n)
s NgiT N: zJ{dz(Fo'FN)Z‘ 131= Ny}
(N

d,(F _.F

2'' n0?

0
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LEMMA 5. For v > 1 [Let X\) be a finite population of size NV, F
v

, a sample without nreplacement

the uniform distrnibution on X\),X],...,Xn

A \)
from X , F the empirical df. of the sample. 1§ for some F, dZ(Fv’F) +0

& v and n >« then dg(?v,F) +0  in probability.

Proof. If g 1is continuous and bounded
E [Q(X)d?V(X) = Ig(x)dFv(X) > Jg(x)dF(x) ,  Var (jg(x) dﬁv(x)) >0

So,

(8) [gmdﬁv(x) N jgmdF(x)
in probability. Moreover,
T 2 2y 2
]1mVE J¢(x,M) dFv(x) = J¢(x,M) dF(x)
by lemma 8.3c) of Bickel and Freedman (1981). Since we can make

J¢(x,M)2dF(x) small for M large we conclude that (8) holds for

g(x) = x2 also and the lemma follows. O
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3. Proving the theorems in case (a)

Proof of Theorem 1. Recall the variance weights W, from section 1.

As is easily verified, %g/Tg = 1+g-z, where

n.
(9a) g = 1P, wi(n,-1)7! zj;1(v§j-1)
(9b) B LA (RS DRl (G )

To prove the theorem, it is enough to show that & and ¢ are

both small. But ¢ = g] +£2, where

(10) & = P (n;-1)7" Z I (CRUR? §7e/m) -E(RE(w, Y, e/}

i 13

(100) & = Ty (g0 oh CoBwg Yy oedp) - G620, Y, o)) ]

Now

E(g%) var g,

n. -2.
z!I')='|(n1'-‘I )-2 ZJ.I_] var {¢ (inij’Evfh—-)}

i

A

Z?=1(“i-1) n; E{¢( ,e/—_)}

11J

e2 1P (ni=1) ZnlE 3o (wy Y, 5o/

iij

A

UA

z -1(n; -1)° n w E{Y }

P
Z‘i:] w

2

HA

4¢

On the other hand, E{Iazl}-—+0 for each e > 0, by (4). This disposes

of E.
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The term ¢ in (9b) can be decomposed according as to whether
ny >M or n, <M. Since

Zi{(ni-l)']wfz n

and E{n,¥%} =1, the strata i with n,

i 2 M+1 are negligible. For

the i with n,

UA

M, ¢= ;1 +;2 where

n, _

(112) SRR AR R CANRE MY
n.

(11b) c = Ty 7yl (Y oedp) ~EC6 Yy o))

The sums need be extended only over i with 2 < n;

; $ M. Now whatever

n, may be, as for &1,

(12) E(c2) ¢ 4e

A

is small. Next,

n.
2 J; wiy EL%(w Yy e

(13) E{lz, [} o=

HA

A

W T, EL6P (Y e/ M)

because 2 < n; < M; see Lemma 1. So o 1is small too, by

condition (4).

Proo§ of Theorem 2. The Lindeberg condition is applied, given F. It

is enough to check that for every ¢ > 0,

~=2 -1 2...2 ~ -1
(]4) Ta ZF;:] ni Ci E{(b (X;j'x,i.,en,i'fa'cil )IF} >0
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in probability, where %2 = Z?=] c?(ni-l)sf/n$ is the conditional variance

of ¥* given F. For then, Theorem 1 can be applied to X:j.

Since n, 2 2,

—

A % ~
a Ta

A
A

(15)

™l

a

Thus %a and hence T, may be substituted in (14) for %,. So (14)

reduces to

n.
-2 zp CZn-Z i

2 -1
i=1 CiNg L=y O (Xg5=Xgemyrifeg 7)) —0

in probability. This in turn reduces to

p-1¢" 2
(16) Y=y M L=y 070wy (Xy5-%.) 05,6/ 1 —0

in probability.

i Use Lemma l1a) with k = 2 to see

that (16) follows from (17) and (18):

Now (X;5-Xy Moy = Y44

n,
p -1 ¢ 2 1 R . a
(17) 21=1 n; Zj=1 ¢ (inij’Ze“"i) 0 1in probability
and
2 — . .y
(18) ‘ Z?=] ¢ (ini~’%€“hi) > 0 in probability

Clearly, (17) follows from (4). We bound the expected value of the

left side of (18). Take first those i with n; s M. In view of Lemma

1b), the sum over such i is bounded above by
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W.Y L/ﬁ/M)}

2
( .i ,ij94u

M2 J. Elo

whiph tends to zero by condition (4). Take next those i with n, > M.

