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Abstract

This paper is about the asymDtotic distribution of linear combina-

tions of stratum means in stratified sampling, with and without

replacement. Both the number of strata and their size is arbitrary.

Lindeberg conditions are shown to guarantee asymptotic normality and

consistency of variance estimators. The same conditions also guarantee

the validity of the bootstrap approximation for the distribution of the

t-statistic. Via a bound on the Mallows distance, situations will

be identified in which the bootstrap approximation works even though

the normal approximation fails. Without proper scaling, the naive

bootstrap fails.
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1. Introduction.

Consider the problem of estimating a linear combination y = J_=l cil i

of the means 'WI Ipp of p numerical populations X ,...,Xp with

corresponding distributions F1,...,FP. For each i =l,...,p there is a

sample Xj from population Xi; the sample elements are indexed by

j =l,...,nj. Thus, n. is the size of the sample from the ith popula-

tion. Two situations will be discussed:

(a) The populations X. are assumed arbitrary and the sampling is with

replacement: Xii for j =1,...,n are identically distributed

with common distribution F.; all the Xij are independent.

(b) The populations are assumed finite; X. has known size N.;

sampling is without replacement and independent in i; in this

case, F. is uniform. Enumerate Xi as {x l*...,xN. }.

For simplicity, the populations are supposed univariate.

The natural unbiased estimate of y is

(1) y = c.X .
i=l 1 I1*

Here, the dot is the averaging operator.
2 2

Let Ta or Tb denote the variance of y under sampling schemes

(a) and (b) respectively. Let 12 orTT be the customary unbiaseda b

variance estimates. Inference about y can be based either on the

normal approximation to the distribution of (y-Y)/T or on bootstrap

approximations. This paper will discuss the validity of these approxi-

mations when the total sample size tends to o in any way whatsoever,

e.g., many small samples or a few large samples or some combination

thereof. More precisely: suppose p, the c;, the populations, the
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N,and ni all depend on an index v such that n(v) = n1(,v) + . +n (v)

Xc as v-oo. This index will be suppressed in the sequel.

Here are two examples.

(a) The X are unbiased measurements of the same quantity p,

taken with p different instruments. So the precision of X j9 viz.,

r= f(x.p) dF.(x)

depends on i. If a 2 is known to be proportional to r, then

n. n.
r= E r=1 Xi~ /1 1.

is the natural estimate of a.

(b) In the classical stratified sampling model a population X of

size N is broken up into disjoint strata X *.,Xp of sizes

N ,..,Np respectively; Ij N = N. From stratum i the sample

X.j for j =l,...,n. is taken without replacement. Enumerate the

.ith stratum as {x 'il' . N}. The population mean is

Y= N Xi=l EJ1xj =Xi Nj Xj /Nj=l iji Il 1 1

and 9 = I N X /N is the usual estimate of y.

We first take up the normal approximation in case (a). Suppose

(2) fx2dF. < Xo and ni > 2 for i =1,...,p

Then

la2 = yi=l c2ac2/n. where a2 = var Xa 111 1 ij
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and

=, p 2 2
ta Ej=lc.s./n.Ta L1 =1 1 1 1

where

s2 = (n )1 l)1 (X.- X 2

Let

¢(X,£) = x for lxi > c

= 0 otherwise

¢(X,£) = X -(X,£)

Suppose that for all C > 0,

(3) Ta2 n-ln 2.E{i2 1(Xij-,ini lcjl}1 0

By the Lindeberg-Feller theorem, (Y-Y)/T converges in law to N(0,1),a

the standard normal distribution.

According to the first main theorem of this paper, conditions

(2) and (3) are also sufficient to guarantee that T2 has the right

limiting behavior. However, before giving a precise statement, it

may be helpful to reformulate condition (3). Let Yij = (Xij-vi)/C.)I
Define the "variance weight" of the ith stratum by

2 2 2 2
w. = cCYfi/nniT = var {c.X. /a}

Clearly, Xi=l wj = 1
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Condition (3) can then be written

(4) IP_ E{q2(w.Y. ,EW)}-O for all1=1 i~~'13

THEOREM 1. If (2) and (4) hold in case (a), then

probabiZlity.

