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1. Introduction

The bootstrap is described by Efron (1979, 1982); related papers are

Bickel and Freedman (1981, 1983), Freedman (1981), and Shorack (1982). In

essence, the bootstrap is a procedure for estimating standard errors by

re-sampling the data in a suitable way, so the model is tested against its

own assumptions. The object of this paper is to indicate how the idea might

be applied to linear models of the kind used in econometrics, where the

technical difficulties include simultaneity, heteroscedasticity, and dynamics.

Since the object is purely illustrative, only two theorems will be presented.

Section 3 deals with simultaneity, but the model is static; section 4 allows

a dynamic model.

To make the bootstrap appealing, two kinds of evidence are needed:

i) A showing that the bootstrap gives the right answers with large

samples, so it is at least as sound as the conventional asymptotics.

ii) A showing that in finite samples, the bootstrap actually outperforms

the conventional asymptotics.

The present paper focuses on i). It actually does a bit more, by show-

ing that for large samples the bootstrap will give the right answers even

in the presence of heteroscedastic errors, which throw the conventional

formulae off. The conditions are appreciably less restrictive than those

of White (1982), who assumes normal errors.

With respect to point ii), there is good empirical evidence in Efron

(19793, 1982), or Freedman and Peters (1984ab); also see Daggett and Freedman

(1984). Too, there is some theoretical evidence, in the form of Edgeworth

expansions: see Beran (1932), Singh (1981).
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This paper will not deal with point ii); it is purely asymptotic.

The balance of this section is intended to give an informal overview

of the bootstrap idea, for a dynamic model. In brief, the model has been

fitted to data, by some statistical procedure; the residuals are the discre-

pancies between actual and fitted values. Some stochastic structure was

imposed on the theoretical stochastic disturbance terms, explicitly or

implicitly, in the fitting. The key idea is to resample the residuals,

preserving this stochastic structure.

Assuming the model and the estimated parameters to be right, the

resampling generates "pseudo-data." Now the model can be re-fitted to the

pseudo-data. In this artificial world, the errors in the parameter estimates

are directly observable. The Monte Carlo distribution of such errors can

be used to approximate the distribution of the unobservable errors in the

real parameter estimates. This gives a measure of the statistical uncertainty

in the parameter estimates.

A more explicit, but still informal, description of the bootstrap is

as follows. Consider a dynamic linear model, of the form

t A+Y= B +X C + t
lxa lxa axa lxa axa lxb bxa lxa

In this equation, A, B, C are coefficient matrices of unknown parameters,

to be estimated from the data, subject to identifying restriction; Yt is

'the vector of endogenous variables at time t; while Xt is the vector

of exogenous variables at time t; and t is the vector of disturbances

at time t; identifying restrictions may be imposed on this distribution,

especially, given the X's the e's may be assumed independent and identically

distributed with mean 0. In the informal discussion which follows, and in
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Section 2, the X's will be treated as known constants; in the body of

the paper, they will be treated as random. To avoid trivial complications,

suppose the equations all have intercepts.

Coming back to the model (1.1), data is available for t = l,...,n and

Y is available too. The coefficient matrices are estimated as A, B, C0
by some well-defined statistical procedure, like "two-stage least squares,"

to be defined in section 2. Due to the assumed randomness in E, there is

random error in the estimates A, B,B for A, B, C. How big are these

errors? This question can be addressed by the following bootstrap procedure,

whose explanation is a bit lengthy. When A, B and C are computed, residuals

are defined:

(1.2) t = YtA - Ytl- XCt

These are estimates for the true disturbances t in the model (1).

Now consider a model like (1), but where all the ingredients are known:

* Set the coefficients at A, B, C respectively.

* Make the disturbance terms independent, with common distribution

equal to the empirical distribution of EI,.l.,£n
(The "empirical" distribution puts mass 1/n at each of the computed

residuals.) The exogenous X's are kept as before, as is YVO Using this

simulation model, pseudo-data can be generated for periods t =

This pseudo-data will be denoted by stars: Y *,...,Yn. The construction is

iterative: YO = Y0, and

(1.3) Yt = (Yt_lB+XtC+ Et)(I-A)

the e*3s being independent with the common distribution specified above.

