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1. Introduction

During the last few years investigators in many countries have made advances

in the higher order asymptotic optimality theory of statistical procedures.

Perhaps the central contribution has been the discovery by Pfanzagl (1978a), 1979)

and Chibisov (1974) that, under various-regularity conditions, for smooth parametric

models in the i.i.d. case first order efficiency of tests(and estimates) implies

second order efficiency (to order n 1/2) and the discovery by Pfanzagl (1978b)),

Takeuchi and Akahira (1976), Ghosh and Subramanyam (1974) and Efron (1975)

that maximum likelihood estimates are at least as good to third order (n ) as

any competitors with the same bias to third order (n ). The last phenomenon is

called, depending on the writer, second or third order efficiency. Presentations

of these results have in general involved Edgeworth expansion and/or cumulant

expansions, and it has not been clear to what extent the stringent conditions

on the models and on the classes of procedures studied are needed for the validity

of the results. In a previous paper, Bickel, Chibisov, and van Zwet (1981), we

argued that the first order efficiency implies second order efficiency result

for tests is a consequence of the Neyman-Pearson Lemma and the structure of the

likelihood functions of the experiments considered. In this paper we study the

third order property of maximum likelihood like estimates and again deduce it as

a general feature of smooth likelihood functions. Our approach was suggested

1This research was supported in part by Office of Naval Research Contract
N0001 4-80-C-01 63.
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by the discussion of L. Le Cam on Berkson (1980). The program we follow is to

show:

1) That for a given loss function W and suitable priors II the Bayes
b(g )

estimate is to third order of the form 0 + n where n is maximum like-
n n n

lihood (like).

2) It is possible to define a perturbed version Wn of W such that

a) §n is itself third order Bayes with respect to Wn.
b) For estimates with the same bias to third order as 6n' the Bayes

risk under Wn coincides with that under W.

From this it is easy to deduce the property. We illustrate this idea by apply-

ing it to the estimation of the mean e of a normal distribution with variance

1 with quadratic loss and the usual notion of bias. In this context the idea

corresponds to a Bayesian argument for the U.M.V.U. property of X. Suppose

0 N(p,2
Define a new loss function by

L(0,a) = (0-a)2 + X

where X = (nT2+1) . The posterior density of e is N(Xp +(l-X)X, xT ) so

that the Bayes estimate of e under L is just

(1-X) 1E(0lX) - X( ) i=x

But then, for any estimate T,

E{L(9,T)} = E(T-e)2 + -2 (e-P)E(6-T)7T(0)d0

where Tr is the prior density and for unbiased estimates

E{L(0,T)} = E(T-e)2

The optimality of X with respect to quadratic loss follows from the Bayesian
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optimality. We can oroceed to derive optimality at individual e by taking

e= and letting T2-+ 0. Note that this is essentially a Lagrange multiplier argument.

Our results are very close save for the more general setting to those of

Ghosh, Sinha and Joshi (1982). They also obtain an expansion and apply it to

the third order efficiency of maximum likelihood estimates. However their

method still leaves them with limitations on the class of competitors to maximum

likelihood that are being considered as well as their self-imposed restriction

to quadratic loss functions. Their expansion and necessarily their application

is also restricted to the case of independent identically distributed observa-

tions. Related results can be found in Takeuchi (1982).

2. The main results

Here are basic assumptions and notation.

Model: We observe x(n) a random element taking values in X The possible2 ~~~~~~~~~~~~~n
distributions of X(n) are p(n) e E 0, an open interval. Supposee
p(n) < ,(n) a finite. Let

dp(n)e

(2.1) dp

n(8) = log fn( 0)e

We will typically drop the superscript n for expectations and probabilities.