The sum over such i is bounded above by

2, _ 2 -1
Ly BLw Y070 = I wing
-] 2
<MY W
<m!
which is small for M large.
That %/%, > 1 follows from Theorem 1. 0

REMARKS. (i) The Lindeberg-Feller theorem can be supplemented by direct

bounds generalizing those of Berry-Esseen; see Petrov (1975, Theorem 3,

p.111 or Theorem 8, p.118). These bounds may give estimates on the

discrepancy between the bootstrap distribution and the true

distribution.
(ii) The difference between the distribution of (?-y)/Ta and

the bootstrap distribution of (?*—?)/?é can be estimated using the
Mallows metric as in equation (2.2) of Bickel and Freedman (1981). The

condition needed to push this through is stronger than (4).
(iii) The results can be extended in an obvious way to vector Xi5°

and under further conditions to nonlinear statistics such as

Z?=1[gi(xi-)'gi(“i)]; this covers ratio estimates.
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4. Proving the theorems in case (b)

Proof of Theorem 3. The Lindeberg-Feller theoreh does not apply to give

us i) directly here, since the Xij are dependent for fixed 1i; however,
essestially the same ideas can be used. The proof we give is a bit com-
plicated; an alternative but we believe no simpler approach is, given by
Dvoretzky (1971). OQur argument is by cases, and the focus is on asymptotic
normality. Without loss of generality, assume My = 0,c. = 1. In outline,

1

the argument is as follows.

Case 1: there is only one stratum, and n < 5N; we drop the unnecessary

stratum subscript 1i. Then 92 is of order n, and asymptotic normality

| —

follows from Erdos-Renyi (1959). Also see Rosén (1967), Dvoretzky

(1971).

Case 2: there is only one stratum, and n > %Jw. Apply Case 1 to the

"co-sample" consisting of the objects not in the sample.

Case 3: the number of strata is bounded; no variance weight tends to

zero. Case 1 or Case 2 applies to each statum individually.

Case 4: ‘there are many strata, each of small variance weight; in each
stratum, n, g-%Ni. Then ?/Tb is the sum of p independent u.a.n.
summands: var {Xi./Tb} = v? being uniformly small by assumption. We
must verify the Lindeberg condition on Xi_/rb, and do so by an indirect

argument. Let X%j be sampled with replacement from Xi. And let
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N the variance weights v? and w? are of the same

~no|—

Since n; <

order, as are the total variances TZ and Tﬁ. In particular, .

condition (6) implies (4). Thus, the Lindeberg condition holds for the
individual summands in ?'/ra, viz., X;j/nira, and asymptotic normality
of Q' follows. By the converse to Lindeberg's theorem, his condition
holds for the stratum averages -#— Zni X%j/ra . Hence, by

i j=1
Lemma 2, the condition holds for the stratum averages taken

n-
without replacement, viz., %— Zjl1 Xij/Tb . Now a second application
i

of the direct Lindeberg theorem gives asymptotic normality of ?.

Case 5: there are many strata, each of small variance weight; on each

stratum, n; >-%Ni. Apply Case 4 to the co-samples.

Case 6: there are many strata, each of small variance weight. Consider

two groups of strata: in the first, n; < %Ni ; in the second,

1

n; >-§Ni. Case 4 applies to the first group, Case 5 to the second.

(One of the two groups may be negligible.)

The general case: We combine cases 3 and 6. Let

J (V) = {i:vi_z_—]k—}

v () = z{vf:ieJk(v)}
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where dependence on the hidden index is made explicit. Given any
subsequence of {v} we can extract a subsubsequence {Vr} such that

for all k, as r » «, Vk(vr) tends to a finite limit Vi If Vk =0

for all k, there must be kr + o such that Vk (“r) + 0. Hence, as
r

r - o,
(19) Z{Xi-/Tb :ieJkr(vr)} + 0 1in probability.

But, max{vi :i¢Jkr(vr)} é:l/kr - 0. So we can apply case 6 to get that
(20) Z{Xi-/Tb :i¢Jkr(“r)} is asymptotically N(0,1).

Combining (19) and (20), we get

(21) )X Xi,/Tb is asymptotically N(0,1), as r » «,

On the other hand, suppose Vk >0 for some k. Since Jk(vr)

has at most k2 members, we can apply case 3 to see that for all k, as

r - o,
Z{Xi-/Tb :ieJk(vr)} is asymptotically N(O,Vk)
By a standard argument, there are kr + o such that
(22) Z{Xi-/Tb :ieJkr(vr)} is asymptotically N(O, supkvk).
Applying case 6 as above,
(23) Z{X]../rb :idJkr(vr)} is asymptotically N(0,1 - sukak).

Combining (22) and (23) we obtain (21) in this case also. Part (i) of the
‘theorem follows by a standard compactness argument. The proof of (ii)

follows the pattern of that of Theorem 1 and is omitted. O
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Proof of Theorem 5: We simplify the argument by supposing N divides

N] so we can use the naive bootstrap. (The general argument uses lemma 4.)
Moreover, without loss of generality let My = 0, oy = 1. Since p =1

we want to compare the distributions of standardized means of a sample size
" from the populations V] and that composed of N1/n] copies of the
standardized sample: (Xij-ﬁ1)/81 »1<jgn, where ﬁ1 are the

sample mean and sample standard deviation respectively. So by lemma 3,

2, Y=Y y*-y : 2.0 & A A
dz{g(-TT),z’(——.T,Tux v 123 20} g dofFLF (Gx+ip)Y

A

13

By lemma 5, dg(Fv,EV) , ﬁ] , and 8] - 1 all tend in probability to 0 as

v + o . A truncation argument of the type we have all ready used shows that

A /\*A - - 0 .
Tb/Tb and Tb/Tb both tend in nrobability to 1 . The theorem follows. [
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