This rule applies for t = 1,...,n.
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Now pretend the pseudo-data (1.3) come from a model like (1.1), with

unknown coefficient matrices. Using the given procedures (two-stage least

squares), estimate these coefficients; denote the estimates by A, B, C

The distribution of the pseudo-errors A and B and C can

be computed, and used to approximate the distribution of the real errors

A-A, and B- B, and C-C. This approximation is the bootstrap. It is

emphasized that the calculation assumes the validity of the model (1.1). The

distribution of the pseudo-errors can be computed, e.g. by Monte Carlo. It

is of interest only as an approximation to the distribution of the real errors.

The balance of this paper is organized as follows. Section 2 explains

the inference problem addressed by two-stage least squares (2SLS), and the

conventional procedure for computing standard errors with 2SLS estimators.

Section 3 presents a theorem for "static" models, and section 4 covers

dynamic models.
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2. Two-stage least squares

Consider the quantity sold Qt and price Pt of a commodity in period t.

Economists consider that there is a supply curve governing the quantity

supplied as a function of price, assumed linear for simplicity:

(2.1)
Q 0 1 t

Here, cc0 and alI are parameters governing the market; a1 is expected

to be positive, so supply will increase with price. Likewise, there is a

demand curve governing the quantity demanded as a function of price, also

taken to be linear:

(2.2) Q =0 + 61P +t

Here, 0 and al are two more parameters, with S1 expected to be nega-

tive, so demand decreases when price increases. The stochastic disturbance

terms (ct'6 ) are usually held to "represent the effect of omitted variables;"

see (Pratt and Schlaifer, 1983). In this context, it is conventional to

assume that the pairs (t'6t) are i.i.d. in t, with mean 0; but Et
and 6 have a general 2 x2 covariance matrix.

In period t, the observed "market-clearing" price Pt and quantity

Qt are obtained by solving (2.1)-(2.2) as two linear equations in two

unknowns. This is the stochastic model for the data. Thus, Qt and Pt
both depend on t and Ft. Now a and S are to be estimated. The

complication is that ordinary least squares is inconsistent when the disturbances

are correlated with the explanatory variables.

To get around this, economists use "instrumental" or "exogenous" variables,

which are uncorrelated by assumption with the disturbances. By contrast,

in the example, Q and P are ''endogenous:u correlated with the disturbances



6

By way of illustration, suppose Ut and Vt are exogenous.

Multiply (2.1) by Ut or Vt and sum:

1T=1 UtQt) = coT=l Ut) + ct (=1 UtPt) + g

(2.3) (,T=l VtQt) = aO(Yt=l Vt) + tj=l VtPt) +

where

i = lUt%F and = YT= Vt6t

should be small, because E(UtEt) = E(Vt6t) = 0. Now drop i and c

from (2.3). Left are two linear sinultaneous equations--the analog of the

normal equations--for the parameters (o and alI. Solving this pair of

equations for a and gives the "two-stage least squares" estimators.

Likewise for and

To set this up more generally, and to get at the conventional standard

errors, it is convenient to use the machinery of generalized least squares.

This will now be reviewed very briefly, to fix notation. Consider the model

(2.4) Y = r15+ 6, E(6) = 0, cov(6) =

For historical reasons, Mi is called "the design matrix;" it is usually

denoted by X, but that conflicts with present notation. With E known,

the generalized least squares (gls) estimate is

(2.5) %ls= (M¾M)lMTZlY

As usual,

(2.6) E( s )=gls

(2.7) COV( g15s =M E -



7

When E is unknown, statisticians routinely use (2.5) and (2.7) with

Z replaced by some estimate E. Iterative procedures are often used, as

follows. Let'(0) be some initial estimate for 6, typically from a

preliminary ordinary least squares (ols) fit. There are residuals

e(°) = Y- MS(0) Suppose the procedure has been defined through stage k,

with residuals

Y(k M (k)(2.8) ek) = Y gls

Let £k be an estimator for E, based on e(k). Then

(2.9) ^(k+l) = (MT^_lM)-l MT£lY(2.9) ~~~~gls Ek m k

This procedure can be continued for a fixed number of steps, or until $k)
settles down: a convexity argument shows that A(k) converges to the maximum

likelihood estimate for S, assuming E is independent of X and multi-

variate Gaussian with mean 0.