We postulate an expansion for Q (6+hn 1/2) around e in powers ofn

hn-1/2 with coefficients which we can think of as derivatives of Qn and a

remainder. Our further assumptions on the model are framed in terms of stability

conditions on the coefficients and bounds on the remainder. We write
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(2.2) L (e+hn 1/2) = 1(e)+ /2( (e)h + 2)(e)h2
n tn (e)+ n n /e)nn2()+/n(,i

/2i(i+2) hi+2!+A~ 6,hh+3
-(i ) -i~~~~~n-(7 - (9)

can be thought of as n - (e)

We postulate also non random functions X.: O -+R which approximate the

Zni) and write
n~~~~~~~~

Qn (e ) Xi (9e) n i(8 )

The Xi can be thought of as approximations to EOini)(6)e

Loss Function: We are given a symmetric bowl-shaped function W: R R ,

which is bounded and satisfies

(2.3) W(t) = W(-t) , Vt

(2.4) W(ItI) non decreasing, non constant

Define the risk of an estimate T : Xn-+ R

(2.5) R (e,Tn) = E W(n1/2(Tn-e))

Prior Distributions: We will consider prior distributions II on 0 with den-

sities Tr which are smooth.

Convention: Given random variables R (0), 9 E 0

Rn 4 o(an bn) * P [IRn (0 ) > ane] = o(bn)0

Ve > 0, uniformly for e0 E K compact. Note that Rn = o(an,bn
3en+ 0 3 P0e [Rn(0)I >ena =o(b ) uniformly for 0o E K.0n
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Rn ' O(an ,bn) Pe[IRn(e0)I >_ancn] o(bn)0~~~~~~~~
for all cn+t0 uniformly for e0 E K compact.

Bias: We define bias side conditions as in Pfanzagl and Wefelmeyer (1978) through

a function d: R- R which is assumed bounded,increasing and non constant.

Define the d bias of T
n

B(Tn e) = Eed(n1/2(T -e))

We say Tn9 Sn have the same d bias to third order if

(2.6) B(Tn,e) = B(Sn ,e) + o(n- /2) .

In particular if d is the identity (which we exclude!) (2.6) says that the

biases of Tn and Sn agree up to o(n ).

Estimate: We will distinguish an estimate en which can be thought of as the

maximum likelihood estimate but will be specified by its asymptotic properties.

Assumptions:

C.: For some ° < 6 cn<ft00, e > 0,

(1) SUP{IAnj(e+jn-0/2,h)l: Inl <c_nJ lhl <c n6}, considered as a process
inn=

in el, = o(nKj/2 .n -j/2)
(2) Sup{Ani(G0+n1n12)j: Inl <cnn6}, considered as a process in eo

= o(n ,n j/2), 2 < i < j+2,

(3) (a) -X2(o) = I(e) > 0, Ve

(b) x.(*), 2 < i < j+2 are continuous.

Clearly C2 C1 CO.
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Note that we can replace "cn to" by "every fixed c" and also that without loss

of generality we can take cn = o(n Y), vy > O.
For 6 as in assumption C.,

E.:

11)n/21(1 )()= n-j/2 - 6 n~j/2)(1) no1nP1(,n)

(2) (a) nl/2en-6el = O(l,l)

(b) = O(n ,ni/2 ).

(considered as a process in eO).

Condition (1) says that n behaves like a root of the likelihood equation

to order j. Condition (2a) corresponds to v'Ji consistency and (2b) to the

usual bound for probabilities of intermediate deviations.

Our main result is

Theorem 1. (a) If C1 and E1 hoZd, then
1 ~~~11

(2.7) limn supleeI<e n {2R(6,Tn)-R (6&n )} > 0

e0 E=- e > 0.

(b) Suppose C2 and E2 hoZd and alZso that X2, X3 are continuousZy

differentiabZe. Then if Tn and 9n have the same d bias (in the sense of

(2.6))

(2.8) ]4m suPIeel<e n{R (e,T
>

0

ve0 E e > 0.

