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Abstract

Connections between proportional hazard and transformation models

are explored and exploited. It is shown that under certain assump-

tions, the transformation model is doubly adaptive in the sense that

the linear model parameters can be estimated with full efficiency when

both the transformation and error distribution are unknown.
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1. Introduction

(a) Transformation models

The independent random variables Y1' 'Yn are said to follow

a linear transformation model if for some transformation h,

h(Y.) = 3x + c£. , i =1,...,n (1)

where xi = (x ), i =l,...,n, are known constants,

S = (6, ...,ep) is a vector of regression parameters and c1,...,£n
are i.i.d. with distribution F. Some common choices of h are

h(y) = y , h(y) = sign(y)jyl

h(y) = y ,

= logy , X = 0

See for instance Tukey (1957), Box and Cox (1964), and Bickel and

Doksum (1981).

(b) The proportional hazard model as a transformation model

Suppose Y. is a survival time with distribution F. and hazard

rate X. = f./[l-F.], i =l,...,n. The Cox proportional hazard model
111S

is

(t) = A X(t), some X(t), where A. = exp(ax.) . (2)

An equivalent form of this model is the Lehmann (1953) form

F (t) = 1 -[1 - F (t)]Ai, where F (t) = 1 -exp[-f A(x)dx]

It follows that

log{-log[l - F (Y)]} - Sx + E (3)Q i 1 3



3

where the {e.} are i.i.d. with distribution 1 -exp(-e ) and d

means "distributed as." In other words, the proportional hazard

model is a transformation model where after the transformation

h(Yi9F0) = log{-log[l - F0(Y)]}

with parameter Fos the transformed data follows a parametric linear

model. Estimation of a is achieved by maximizina a partial (Cox

(1972), (1975)) or marginal (Kalbfleisch and Prentice (1973)) likeli-

hood which does not depend on F0 (or h). Once an estimate is

available for 6, an estimate of F0 can be obtained.

(c) Partial likelihoods

The partial likelihood idea can be applied to the transformation

model (1) with h increasing but otherwise unknown, and F continuous.

As in the proportional hazard model without censored data, the partial

likelihood for S is equivalent to the likelihood of the rank vector

(R1,.. *Rn) where R. = Rank(Y.) = Rank(h(Y.)). Thus we estimate 61 n~~~1

by maximizing the likelihood

L(S) = P(R1=r1,.*.*Rn=rn)

The case where F is standard normal (Box and Cox (1964)) and

a is known, but h is unknown will be considered first. Later, the

cases F not normal but known, and F unknown will be considered,

as well as the problem of estimating h and a2.

2. Partial likelihood for a nonparametric Box-Cox model

We consider the model (1) with F standard normal and with h

an arbitrary function increasing on the range of the Y . It is clear



4

that since

Rank(h(Y.)) = Rank(a +bh(Y.)) for all a, and b > 0

we cannot use the partial likelihood to estimate the location of

h(Y.) or the scale of h(Y.). When applying the partial likelihood

(Cox (1972, 1975)) to the proportional hazard model (2), the same

problem occurs. In this model, the intercept parameter is set equal

to zero. Moreover Var(h(Yi,F0)) = Var(.i) in (3) is necessarily

equal to one. We will do the same, that is, in model (1) we set

p = E(h(Y.)) = 0 and Var(h(Y1)) = a2 = 1. In other words, our model

expresses a linear relationship between the covariates x1,... ,xp and

the dependent variable when the dependent variable is measured on a

scale h(Y) with mean zero and variance one. The intercept parameter
n

is zero and I x.. = 0, j=l,...,p. Moreover, we assume that

[X'X] exists, where X = (xl,...,x')' is the design matrix.

There is a connection between our model and the path analysis

and structural equation models of genetics and economics, e.g. Wright

(1968), Duncan (1975), and Johnson and Wichern (1982). To see this,

reparametrize by dividing each x.j by (n1 X 2j) Now the

model is

h(Y.) = t. .e + Ec
1 j=l 3

x.
n .21 1 n 2 1/2

where t.. = x../(n1 x2j)/2 and e. = S.(n 1 x..) . In this

equation, h(Y.); til,...,t p and e. all are me4sured on scales

with mean zero and variance 1. Note that we can write
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(n- x2.)l/2

(Var(h(Y 132

Thus e. is a "correlation" between h(Y) and the i th covariate when
ththe j covariate is regarded as non-random. In the multivariate

case where the covariates x1,...,xp are regarded as random, a

connection between the 0's and (multiple) correlation still exists.