,A2 2
Ira/ a

*1 i

The proof is deferred.

COROLLARY. ( T-y)/a tends to N(O,l) in Zaw.

We consider next the bootstrap approximation in case (a); also see

Babu and Singh (1983). For i = 1,... ,p, let Fi be the empirical

distribution of X for j = 1,... n Take samples of size nj with

replacement from Fj. That is, let {X'j} be conditionally independent

given F, the a-field spanned by {X. .}; let X'*. have common distribution

Fj for j=l,...,n. Let

1c X

*2= (n.-1)1 L1=(X13-X)
A*2 = I 2s*2/nTa = XP=1c

,2 P 2 2 2
Ir i 1j ci .ni-1)ss/n i

THEOREM 2. If (2) and (4)

distribution of (Y *Y)/a
and T/T - converges to 1

a a

hold in case (a), then the conditional

converges weakly to N(O,1) in probability,

in probability.

E 0
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The proof is deferred. The theorem points to a problem in using the

bootstrap to make inferences: the scaling may go wrong. This is
* ~~~~~~~222

because Xi. has variance (n.-1) si/ni , not s./ni. To fix ideas,

suppose there are many small strata: more particularly, that

ni < k for all i. Now

2 < (k-l)/k * a (k-l)/k *.T

The bootstrap distribution of y*-y *has asymptotic scale a"' while

y-yY has the scale Ta

We take up next the normal approximation in case (b). Suppose

(5) 2 < n. < N1-i

Then
2

2 lp 2 ¶i (Ni-ni)
1. 1

and
s~ (N.-n.)

2 2i 1Tb Yi=l c1- n N.

To state the regularity condition, let v2 be the "variance weight"

in case (b): v.? = cac2 (Nj-ni)/niTb(Ni = var tC Xj./Tb}. Let p

be "the effective sample size:" pi = ni(Ni-l)/(Ni-ni).
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Let = {y.l,. ..,iNi where yij = (xij-pi. )/VU and

G2 =N-1 yjLl)(xji-Pi.)2 So = (X are sampled from YV.

The condition is

(6) NP IN:1 N 2 r--/.

This may be compared with condition (4).

If sup EIYjI3 is uniformly bounded independent of the hidden
l=i p

index v, the Lindeberg conditions (4) and (6) are implied respectively

by the natural conditions max w./AiT- 0 or max v.l/vp 0. Thus if
1 1 1 1

the standardized populations have reasonably light tails, asymptotic

normality holds if for each stratum the variance weight contribution is

small or the stratum is heavily sampled.

THEOREM 3. If (5) and (6) hold in case (b), ;ken

i ) (Y-Y)/Tb )N(O,1) in 1

and

Tb/Tb n1 in P'roabili7.i

The proof is deferred.

COROLLARY. (Y Y)/Tb N(O,,l) in law.

Finally, we consider the bootstrap in case (b). If N.m. = k;

an integer for each i, the natural bootstrap procedure was suggested by

Gross (1980): given {X .j1, to create populations Q; consisting
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of kj copies of each X j for j=1,...,n; then Xij for j=l,...,n.

are generated as a sample without replacement from Xi; the samples

being independent for different i =l,...,p. In general, if Ni = k n. +r

with 0 < r. < n., form populations X io and X.i, where X.o

consists of k. copies of each X', for j = 1,...,n.; while X il
consists of ki+l copies. Let

(1 nj)(l r.N

With probability ai, let (X *,...,X . ) be a sample without replacementil in.
of size n. from Rio; with probability 1-cti, let (Xj* ,00 ) be1 i in.
a sample without replacement of size n. from X The virtue of this

scheme is that both X.io and X.il have the same distribution F

and

ni-1l N.-n.
Var(X*.I{X.}) = n 2 2 1.)

The proof of the following theorem is similar to that of Theorem 2 and

is omitted. Define y* as before, and T*2 by substituting X'. for

Xjjin A2

THEOREM 4. Let T b be the vaiWance. OS y* gkven the data. Then, 46