The corresponding statement for j =0 is a version of the Hajek-Le Cam

minimax theorem.
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Corollary 1. Suppose for both S = Tn and Sn = En

(2.9) R(e,S) = i r(e)ni /2 + o(n j2)w n ~i=l
uniformZy on compacts where r. are continuous functions which depend on

{SnIn>l but not on n. Then under the hypotheses of Theorem 1

(2.10) limn n f'2{RW(e,Tn )-RW( )n -

for j = 1, 2 as appropriate.

This corollary for j = 1 corresponds'to the usual assertion of second

order efficiency for the M.L.E. while j = 2 corresponds to the usual assertion

of third order efficiency after equating biases.

Conditions C., E. and (2.9) follow from the assumptions of Pfanzagl (1976),

Pfanzagl and Wefelmeyer (1978), Ghosh and Subramanyam (1974), Ghosh, Sinha and

Wieand (1980) so that the conclusions of these authors can be subsumed under

Theorem 1.

The theorem follows from a study of the structure of Bayes solutions. The

priors H that we consider have densities r. Let y = log r, and suppose the

following assumption holds.

P.: I has compact support. For 6 and e as in assumption C. and

0 a < 2(j+l) 6 < e,

(2.11) rue: suply(i) (6+tn-l/2)I: Itl <c2n6} > n5] = o(nIj/2)

1 < i < j+l, c to as given in assumption C.. Here y(i)e() is the 1th- n 31ni
derivative of y for e in the interior of the support of T and y"1)(0) = X

otherwise.

A class of examples of I satisfying P. are those with (j+l) times con-
(j4l) m j(+l)2tinuously differentiable densities and 'rr (t) - c(t-b)m, m > 1 -26(j+l)

- (j+2) for b a boundary point of support.
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Theorem 1(a) follows immediately from

Theorem 2. If II satisfies P1 and C1 v E1 hold, then

(2.12) {RW(eA8n)T(de) = InfT fRw(eT,Tn)(de) + o(n1 /2)

Let wrn(x) be the posterior density of nl/2(e-en given X(n) =x
n n

(2.13) r (A,x) = jW(t-A)Trn(tIx)dt

the posterior risk incurred by action e+An , and

(2.14) rn(x) = InfL rn(A,x)

the Bayes posterior risk. So, (2.12) is equivalent to

E (r (O,X (n) - r (X(n)) = o(n 1/2)

where E1I, PI correspond to computation under eP(n)1(de). Now,we can writ(

for Tr( n) > 0,

(2.15) log rntX = (at12) -tn(e ) + y(e +tn1/2)

- y(n) - log Nn (x)
where

A r~~~~~ -1 /2 -1/2(2.16) Nn(x) = [fn(x,n)N(an)InFe +n n )r(6n+tn )dt.

We need an Edgeworth expansion on the posterior. Define a set BnC X(n)

by: x E Bn if and only if,

-n~~~/M SuP{IAnj(^ns) -tcn } nn /

(ii) en()() > -a, a > 0,
(iii) i1/2 )(en) < E(an)l-j

(i 1n(i+2)( i2(n < En' < i <j

e,.
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(v) 5upfjy(i)( n+tnr1/2)I: Iti <cnn}I n< , 1 < i < j+l

where E 4 0. Define for xE Bn

(2.17) iTr0(tlx) = l(x) exp2 e

Tr(t x Nn (tlx) expn- e(6 )iti
(2.18) rn(tix) = nO n n n

More generally let

(2.19) ITrnj(tx) = rn(tIx)(l +=l n1 2A (t,x))

where A. are defined as the coefficient of n i/2 in the formal expansion.

(2.20) exp i=l
co n ti+2 + i! nti)ni/2i(+2)! j

= 1 + ~i=l Ai(t,x)n i/2

Define 7rnj = 0 otherwiise.