The covariance matrix for (gkl) is usually estimated from (2.7), with

Ek put in for E:

(2.10) cov(k+l) (MTE-l-l

This may be legitimate, asymptoti;cally. In finite-sample situations, all

depends on whether E is a good estimate for E or not. If Ek is a

poor estimate. for E, the standard errors estimated from (2.10) may prove

to be undulv optimistic, and approximate gls estimators are often used when

there is too little data to offer any hope of estimating Z with reasonable

accuracy: an example is given in Freedman and Peters (1984a). In such

circumstances, the bootstrap is a useful diagnostic, and in many cases it

gives a more realistic estimate of the standard errors.
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To ease notation, g(k) will be referred to as the (gls,k)-estimator.gls
This paper only consider the (gls,l) estimator, which in many situations

has full asymptotic efficiency; see Cox and Hinkley (1974, p. 308). In

some examples, further iteration seems to make the coefficient estimates

better, but also exaggerates the optimism of the standard error estimates.

In other examples, iteration actually makes the coefficient estimators worse.

The effects of additional iteration are considered in Peters (1983).

The next object is to review two-stage least squares (2SLS). The present

exposition is self-contined but terse. For a fuller account, see Theil (1971).
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We return to the model (1.1). We suppose for the balance of this
Tsection that exogenous X's are nonrandom. Multiply (1.1) by X and sum:t

(2.12) R = R A + S B + T C + A
bxa bxa axa bxa axa bxb bxa bxa

where

(2.13) R = Et=1 XtYt9 S = nt=l XTYt1, T = t xtixt A nt=1 Xt%
.thtt tt1 th t t

Notice that the jth column of (2.12) corresponds to the jth equation in (1.1).

In applications, [A,B,C] is constrained to fall in some linear space

of dimension at most ab: then A, B, C can be estimated from (2.12) by

some variant of constrained least squares. (Without constraints, the

parameters are not estimable, since there are only ab equations.) Notice

that T is constant (non-random) since X is. It is conventional to treat

R and S on the right side of (2.12) as constant. This may be legitimate

asymptotically, but is false in any finite sample. Moreover, R and S are

correlated with A, and this is the source of "small-sample bias" in 2SLS;

see Daggett and Freedman (1984) for a bootstrap investigation of the bias.

The matrix of errors A on the right hand side of (2.12) has covariance

structure, so generalized least squares is the procedure of choice. To make

contact with the standard format of (2.4), we stack the columns in (2.12):

column #1 on top of column #2,...,on top of column #q. In the stack,

information corresponding to the first equation comes first, information

about the last equation comes last.

The parameter vector 6 in (2.4) is obtained by stacking A, B and C:

column #1 of A, followed by column #1 of B, followed by column #1 of C,....

followed by column #q of A, followed by column #q of B, followed by column #q

of C. The design matrix is obtained by writing R, S and T down the
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diagonal, and padding with zeros.

The left hand side Y vector in (2.4) consists of the stacked R

matrix; the error 6 vector consists of the stacked A matrix. The full

system of equations (2.12) is layed out in stacked form below, with R.

being the jth column of the matrix R, and likewise for the other matrices.

R R S T AO ° ° ° °0 A A1

L 0 O R S T *°... A1
0 ~~~~0S

(2.14) .....+ Aa
Ra L ° ° ° ° ° *- R S T Ca Aa

At this point, the design matrix is highly singular.

Usually the elements of 6 known a priori to vanish are

suppressed, and the design matrix is adjusted accordingly by deleting the

corresponding columns. An alternative approach is to use generalized inverses:

see Chapter 6 of Theil (1971). The covariance matrix of the error vector

(the stacked A matrix) is the Kronecker product

r11 T r12 T * IPla T

r21 T r22 T r2aT
(2.15) r=P T =

ral T ra2 T raa T

where r is the a xa c-ovariance matrix of the error vector £ in (1.1).

We can now give a brief description of two-stage least squares, focus-

sing on the connection. with generalized least squares, and sharpening the

idea that 2SLS is a "single-equation" method. Consider each column of
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(2.12) in isolation. Take column j, corresponding to equation j in

system (1.1):

(2.16) R. = R A. + S B. + T C. + A.
bxl bxa axl bxa axl bxb bxl bxl

The 2SLS procedure amounts to estimating (2.16) by gls, treating R and S

on the right as constant. The constraints specific to the jth equation

would be imposed, but not the cross-equation constraints. The covariance

matrix of A. is required. Plainly, cov A. = P. .T, where T was defined in

(2.13) and is computable from the data; rPi is unknown, but enters only as

a constant of proportionality, and its value is immaterial. With large

enough samples, this procedure is preferable to ols, because it takes account

of the correlation between C and Y on the right side of (1.1): this

correlation would make ols inconsistent.