From Hoeffding (1950) and Terry (1952) we find that the partial

or rank likelihood is

L(6) = E{exp[- n Z i-x -z.]]

where (Zlsg Zn) is a standard normal sample and (Z5) <... <Z(n)

is the order statistics vector for this sample. We turn to two

approximations of L(6):

(a) An order bootstrap

Using the Law of Large Numbers, we can approximate L(S) by

1 n Cr.)2LM(S) =~ E exp[~ep [(Z. 1 -ax.) -z.A]]m ~ j=l - i=l '~-~i 31

where (Zjl' '**zjn)' j=1,...,M, are independent standard normal

samples and ( <...<Z(.n), j =1,...,M, are their corresponding

order statistics.

This is a resampling scheme different from the bootstrap. The

bootstrap method (Efron (1979)) is based on resampling from the empirical

distribution which is determined by order statistics from the original

data and does not use its order. The resampling scheme introduced above

introduces new order statistics in each new sample but arranges them

in the same order as the orininal data. This procedure
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has to be implemented on the computer. It is recommended to find the

values SM that maximize LM(3) for M = 50, 100, 150, etc. and to

stop when there is practically no change from one M to the next.

(b) A local approximation

Let u. = Sx. be the mean of Y. We consider the parameter set
1 1i

B = I (1)2 <K2, max | where 2 is a constant not
n i=l 1 l~~<i<n

dependent on n, while f7 pi and p may all depend on n although

this is surpressed in the notation.

Note that in our parametrization, p = 0 so we can write

n2 2
B = { I.<K , max pil +}n 1= <i<n1

The claim is that the parameter set Bn is of interest and is

important; however, this is not meant to impli that the more usual

parameter spaces such as RP or a p-dimensional rectangle are not at

least as important.

The parameter set Bn contains those parameter values where it

is hard to distinguish between means pi and we need to do a good job

of estimating these means. For instance, in the two sample cases with

the usual appropriate choice of the x's, we have l= l - P2 and

B = [( n )1/2K ( n )1/2K]
n n1n2 n1n2

where n1 and n2 are the sample sizes for the

samples, respectively.

Similarly, for linear regression with pi =

first and second

SXl, we have

Bn = [-K/(Ix2)1/2 K/(x2)1/12]
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Suppos,e that pi is an estimate of pig that 5(ji) is an

estimate of the standard error of "j, i =l,...,n, and suppose that

j 1i.± 96a(jI) and +j 1.l96a(f?.)

are two interval estimates of p and p with approximate confidence

coefficients 95%. If S E Bn, then these two intervals will typically

continue to overlap as n increases. Moreover, they shrink down to

the same point.

On the other hand, if S t Bn and pi and are fixed, then

the intervals will shrink down to two separate points as n o*oo for

any reasonable estimates Pj and Pj not necessarily asymptotically

optimal. Thus in this case, any two reasonable estimates will perfectly

distinguish between pi and pj in the limit, while for GE Bns

this is not the case and we really need to develop good estimates.

An objection to the above argument may be that when pi and pj
are close, it is not that important to distinguish between them. This

is why the fixed p. parameter space is at least as important as B

In any case, we will need to check that the results obtained

using Bn leads to good approximations for finite sample sizes. Here

an approximate ballpark rule is that it does so for parameter values

where the power of the level .05 likelihood ratio test of

Ho 61 = * =p based on h(Y.) (assuming h known) has asymptotic

power at most .95. Thus for the two sample problem, we have

approximately

[E(n )1/23.6,( nn )1/23.6]
n1n2 n1n2

For n1 = n2 = 20, this interval is [-1.14,1.14].
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Similarly, for linear regression where E(h(X.)) = axi, properties

derived for the local parameter space should give good approximations

when

3c[-3.6/(x j2)1/2 .3.6/(Ix2) 1/2]

We will return to this question later.