Lemma 1. If C., E., P. hoZd, then

(2.21) El[fi7r(tIX(n)) -Tr(t x(n)j)dt] = o(n j/2

Proof. For x E B Iti < c nn writen -n

Irn(t Ix) = rn0(tjx)exp{fI=1 Qi(t,x)ni/2

+ 1/2 +Xtn-12)(1 -)d + nl/2Pl)(i )t+ (

where nn
eni+) i+ 0()()

tx n (n)i2 n)(2.22) Qj1 ti 2 + t

By construction of B the last three terms in the exponent are o(n j/2) and

for n sufficiently large,
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(2.23)

But, by

(2.24)

uni forml

n 12llQi(t,x)I < 1

ly for (x,t) as above. Therefore

'Trn(tl x) = TrnO(tIx)exp{fj=l Q (t,x)n i/21(1 + o(n-'2))

standard arguments,

Tr (t|x)[expfj=l Qi(t,x)ni/2} _ (1 + A (t,x)n1/2)]

(j+1) j+l
< Tr (tIx)O(n 2 max IQ.(t,x)l )

ij/2 1+2)
y(Orn(tIx)n max{n + na)

v as above.

Therefore

(2.25) n |(tlx) = rnj(tIx) + r0(tIx)o(n-j/2)
uniformly as above.

By the same expansion (j =0), for x E Bns

r ~~2
(2.26) Nn(x) > Jexp{-a 2-+o(l)}ds > c > 0

and

(2.27) |7TnO(tl x)dt < M

independent of x, n. By (2.25), (2.26) and (2.27) the lemma follows if

'2.28) P [n 1/21e-en1 >c n6] + P [X(n) B ] = o(nj/2)
Tr n ~n T Bn on

10

(
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(2.29)

But

ErTi .r(tIX(n))dt = o(nE11J
f l> n6 n

n

P11[n Ie-enI >Cnn] < supK P[n 12j0e I>c n6]

P11[X(n) EB ] < supK Pe[X(n) +Bn]

Therefore if we take (say)

a = --nf x2(e)

it is easy to see that C., P. imply the existence of n such that (2.28)

holds. A direct calculation yields (2.29) and the lemma.

Lemma 2. For W as specified, Zet be the standard normal density,

2 2_ 2
A(a ) = W(t)(t )(t)dt51W( ~~a

Then A(a2) > 0 and continuous.

Proof. W is symmetric. W(ItI) and (t2-a ) are both nondecreasing in Iti.

By Chebyshev's theorem,

a4A(o2> I W(t)¢(t)dt '(t2_2)f(t)dt = 0

C

with strict inequality unless W is constant. The lemma follows. 01

Proof of Theorem 2. By Lemma 1

(2.30) EI(rn(0, X(n) ) - rn(X(n)))

E (rW(t) r(tlX(n))dt -inf ([W(t-A)Trnl(t1x(n))dt)) + o(n 1/2
IIfljt7nl A nl

Moreover,

11
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r

W(t-/\)7Tl (tlt (n) )dt

= fW(t-A)7rnO(tX(n) )dt + JW(t-A)TnO(tXn (n) )n1/2{n3)(n6 n)t}dt.

The integrand of the last integral is odd for A = 0 and therefore this integral

is O(nlI2+ Al) as well as O(n 1/2+S) on Bn* Since [W(t-A)7n(tlX(n))dt

is increasing in JAI by Anderson's lemma, we see that JW(t-A)7nl(tlX(n))dt
can't assume its minimum as a function of A outside any fixed neighborhood of

zero for sufficiently large n. If A = o(l) as n-*, however, we have

JW(t-A)'Tr(t X(n))dt

= JW(t)7T (t+AIX(n))dtnO

= iW,t) (tIX(n) A2 2)=Wt)7(t )dt 1J7W(t){ e'(O 6 In''nQdt
+ O(1A13) .