Let AII, BH, CH denote the 2SLS estimators. To estimate their

covariances, let

(2.17a) yt= - YtAii - YtB -xci

(2.17b) r =n yt=l EtE:t

The 1's are the residuals, and F is an empirical covariance matrix which

estimates r in (2.15). And the covariance matrix of [AIIBA1,C11] can

be estimated by the gls formula as (MT ) where M denotes the

relevant design matrix, and E = cov A. = rP T is estimated as Z = P. .T.

It is conventional, for the purpose of estimating cov[^II,§1H,e11] only,

to inflate P.. by n/n-r, where r is the number of variables actually

cth'coming into the j equation.
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3. Simultaneity without dynamics

The model to be discussed in this section is relevant to cross-

sectional data, where the problem is to estimate population parameters from

a sample. Only a single-equation estimation procedure will be considered,

namely, two-stage least squares. Consider observable random vectors

Y, U, V; and a coefficient matrix A. The model assumed is

(3.1) Y = U A + E
lxl lxp pxl lxl

with an rxl vector V of instrumental variables orthogonal to £, in the

sense E{VE} = 0; where E is mathematical expectation and VE is the

matrix product of V and E, of dimension rxl. W4e do not assume that

E{UTe} = 0, or even E{E} = 0. Also, we do not assume that E{eIV} = 0 or

E{EAJV} is constant. Thus, heteroscedastic errors are allowed.

We view (3.1) as one equation in a system. Ordinarily, some components

of U wouild be endogenous (correlated with s) and others exogenous (uncor-

related with E); the exogenous ones would turn up among the instruments V,

as would exogenous variables from other equations in the system.

Write j j for Euclidean norm. Now (Y,U,V) is a random vector of

dimension 1 +p +r. Ordinarily, this vector would be assumed L2. For the

bootstrap to succeed, however, a bit more is needed, and L4 is convenient:

E{j(Y,U,V) 14} < .*

Before proceeding to the bootstrap, it will be helpful to review the

standard theory in the present setting. Let

T
(3.2) Q = E{VY}, R = E{VU}, and S = E{VV }

rxl rxp rxr
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Multiply (3.1) on the left by V and take expectations, using the assumed

orthogonal i ty:

(3. 3) Q = RA

Assume that the system is identified:

(3.4) r > p, R has full rank p, and S is invertible.

Thus, Q is in the range of R, by (3.3); and A is the unique p-vector

satisfying (3.3), by (3.4).

So far, we have a probability structure but no data; the data are modeled

as a sample of size n from this structure. More particularly, let

(Y1,U9,VV,Ei) be independent, and distributed as (Y,U,V,E). In particular,

V. is orthogonal to e; in the sense E{VD E} = 0; and Y; = U.A+ i.l
These data are used to estimate A by 2SLS, as follows. Let

=1 nilVi.Sn -=1n

S =-I in=l iVT

R = x=vn uin n Li1 ii

A = 1 En V 6n n i=l K1j

Q = R A + A
n n *n

rxl rxp pxl rxl

Now A can be estimated from (3.6) by regression, taking into account that

the components of An are correlated. In the conventional homoscedastic

case, the variance-covariance matrix of A would be estimated as propor-
n

tional to Sn' so

(3.7) An = (RS- Rn )l RTSlQ

(3.5)

We have

(3.6)
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This is the conventional two-stage least squares estimator.

Some algebraic manipulation gives

(3.8) An (A - A) = (RTS lR ) RTS- (vA)
n ~ nnf nnn

Now JnAA satisfies-the central limit theorem in r-dimensional space; then

other factors on the right side of (3.7) can be treated as constants; since

Qn+Q, Rn +R, Sn +S by the law of large numbers: the usual asymptotics follow.

The estimation procedure is efficient only in the homoscedastic case;

likewise, the conventional formulae for standard errors assume homoscedasticity.

But the analysis which follows is valid whether the errors are homoscedastic

or not. A referee asks about the alternative of modeling and estimating

the heteroscedasticity. The simulations in Freedman and Peters (1984a) make

one pessimistic about this approach.