(5) and (6) hotd in cwse. (b), the conditionat di,tibution o6 (Y Tb

conveitges weakty to N(O,1) and Tb/Tb e 1 pbbtbiity.
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The same inference Droblem arises as in the case of Theorem 2. The

variance of y* given the data is an inconsistent estimate of the variance of

y . We have side-stepped the issue by comDuting the scale externally to the

bootstrap nrocess. Other patches could be made: one is to rescale the ele-

ments of X. ; another is to adjust the constants c. . These fixes are all

a bit ad hoc.

If y stays bounded as v + o our results extend easily to pivots

g(y) - g(y)
g9 (Y)b

where g is nonlinear continuously differentiable. The same issue as before

arises a fortiori for nonlinear functions. Neither the variance of g(Y*)

given the data nor its natural approximation [g'(y)] b are consistent
p

estimates of the asymptotic variance of g(y) . A fix which works if ZIC
i=1

stays bounded is as before to rescale the elements of X. or the c; before

applying the bootstrap. Alternatives (the jackknife, linearization, BRR) are

discussed in Krewski and Rao (1981). For the case of one stratum, Theorem 4

was derived independentlv by Chao and Lo (1983).

The bootstrap can work even when Theorem 4 fails but the circumstances are

artificial. Suppose we have only one stratum and N1 - n1 = k for all v i.e.,
N1

all but k members are sampled. Since EZ.1(xlj-pl) = 0 , the pivot (Y-Y)/Tb

is distributed as the standardized mean of a sample of size k taken without

replacement from the population Y1 . No matter how large N1 is, if k is

small and Y1 nonnormal we would not expect the normal apnroximation to apply

to y . To be specific let F be the uniform distribution on Y1 and suppose'Y -~~~~~V
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(7) F. converges to F in the Mallows d 2-metric,
2 2~~~~~~~

i.e., Fv + F weakly and Tx2dFv +Jx2dF. Then (Y-Y)/Tb is distributed in

the limit as the standardized mean of k independent variables identically

distributed according to F . On the other hand since we have sampled nearly

the whole population we expect the bootstrap to work.

THEOREM 5. If (7) holds the conditional distribution of (Y*-Y)/Tb converges

weakly in probability to the same Zimit as that of the unconditional distribution

of (Y-Y)/Tb . Moreover, Qb/Tb and Tb/Tb both tend to 1 in probabilZity.

We can extend this result somewhat by replacing (7) with a compactness-

in-d2 condition on {FV}
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lim N -1E p1 (v1 ylj, m) = 0

This condition is evidentally weaker than (6) for p = 1. The conclusion

now is that the d2-distance between the conditional distribution of

(Y*.-)/h and the unconditional distribution of (Y-X)/^ tends in

probability to 0. A further extension to an arbitrary number of strata

which includes both Theorems 4 and 5 is also possible but not worthwhile.

2. Some lemmas

Recall the truncation operator p from section 1.

LEMMA 1. a) 1~(l:ki ) | 5 k =1(y,k/k) I; equivalently,
k k2I (Ql Yi £) 1! kEI=1 1l(yiqclk )I

b) Let Y1 ,Y2,... be independent and identicaZZy distributed.

Then E{42(k jk= Yi,£)} 5 k2E{42(Y ,E/k)}

Proof. CZaim a). As is easily verified,

1 k 1k)| < ¢(lIk

Without loss of generality, suppose all y1 > 0. Let Y(k) be the

largest yi. If Y(k) < e/k, both sides of the inequality vanish. If

Y(k) > s/k, the left side is the average of the yi, or zero; the

right side is at least the maximum