The coefficient of A2 in the second term is positive and bounded away from

zero by Lemma 2, say > a > 0. Hence, for A =o(),

jW(t-A)7rT(tlX(n))dt = IW(t-A)W0,(tlX(n))dt + 0(n1/2 +%Ai)
> fW(t)r7(tIX(n))dt + aA2 + O(n 1/2 +aIAI + A1 3)

and for sufficiently large C > 0, no minima of IW(t-A)Tnl(tlx(n))dt can

-1/2+a12
n

occur for JAI > Cn 2 But for JAl < Cn112 we have

jW(t-A)YTl(tIX(n))dt = [W(t)YnT(tlX(n))dt + o(n 1/2)

as 1 -2 > 1 The theorem follows by (2.30). O

To deal with third order efficiency we extend Theorem 2 as follows.

Suppose d defines bias as in (2.6).



Let c:

(2.31 )

-* R. Define

W1=1/2 1/2 1/2
Wn (e,a) =W(n (e-a)) + h(n- 2c(e))d(n (e-a))

where h(t) = t, tl < 1 and 0 otherwise. Wn is an asymmetric pert

of W. Assume

Q: (1) c is differentiable on 0 and

(2) HI[e: sup{lc(i)(O+tn 1/2)I* tl < c2n6} < na] = 1 -o(n1)

for a prior II, 6 as in C2, cn t given in C2, a < 2- , 6 as in

Define

(2.32) bw(e) = v(6)A1 (I (e))

where

v(9) = {(Y()(6)I(e) - 32 ){s2w(s)P(sI- (6))ds

+ X3(e6I(e)){s4wc ) 1l(sr)))ds y(1)(e)Js)s,Il (e))ds}

and P(%,c ) i s the N(O,a2 ) density, and

(2.33) bW (e) = bw(e) + c(e)D(e)I()A-1(I-l(e))
n

where

(2.34) D(O) = {d(v)v¢(v,I (e))dv

Note that D(e) > 0 by Chebyshev's theorem since d is nondecreasing,

non constant.

13

;urbati on

0<i <2

IP2.'
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Theorem 3. If rI satisfies P2 and C2, E2 hoId,

(2.35) f W(e§n+b(§e)n )nt(de) = Inf fR>i(BjTn)fl(dO) + o(n)
n

If c satisfies Q then (2.35) holds with W replaced by Wn.

In words, 6nb nw() 1 is Bayes to third order under W. The

formula for the correction b n1 is unimportant. The main point is that

it is a function of On only and that the corresponding additional

correction for Wn is linear in c.

Proof of Theorem 3. We have

fW(t-A)7nO(t Ix(n) )dt

W(t-A)7T (tlx(n ))dt

- 1/2f (tlx(n))[,(2)(g +{1(3)( 3)t (1)+ n AJW(tTrrn+0) ( + )n'(9n])tt

+ w (X(n) ) + O(n-1/2 l,13 + n-1+26zA2n ~ ~ ~ ~ n

where p is a function independent of A. Arguing as in the proof of Theorem

2, we find that we can restrict attention to JAl < Cn 1/2+. By assumption

c2(2) we may replace !(i)(g ) by X.(9 ) for i =2,3 and obtain
2 ~~~~nn i n

rW(t-A)Tr (tl| (n) )dt

=JW(t)Trn2 (tlX(n))dt + gA(I l(sn)) - n~l/2/\v(@n) + Wn(X(n)= W(t)wTno(tlXn)dt + ~A O(1-( )) n-n1Av(6n) + i~n(X ) + o(n )

Claim (2.35) follows. Its extension to Wn follows similarly. 0
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We can now complete the proof of Theorem 1, part (b). Choose a prior n

satisfying P2, FIrr(l)(e)Ide < o. Define the function c(6) by

(2.38) c(e) = -bw(e)A(I 1(6))I 1(e)D1 (e)

-v(e)I (e)D0 (9)

Note that by assumption I 1(e)D (e) is continuously differentiable while

ll[sup{jv(0)(e0+tn 12)1: Iti <cn6} < n l = 1 -o(n )

for 0 < j < 2 by P2. So the conditions of Theorem 3 are satisfied for the

choice of TI and c. Moreover, by construction bw (e) = 0. So,
n

(2.39) JRw (O9Tn)Tl(d0) > fRw (e, n)TI(d0) + o(n1)