Let £.(n) be the residual from the fit:

(3.9) £j(n) = Y. - U.Ai in

As data, the residuals will not in general be exactly orthogonal to the

instruments, i.e., in general 1 1n=1 Vi^.(n) # 0. Let E(n) be the partn i=l i

of the residual vector orthogonal to the vector of instruments:

(3.10) inci(= n) nn 1 i n

where the rxl vector n is defined as follows:

1 1 n
(3.11) b S n--. V 6 (n) =S- - R A ]n n n = ii n n n n

Coming now to the bootstrap, given the data, let jn be the empirical

distribution of (U.,V ,V.(n)) for i = l,...,n. Thus, Pn is an atomic

probability measure in (p+r+l)-dimensional Euclidean space; it assigns

measure 1/n to each of the n points (U.,V.,ii(n)).
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It is now time to resample the data. Given (Y.,U.,V.) for i =

let (U*,V*,c*) be conditionally independent for j = l,...,n, with common

distribution pn; let Y* = UjAn + . Resampling the data this way preserves

any relationship there may be between instruments and disturbances.

Now imagine giving the starred data to another investigator, to calcu-

late the two-stage least squares estimates: the results will be

Q*=1 nJ= 1jJ, R n *j=J*
(3.12a)

s* I n1 vT A* = T Xn=lV3

(3.12b) An = (R*TS* lR)lR*TS*lQ
An n n n n n
A + (R*TS*l'R*)l'R*T*
n n n n n n n

The bootstrap principle is that the error structure of the starred estimates

mimics that in the original estimates, as the following theorem shows.

Theorem 3.1. Along almost all sample sequences, as n-*+c:

(a) Q*n -Q and R*-+R and S*n- S in conditional probability;
n n - n- _ _ _ _ _ _ _

(b) the conditional law of vnA* and the unconditional law of A-A
_ _ _ _ _ _ _ _ _ _ _ _n n

converge to the same limit.

In particular, by a variant on Slutzky's lemma, the conditional law of

v/n(A An) and the unconditional law of /A(A - A) have the same limit too.
n n n

The theorem will be proved in section 5 below. For extensions, see the

discussion at the end of section 4.
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4. A dynamic model

The model to be discussed in this section is relevant to a single

realization of a multivariate time series. The discussion parallels that

in section 3, but there are a few annoying complications. Only single-

equation methods will be considered, but all equations must be specified and

estimated, so the bootstrap dynamics will match the original dynamics.

Consider observable random vectors Yt and Xt in each time period t,

where t runs through the integers; and coefficient matrices A, B, C.

The model assumed is

(4.1) Yt Yt A +Yt B + Xt C + Et
lxa lxa axa lxa axa lxb bxa lxa

(4.2) (Xt,Et) are independent, identically distributed and L4
for t = 0,+l,+2,...

(4.3) xt is orthogonal to t

We assume the first component of Xt is 1, so E{st} = 0. Identifying

restrictions are imposed:

(4.4) Ajk= 0 for jk E NA, Bjk=O for jk ENB, Cjk=O for jk E NC

Here, the N's are finite sets; jj E NA for all j; and 1k E NC for no

k, so all equations have intercepts.

Let I be the identity matrix. Assume further:

(4.5) I-A is invertible;

(4.6) r = IIB(I- A)II < 1

Here, flU is the operator norm: IIDII = sup{IyD|: yII}. Clearly,
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IIDII < IDI, where IDI = (YJk D2k)112. It is assumed

(4.7) {Yt} is stationaryt

so that

(4.8) Yt = O where s t-s =)(ts+A l1sC)()

Consider for example the first equation in the system. Let yt be the

first component of Yt, and t the first component of c . Rewrite the

first equation of the system in notation like that of (3.1):

(4.9) = U. (Y. + 'Yt Ut a t dt It
lxl lxp pxl lxl rxl

where Ut consists of the components of Y which are really in the equa-

tion, followed by the relevant components of Ytl' followed by those of

Xt; while the vector a consists of the elements from the first columns

of the matrices A, B, C respectively, which are not constrained to vanish

in (4.4). This procedure drops the variables defined as irrelevant by the

constraints. Likewise, Vt consists of Y T followed by X : thus,t ~~~t_-1 foloe b t: hs
r = a + b. Verify that Vt I 6t: the condition E{6t} = 0 will be used

here. Verify too that (yt,Ut,Vt,6t) is stationary and ergodic.