For the local parameter space B n. a standard approximation to

the partial or rank likelihood L(6) is available, e.g. Hoeffding

(1950), Terry (1952), Hajek (1962), and Hajek and Sidak (1967). If

we maximize this approximation, we find that the local partial likeli-

hood estimate of 6 is

= CA

with C = (c.1) = [X'X] 1X' and A' = (a(r ),...,a(rn))

where a(l),. ,a(n) are the normal scores defined by a(k) =E(Z

z(k) being the kth order statistic in a sample of size n from a

N(0,1) population. Again, dependence on n has been surpressed

in the notation.

.thTheorem 1. Let S denote the j component of S. If
n 2 2I c 2/max c .. *o, then for E Bnsi=l31l<i<n 31-

n QL- (O

d N(0,1) as n pa
n2 1/2(EC..)

i=l 1J

Proof: According to Hajek (1962) and Hajek and Sidak (1967, p.216),

n
E( C..i-C . ) a(R i ) C

N4(0,1)
Cc
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where, in our parametrization

n1
Cj =- I C.jj=

and where C=c

c N( -ii) Ml 2
C i=l 31 1

n

i-l 3i i
=

Furthermore, C2 is given by
C

a2= I c2 |f -1[(u)]2du = iC2 E

It follows that an approximate 95% confidence interval for S

is
95 n 2 2=5.±j+1.96 ( y cj.)112

This looks deceptively simple. The price we pay is that the confi-

dence coefficient 95% is only valid when the dependent variable is

measured on a scale h(Y.) with variance 1. On the other hand, the

interval can be used to test Ho0: a =0: The test which rejects H0
when 0 is not in the interval has approximate level a = .05. Finally,

note that estimation of h and scale and their effect on S. will

be treated later.

For the correlation type parameter e0, the approximate 95%

confidence interval is *

95 A
+

in 2 n 2 1/2Oej 03 + 1 .96 (T x..)( C
i 6 ~j=l13 _ 3
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where = (n xi.)112. This interval is valid when x ,...,xp
and h(Y.) are measured on scales with mean zero and variance 1.

When p = 1, the above interval reduces to

925 A
ea e . 1 .96/Ev

which coincides with the approximate confidence interval for the

correlation coefficient p between X and h(Y) near p = 0.

Another consequence of the result is that B is asymptotically

optimal for all h. In fact, if we consider the UMVUE (uniformly

minimum variance unbiased estimate) S. based on h(Y.), i =1,... ,n,

which coincides with the MLE and LSE and is given by

n
j= ccjh(Y.)

then fi is normally distributed with mean g. and has exactly
n 2variance I c2j , which is the asymptotic variance of the local

partial likelihood estimate (LPLE) j.* It follows that B. is

adaptive in the sense of Bickel (1980), even though it can be computed

without estimating h.

It can also be shown that

WL2

c.

and that the above results can be extended to 6 ahd to linear

parameters a = Xaj.j as in Huber (1973, 1981).
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Remarks

(a) It follows from Hajek and Sidak (1967) that the results of

this section continue to hold if we replace the normal scores a(k)

by the approximate normal scores

a (k) = (nl)k k = 1,...,nA n+l 1

which are much more readily available. Similarly, it follows from the

results of Bell and Doksum (1963) that the results hold if we replace

the a(k) by standard normal order statistics z(k). The advantage

of using z(k) is that the resulting estimates . are nearly normally

distributed. It is recommended that several independent order statistics

vectors Z(M) <. <Z(n) i =1,...,M, be used. For each vector, ani 1

estimate of is formed and then is the average of these M

values. Try M = 10, 20, etc. and stop when there is little change

in ijM as M changes to the next higher value. This is a local

version of the resampling procedure in Section 2(a).

(b) The estimates introduced in Section 2(b) and Remark (a) above

can be used as starting points for iterative procedures when maximizing

LM(a) of Section 2(a).

(c) Suppose we compute S as in Section 2(b) and then compute
A A n! 29A,=X6 If jj2ii = ( 2 > 3.6, then this is an indication that

is not in the local parameter set and we need to use the estimate

of Section 2(a).

(d) The approach of this section can be used to find conditions

for the adaptability of Cox's partial likelihood estimates.
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(e) It can also be used to find conditions for the adaptability

of the Box-Cox estimates. That is, in the terminology of the

transformation controversy, conditions under which, in the asymptotics,

no allowance needs to be made for the estimation of the transformation

parameter.

(f) Conditions under which B can be estimated efficiently when

both h and F are unknown can be established.

(g) Estimation F, h and a2 will be considered in a

forthcoming paper.
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