But for any Tns

[RW (eqTn)fl(de)
J

=RW(e,T )I(de) + B(n1/2(T -e))h(n-12c(e))TI(de) + o(n )

Therefore if 9n and Tn have the same bias to third order,

(2.40) F[Rw (eTn) -Rw (e& n)]n(de)
n n n

[[Rw(e,T) - Rw(6e9n)]TI(de)
+ n /2F[B(nl/2(Tn-e) -B(n 12(en-e))]c(e)n(de)
+ 0(n- J{c()Inl2 Ic(0)InI(d0)) + o(n)

I{lIc (e )lI>n1/2 }

But Ic(0)ITI(d6) < m since JIr(l)(e)Ide < o. Part (b) of Theorem 1 follows

from (2.39) and (2.40).



16

Extensions:

(1) If c(C) is bounded or more generally satisfies Q, on compacts then

the assertions of Theorem 1 hold with O replaced by n + n f course,
n n n

the competitors admitted under the bias equivalence condition depend on c.

(2) Theorems 1-3 can be straightforwardly extended to the multiparameter

case. With e = (el ...ek) let 2(i)(e) be the jth differential with respect
k kto e thought of as a j-linear function on R or equivalently as a point in R

P10)(e)(t 0 ..t)n=T + l.. tjj. i ,..,ij El,...,k}}

where tq = (tql ..,tqk), 1 < q < j and write () for n(j)
With this convention reinterpret (2.2) for e a vector. The loss function

W: Rko)R+ is assumed to be bounded and

(a) W(t) = W(-t) for all t

(b) {t: W(t) <w} is convex for all w.

(c) For every X E R , W(Xt) is non constant in t E R.

If P(,) is the k-variate normal density with positive definite

covariance matrix E, define the matrix A(E) by

(2.41) A(E) = E-ljW(t)(tTt -E)q(tE)dt E

Conditions (a)-(b) on W guarantee that A(E) is nonnegative definite, cf.

Lemma 5.8, Pfanzagl and Wefelmeyer (1978). A more careful argument shows that

(c) implies that A is positive definite.

Risk is defined by (2.5). The scalar bias function d is replaced by the

vector d: Rk-+Rk and the scalar D(6) by the matrix

(2.42) D(e) = jd (s)s4(s,I (e))ds .
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We require that D be nonsingular for each e. Conditions C. and E. need to

be changed only to the extent that absolute values become vector norms and

I(9) > 0 becomes I(e) positive definite. If we interpret y (i) as the ith

differential of the log of prior density w defined on an open ball in R C ®

then P. also need only be modified by substituting vector norms for absolute

values. If we add the assumption that D(0) is nonsingular to the reinterpreted

C., E., P., Theorems 1-3 carry over to the multiparameter case without change

in proof provided that we interpret A as a matrix and define the vector

v(e) by

v.(0) = (Y(l)(e)I-(e) Xabj))fSaSbW(S)M(SSI ())dsa,,baab ab

+ b dabc(8)Idj(e)fsabscsdW(S)M(s9I- (e))ds
a,b,c,d abc dj6) bds

Y1)(e)fw(s)msir1(0))ds
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where Xabc(e) are the components of x(3)(e) and subscripts denote elements

of vectors and matrices.

The results also carry over directly to the estimation of a subvector

(el ... ep), p < k with an appropriately redefined loss function.

(3) Given any estimate Tn, define recursively

T =O T
(2.43) n n (1) (i)

T(i+l) T(i) -n (n )n - n ~ (2)(T(i))
n (Tn

That is, TO) is defined by taking j Newton-Rapson steps in the solution
n

Of n0 -6 0 starting from Tn.