CZaim b) follows by the Cauchy-Schwarz inequality. 0

LEMMA 2. Let (X',...,XX) and (X ,...,Xn) be distributed respectively

as sampZes with and without repZacement from a finite popuZation. Then
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2n
E{4 ( I X. ,£)}

i=1
< E{¢ (. X ,£)}

i =1

Proof. By a theorem of Hoeffding (1963), if g is convex, then

E{g(QX )} < E{g(JX )}

Let

g(x,£) = x

= 2£|XI - £

= 0

for Ixi > E

for 1 IxI < E

otherwi se.

Then g is convex and

2 (X,2) < g(X,£) < 2(X,1
So

<E{g(iX,)} < E{g(~Xj,)} < E{2

The next result involves the Mallows metric d2; see Mallows (1972)

or Bickel and Freedman (1981).

LEMMA 3. Let X and V be two finite popuZations of reaZ numbers, of

the scone size N. Let F and G be the uniform distributions on X

and V. Suppose F and G have the same means. Let X1,....,Xn be a

sampZe of size n, drawn at random without replacement from X; Zet

F(n) be the Zaw of Xl+---+Xn. Likewise for Y1,...,Yn and G(n).

Then

d [F G 2 < n(N-n) d (F,G)2
d2 (n)s (n) N-l

S
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Proof. Enumerate X as x X2 ... <XN and V as Y1_Y2_...YN.

Th-en

1N 2 d (FqG)2

This follows from Bickel and Freedman (1981, Lemmas 8.2 and 8.3). Let

Z = {1,...,N}. Let Zi1 * 'zn be a sample of size n, drawn at random

without replacement from Z. Set X i = XZ and YV = yz. Now
i~~~~~

d [F ngG 2
< E{[ jn=l(Xi_yi)]2}N 1 1

=n(N-n)d FG2
= n(N-1n) 2

v ~d2(FF,G)2

Here is an easy generalization of Lerma 3.

LEMMA 4. For i = 0,1 Zet X. = {x il'9***' } be 6in&te poputationziN
and Fj the ai4ocitaed uni6otm dist'bubton/s on Xi. Let Fni be the

dtxibwuton o yn= X when X ,. is a sampte without teptace-

ment 6hzom X . Let n < N0 < N1. Ij J aaubzset o6 {1,...,N1},

Zet F1J be the uniotmrn dbsttibution on {xlj: j e J}. Then,

d (FsFn22 < n(N0-n) 1 Yj{d2(Fo,Flj)2: IJI= N}d2(Fn0lFnl) No:1(No) 0
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LEMMA 5. Fot v > 1 tet X be a 6iZnte popuLation o6 size

V~~~~

6,tm X , F .the empi't'cat d6. o6 the ~sampte. 16 6oit -omeV

azs v+- and nv -+ co then d2(Fv,F) 0 in p'wbabiiy.
Proof. If g is continuous and bounded

E Jg(x)dFV(x) = g(x)dF (x) Jg(x)dF(x),

N, F
v v

i.epZacement

F, d2(Fv,F) + 0

Var ( g(x) dFV(x))) -* 0

So,

(8) Jg(x)dFv(x) + fg(x)dF(x)

in probability. Moreover,

lim E fq(x,M)2 dF (x) = f¢(x,M)2dF(x)

by lemma 8.3c) of Bickel and Freedman (1981). Since we can make

fq(x,M)2dF(x) small for M large we conclude that (8) holds for

g(x) = also and the lemma follows. [1
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3. Proving the theorems in case (a)

Proof of Theorem 1. Recall the variance weights w. from section 1.

As is easily verified, T 2/T- = 1+E-?, wherea a

(9a) 1= w (n -1 Xi= (Y2
1P 1 L j-lij

(9b) Ji=y= 1 w 1(n1 1(n 1)

To prove the theorem, it is enough to show that i and G are

both small. But I= 6l +E29 where

=1-1l)- n 1 12-2(10a) p=y (nj l)6 Anl{¢2wj 7.i)- E{ (w Y E,vr)}]
p l)-

n. 2~* 113W.y
(lOb) 2 = =(n-l Xjl[f (wYi n) -E{ E(w.Y.,YrnT)}]

Now

2E(El) = var El

= XPi= (n l)j2lj=l var (w 1 13 1Vi)l

< P (nj )-2n E{¢4(wiYi£i)

< F2 EP(n -1)-2nJ2E{f2(w Yi £ )

< £2 =(njl)-2n2w2E{Y2}
Xj=1~~i

< 4e2 ~P w

- 4£2

On the other hand, E{j62j}O for each £ > 0, by (4). This disposes

of E.



-1 5-

The term C in (9b) can be decomposed according as to whether

n > M or ni < M. Since

2j{(ni-l) w2: n. >M+l < m-i

and E{n.Y } = 1, the strata i with n. > M+l are negligible. For

the i with n1 M, C = + where

(lla) N= n 2 (w1Y- ,eJii7)-E{2(w Y jEn,)}]