As before, let

(4.10) Q = E{Vtyt}, R = E{VtUt}, S = E{VtVIT}

These do not depend on t, due to the assumed stationarity. Multiply (4.9)

on the left by Vt and take expectations:
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(4.11) Q = Ra

Assume the system is identified:

(4.12) r > p, R has full rank p, and S is invertible.

Suppose observations on all the time series are available for periods

t = l,...,n; and y0 is available too. These data can be used exactly as

before to estimate the coefficients by instrumental-variables regression.

As in (3.5), let

Qn n t=, vt Rn nnt=l VtUt
(4.13)

S =1inV VT A =K1 vnVsn =nLtli tt An n
X= 6

Again, Qn-+*Q and Rn--+R and Sn-- S, for instance, by the ergodic

theorem. As before, the estimator to be bootstrapped is

(4.14) n = (RnTSnlRn) lRnTSnlQ + (RnnRn) lRnTSnlAn

Now for the analogs of (3.9)-(3.11). Let dt(n) be the residual from

the fit:

(4.15) 6t(n) Yt - t n

Let t(n) be the part of the residual vector orthogonal to the vector of

instruments:

(4.16) k(n) = t (n) -
where

b S-1 En V 6 (n) 1[Q R̂ R ]
n n nt n n n n

The foregoing can be carried out separately for each equation in the

system. The constraints may vary from equation to equation, according to
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(4.4), but no constraints are imposed across equations. Let Ans

Cn be the resulting estimates for the coefficient matrices, and

vector of the t(n) from the various equations strung together.

data: let 1n be the empirical distribution of (Xt, t(n)) for

let (XS*,£) be independent, with common distribution pn' for

let

(4.17)

B andn

£t(n) the

Given the

t = 1,...,n;

s = 0,+1,...;

= Es=0[F* +x* C ](I An) [Bn(I A)l ]S

Then the starred data will satisfy the model

(4.18) Yt = ytAnt +Yt-Bn +XtCn + t

with X* orthogonal to &t The starred instrumental-variables estimate
t to1

for the first equation in the system is obtained as follows, with y U

V* and 6* built up from X* and £* just as y, U, V and 6 were from

X and e:

n n Et=l tt 9 n= n Et= *t t'
(4.19)

* 1 n *T1 *n

Sn= - = T A n t VtAt

(4.20) an = (R*TS*lR*) lR*TSlQ* = a + (R*TS* lR*)flR*TS*l'A*
n n n n n n n n n n n n n n

The bootstrap principle is stated in the next theorem; the proof is

deferred to section 6.

Theorem 4.1. Along almost all sample sequences, as n-+oo, conditionally

on the data:

(a) Q*-Q and Rn* )R and S*--*S in conditional probability.
n n - n- _ _ _ _

_ _ _

(b) The conditional law of A-A* has the same limit as the uncondi-

tional law of v-'{A
______ __ __ _ ___ n
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The stationarity condition is easy to relax, because the effect of Y0
dwindles exponentialy fast. The independence condition (3.2) is quite strong;

it may be replaced by the assumption of an autoregressive structure, which

too is estimated from the data. Formally, the theorem only covers the joint

distribution of estimates for one equation; the extension to the whole system

is done in section 6.

In many situations, the Xt are treated like constants. In effect,

this assumes "homoscedasticity:" given Xt, the t are independent and

identically distributed, with mean 0 and finite variance. Then, it is

appropropriate to re-sample residuals (after orthogonalization). However,

convergence must be assumed for -ln xTx Three-stage least squares,n ~t t t-s"

with arbitrary linear constraints within and across equations, may be

bootstrapped too, although we have not checked the details completely. The

variance-covariance matrix of the errors is to be estimated by the empirical

variance-covariance matrix of the residuals from a 2SLS fit. More ambitious

iterative procedures can be used too.
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5. Technical details: Theorem 3.1

The argument is in terms of the "Mallows metrics" discussed in section 8

of Bickel and Freedman (1981); hereafter, "B&F." If R3 is j-dimensional

space equipped with the Euclidean norm | |, and a > 1, then d3(ip,v)

is the "distance" between probabilities i and v in R3, defined as the

infimum of E{fIj-0I}1/a over all pairs of random j-vectors g and C,
where i has law i and r has law v. In effect, the infimum is over

all possible dependencies between and .