Theorem 4: Suopose

differentiabZe witth

C. holds and in addition Qn is j+l times continuousZy

n(j) being its derivatives, and (as a process in )

-(1)~~~~~~~
n(eo) = o(n2 ,n)(2.44)

Then if Tn satisfies E (2), T(i1 )
3 n satisf4ies E.(1 ) and E ((2).

Proof. We shall argue by induction for i = , ... ,j that

(2.45)

(2.46)

Note first that, by (2.43

(2.47)

iT (i+l) _ea

n()(T(i+l))

*

. -1

1= o(n ,n )
0

n n n (T )
in

= o(nd-2 n~~~~~~2)

where ITnTT(1)I < IT(i+l) T(i)I; also,
nn - n n
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(1) jo(o)g(e)f*)1(3) (e*)
n~ (T n + nn II 6(2.48) (2 =n (2) {2 } n

nnn

with e0*-1 < IT_-n . From C. and (2.44),

n

~1(n) = O 4+n n-2
(2.49) Tn -Tn =(2 o(n n )

~n (n

So, by (2.47),

(2.50) n2Q(l)(T(l)) = o(n 2 n2) = o(n- , 2)
n n

for 6 <-. Case i =0 now follows. If the claim holds for i, then by

(2.47) and induction,

()(Tt i+2) ) = o(n i-26 nA j/2)
n n

(i+l)~<J
22= o(n ,n )

Since

T T - nT(T(i+l)) = o(n ,n )

n

the induction and result follow. [

3. Examples of situations in which the regularity conditions hold

The IID Case: Consider the following conditions.

I .(1): 91 is differentiable to order (j+3) and

Ea suP{O4(j+3)(e')lj : 0'eK} < M(K,K') <

for e E K' D K arbitrary compacts, and j' = j , 2. I.(l ) may be replaced by

the condition

sup E {lI(j+4)(eI)Ij 6'0eK} < M(K,K') < Co
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Ij(2): E It(i)(0) 3j +6

bounded for 0 E K compact, 2 < i < j+2.

Define

I. (3): Rj (e) = E0(ji) (e)

Under I(1), e-a*x(e) are continuous, 1 < i < j+2. e--E ([91)]2(e) is1 01 (0

positive.

It is easy to see that Ij(l) CGM(l), Ij(2) *C.(2) and Ij(l)-Ij(3)

Cj (3) and

xl(e) = 0

I(e) = [Ql ] (a)

It is also easy to see that the minimum distance estimate Tn constructed by

Le Cam (1969), pp. 103-107 satisfies E.(2) provided that Ij(l)-Ij(3) hold

and the parameter is identifiable. We need only remark that if Fn is the

empirical distribution function and Fe the true,

P [n1/2IT -e >cnn6] P [sup n112Fn-F0II > N(cnn6)] = o(n ) Va > 0

by the well-known Dvoretzky-Kiefer-Wolfowitz inequality. If we now require

that, in addition to Ij(l)-Ij(3),

Ij(4): E 'IQ(l)(e) Ij1+2i 1~~~~~~

is bounded, uniformly on compacts, then (2.44) holds by Bhattacharya and Ranga

Rao (1976) p. 178. Thus Theorem 4 yields on which are suitable. There are

many alternative possibilities for 9n including the construction of Pfanzagl

and Wefelmeyer (1978), Bayes estimates and of course MLE's obeying Ej(2). In

any case, I.(l)-IM(4) guarantee our theorems. All of these conditions save
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for Ij(4) are implied by the conditions of Ghosh and Subramanyan (and Pfanzagl

and Wefelmeyer). But Ij(4) is only used in verifying E., a condition which is

easily seen to be satisfied for e, the M.L.E., under the Ghosh-Subramanyan

conditions.

Independent Observations: Let fkn denote the density of Xk9 P.kn its log

likelihood, etc. Assume Qkn is (j+3) times differentiable and let

i ) = Vn= Q(i) be the ith derivative of 2.. Conditions I.(l), I.(2)n kl kn n i c
generalize straightforwardly.