(llb) Xi n1.L2 (wiyiY E,VA) - E{p2 (w Y ,E£ iT)}]C2 n~~~i-
The sums need be extended only over i with 2 < ni < M.

ni may be, as for El

(12)

Now whatever

E{c 2} <s 4C.22

is smral 1 . Next,

(13) E{ I 21 } <

because 2 < n. < M; see

condition (4).

2 i n1-l E{q (w.Y . ,EFVi iI)}

< 4M2 ij E{f2(w Y. .,£AV/M)}
1 1~13

Lemna 1. So C2 is small too, by

Ptooi o6 Theotemn 2. The Lindeberg condition is applied, given F. It

is enough to check that for every E > 0,

T(4 i?=l ni' c E{2(X n.-XI.,n I)aIcFI)F} Oa 1 1
-

.

0

(14)
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in probability, where T2 = EP c (n.-l)s /n is the conditional variancea I i 1 1 1 1

of y* given F. For then, Theorem 1 can be applied to X*

Since n. > 2,

(15) 2a a a

Thus a and hence Ta may be substituted in (14) for Ta. So (14)

reduces to

T-2 EiP cjcn12 1j-l 3(X n.,n TaIciC ) 0O

in probability. This in turn reduces to

(16) I? nilI 22[W (Xij-X1)/ai Y1-, O=1 j 1 I

in probability.

Now (Xij-X. )/ai = Y .j-Y. . Use Lemma la) with k = 2 to see

that (16) follows from (17) and (18):

(17) ni=l 1 j=l 2(w Y I AY7)- 0 in probabilityn:i j= ij4

and

(18) p q2(wjY1 ,-/n;) 0O in probability

Clearly, (17) follows from (4). We bound the expected value of the

left side of (18). Take first those i with n. . M. In view of Lemma

lb), the sum over such i is bounded above by
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M2 E; E{f2(w Y ijrv,/n /M)}

which tends to zero by condition (4). Take next those i with n. > M.
1

The sum over such i is bounded above by

1, E{(wjYj )2} = jI w2n-1
< M 1. w.1 1

< M

which is small for M large.

That Ti/T + 1 follows from Theorem 1. C1a a

REMARKS. (i) The Lindeberg-Feller theorem can be supplemented by direct

bounds generalizing those of Berry-Esseen; see Petrov (1975, Theorem 3,

p.111 or Theorem 8, p.118). These bounds may give estimates on the

discrepancy between the bootstrap distribution and the true

distribution.

(ii) The difference betvween the distribution of (Y-Y)/Ta and

the bootstrap distribution of (Y*-j)/' can be estimated using the

Mallows metric as in equation (2.2) of Bickel and Freedman (1981). The

condition needed to push this through is stronger than (4).

(iii) The results can be extended in an obvious way to vector Xjjs

and under further conditions to nonlinear statistics such as

= [gi ( Xj . ) -gi(i)] this covers ratio estimates.
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4. Proving the theorems in case (b)

Proof of Theorem 3. The Lindeberg-Feller theorem does not apply to give

us i) directly here, since the Xij are dependent for fixed i; however,

essestially the same ideas can be used. The proof we give is a bit com-

plicated; an alternative but we believe no simpler approach is, given by

Dvoretzky (1971). Our argument is by cases, and the focus is on asymptotic

normality. Without loss of generality, assume 0, C E 1. In outline,

the argument i s as fol 1 ows.

Case 1: there is only one stratum, and n < N; we drop the unnecessary

stratum subscript i. Then p2 is of order n, and asymptotic normality

follows from Erdos-Renyi (1959). Also see R.osdn (1967), Dvoretzky

(1971).

Case 2: there is only one stratum, and n > -N. Apply Case 1 to the

"co-sample" consisting of the objects not in the sample.

Case 3: the number of strata is bounded; no variance weight tends to

zero. Case 1 or Case 2 applies to each statum individually.

Case 4: there are many strata, each of small variance weight; in each