Ij(l): H nk=l Ee{suPIzQ(jn3)(1')lj : e'EK} < M(K,K') < X

for e E K' D K both compact independent of n.

Ij(2): 1 In= EeI4(i)(e)Ij'+6

bounded for 3 E K independent of n, 2 < i < j+2.

I.(3) becomes

Ij(3): 9
1-nk=l EOkn')(e) continuous,

n k=l OEkn'(e) x (e) uniformly on compacts,

e -+ -nk=l E0[4(O)(e)I2 continuous.

The existence of (Bayes) estimates satisfying E.(2) follows from Theorem III2.2

of Ibragimov-Hasminskii (1980) if in addition to Ij(l), Ij(3), we require as a

replacement for identifiability,

[rfoI2( -1/2 fl!2 2 2E =1 1(f1(x,e+sn -f' kn(x,)) }A(dx) > c min(jsjd,IsI )

for some S > 0, c < Xo independent of s, 6. Theorem 4 then yields estimates

satisfying E.(l), E.(2) provided that we have
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Ij1(4): 1 kn E6(ZM(e)O)i| 2

bounded, independent of n, on compacts.

Markov Processes: For simplicity we consider Markov chains with starting

density f(x1,O) and transition densities f(xk,xk+l9e) with respect to a

a-finite measure V on X. Following Billingsley (1961) assume the existence

of a unique stationary distribution S0(dx) such that for each x E X

(3.1) Pe( Ix) <<«S6

where Pe(Aix) = F f(x,y,O)p(dy)
JA

Also assume that the Markov chain is aperiodic. Condition 3.1 holds for a

discrete state space provided that for each e the chain is irreducible and

positive recurrent. Assume £(x,0) = log f(x,0), Z(x,y,e) = log f(x,y,e)

are (j+3) times continuously differentiable and

Mi(l): E {sup[lj(j+3)(X1,e1)jj + |I (j 3) (X 1 , 29
j' ]

uniformly bounded for e E K' D K

M (2): Ee[IQ( (X1 ,01 + +zIQ5(X1l,2' )lj'6]
uniformly bounded for 6 E K

M.(l ), M(2) and boundedness on compacts of X. below imply C (l), C (2).

To see this, suppose without loss of generality that the initial distribution

is stationary and write, for example,

(3.2) Q (i)(X(n),,) = n 1 nj-l[(i)(Xk,Xk el,0) -x(e)]

+ n-1 x.(e) + n-lQ(i)(X1se)n 1

where X.(e) = E02ii) Xe)1 (x 1,x,)
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Since (Xl,X2),(X29X3),... is a stationary mixing sequence with exponential

rate (see Doob (1953) p. 221, (7.1)), we can apply the moment bounds for sums

of mean 0 functions of such variables, see e.g. Ibragimov and Linnik (1971)

Lemma 18.5.2.

To get C.(3), having defined X. above, we require

M (3): RX continuous

e - EQ2 (X1,x2,6) continuous and positive

The existence of estimates satisfying E.(2) follows as in the i.i.d. case,

using a Dvoretzky-Kiefer-Wolfowitz inequality for the empirical distribution

function of 4-mixing random variables (Sen (1974) Theorem 3.2). Theorem 4 is

applicable if also

M.(4): E|Q(l)(Xl,X29 )lj 3 is bounded on compacts

These results require the application of Theorem 2.11, Gotze-Hipp (1982) which

guarantee that the moderate deviation estimates of Bhattacharya and Ranga Rao

continue to hold in this situation. The conditions of Theorem 2.11 are guaran-

teed by (3.1) since the chain is then strongly mixing with exponential rate.

These conditions and situations are given as samples only. More general

classes of dependent situations to which these conclusions apply may be obtained,

for instance by modifying the conditions in Basawa and Rao (1980) Section 10.3.
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