stratum, n. < N Then Y/Tb is the sum of p independent u.a.n.

sunrnands: var {Xi./Tb} = v. being uniformly small by assumption. We

must verify the Lindeberg condition on X. /Tb, and do so by an indirect

argument. Let X!. be sampled with replacement from X. And let13
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1 22~~~p1
Xy -i=l ni lJ= 1 X5

Since n; < , the variance weights v.2 and w2 are of the same
i 2 i~~~~2

order, as are the total variances T a 2a and Tb. In particular,-

condition (6) implies (4). Thus, the Lindeberg condition holds for the

individual summands in I
viz

I

X Iy/Ta V'z ijX i./ a' and asymptotic normality
of y' follows. By the converse to Lindeberg's theorem, his condition

holds for the stratum averages n- E X I
/'rT . Hence, by

ni j=l 13
Lemma 2, the condition holds for the stratum averages taken

I nwithout replacement, viz., n. Ej-l Xij/Tb . Now a second application

of the direct Lindeberg theorem gives asymptotic normality of y.

Case 5: there are many strata, each of small variance weight; on each

stratum, n. > 'N . Apply Case 4 to the co-samples.1 2 iI

Case 6: there are many strata, each of small variance weight. Consider
1two groups of strata: in the first, n < -Ni ; in the second,

1n > T-N . Case 4 aoplies to the first grouD, Case 5 to the second.

(One of the two groups may be negligible.)

The general case: We combine cases 3 and 6. Let

Jk(v) = {i:vv+}

Vk(v) E{v2:ieJk(v)}
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where dependence on the hidden index is made explicit. Given any

subsequence of {v} we can extract a subsubsequence {vvrl such that

for all k, as r -* o, Vk(vr) tends to a finite limit vk. If Vk = 0

for all k, there must be kr - 00 such that Vk (vr) -+ 0. Hence, as
r

(19) Z{XI /rbu leJk (vr)}I- 0 in probability.
r

But, max{v. i VJk (vr)} < l/kr -* 0. So we can apply case 6 to get that
r

(20) {Xi/Tb ivJk (vr)} is asymptotically N(O,l).
r

Combining (19) and (20), we get

(21) Z i./Tb is asymptotically N(0,l), as r - .

On the other hand, suppose Vk >
0

for some k. Since Jk(vr)
has at most k2 members, we can apply case 3 to see that for all k, as

r -> o,

E{Xi./Tb: ieJk(vr)} is asymptotically N(O,Vk)

By a standard argument, there are kr +X such that

(22) E{X1 P/b ieJk (vr)1 is asymptotically N(O, supkVk).

Applying case 6 as above,

(23) E{X /rbb: iJk (vr)1 is asymptotically N(O,l - supkVk).
r

Combining (22) and (23) we obtain (21) in this case also. Part (i) of the

theorem follows by a standard compactness argument. The proof of (ii)

follows the pattern of that of Theorem 1 and is omitted. 0
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Proof of Theorem 5: We simplify the argument by supposing nl divides

N1 so we can use the naive bootstrap. (The general argument uses lemma 4.)

Moreover, without loss of generality let pl = O , a1 = 1 . Since D = 1

we want to compare the distributions of standardized means of a sample size

nl from the populations V1 and that composed of N1/n1 copies of the

standardized sample: (Xaiuil)/&1 , 1 < j _ nl , where j1 are the

sample mean and sample standard deviation respectively. So by lemma 3,

d {w(YTY)sS(Y~Y)IXlj s 1 _<j _nl} _ d {F,F(&,x+Pj)}2 b Tb - 2_ VI

By lemma 5, d2(FF and aF 1 all tend in Drobability to 0 as2 2 v IIan
v o. A truncation argument of the type we have all ready used shows that

Tb/Tb and 'b' b both tend in nrobability to 1 . The theorem follows. O
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