Lemma 5.1. Let v , v be probabilities in RJ- Let a > 1, and suppose

the Mallows metric dJ(v ,v)->O. Let M be a linear map from R3 to Rk,
a n fl-n__ __

also equipped with the Euclidean norm. Suppose M )M. Then

dk(v l,vM 1)+Q0.a nn

Proof. Construct U and U with distributions vn and v
a1-n

respectively, and E[IU UIa]l/a = dJ(v ,v). See Lemma 8.1 of B&F. Recalln a n

that N N is the operator norm, so e.g. IMnul < IIMnII-Iu!. Then

dk(v Ml ,vM ) < E{IM_U -MUIa}l/a

< E{IM (U WU)I a1/a + E{|(M 1M)UIa}l/a
< IIMn -E{IU -UIa}l/a + IIti MIIeE{JUj al /a

Lemma 5.2. Let Pn be the empirical distribution of (Y.,U.,V.) for
____ - n- 111 -

1 < i < n. Let y be the common theoretical distribution of (Y1,U:,Vi).
Then dl+P+r(l ,v) -* 0 a.e.4 n

Proof. This is Lemma 8.4 of B&F. 0
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Lemma 5.3. Let Pn be the empirical distribution of (U.,V ,V.(n)) for

1 < i < n. Let j be the common theoretical distribution of (U,
E

£).)

Then dP+r+ljpr) -* 0 a.e.
4 ("n

Proof. This follows from Lemmas 5.1-5.2, because i is the image ofn

in under the linear mapping Ln:

L (y,u,v) (u,v,y-uAnbTv)

and An -*A, b -+O a.e. So,j. tends to the image of v under the
nn Tn

linear mapping L:

L(y,u,v) = (u,v,y-uA)

This is i. U

Claim (a) of the theorem follows from Lemma 8.6 of B&F. Likewise, claim

(b) follows from Lemma 8.7 of B&F: indeed, V'*e'* has mean 0 due to the

orthogonalization, and its conditional law is close in d2r to the uncondi-

tional law of V.a., by Lemma 8.5 of B&F and the present Lemma 5.3. This

is where L4 is needed. Claim (b) of the theorem can be sharpened; a.e.,

as n-+oo, given the data, the dyr-distance between the conditional law of

Y-A* and the unconditional law of /nAn tends to 0.n n
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6. Technical details; Theorem 4.1

The random vectors X and F- are defined on some probability triple

(Q,F,P), with w a typical element of Q. Thus, Xt(w) is a 1 x b-vector

in Euclidean space. Let jn(w) be the empirical distribution of the 3-tuples

[Xt(W),Yt(w),Ytt1(w)] for t = l,...,n; so p1n(w) is an atomic probability

in R, with k = b+ 2a. Let v be the theoretical distribution of

(.X ~~~~~~~~~~~~~~~~~~~~~~k(Xt,Yt,Yt-1), for any particular t. This too is a probability in R

Lemma 6.1. Assume conditions (4.1)-(4.8) onl. Then dk(vin,) - 0 a.e.

Proof. This follows from the ergodic theorem, and Lemma 8.3 of Bickel

and Freedman (1981), referenced hereafter as B&F. 0

Recall that the £t(n) are the residuals from the fitting, made

orthogonal to the X 's. Let S be the set of pairs (x,z), where x ist.
1 x b and z is 1 x a. So S is a Euclidean space, of dimension b+a.

Equip S with the Euclidean norm .1. Let j be the distribution of

(Xt,£t). So j is a probability in S, satisfying

(6.1)

(6.2)

[I (X,z)14I(dx,dz) < X
is

JxTz (dx,dz) = 0
~s

by (4.2) and (4.3) respectively. L

(Xt,Et(n)) for t = l,...,n. So

satisfying (6.2) by construction.

S satisfying (6.1)-(6.2): so n

Let ii be the empirical distribution oflpn
pj is an atomic probability in S,n

Let S be the set of probabilities in

E S and j E S.

Lemma 6.2. Assume (4.1)-(4.16). Then d4 a(nn,i) -+ 0 a.e.

Proof.

9n -+B, and

system: see

This is immediate from Lemmas 5.1 and 6.1, because An -+A,

C -+C a.e.; and b -+O a.e. for each equation in then n

(4.16). 0
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Turn to claim (a) of the theorem. IWe focus on Q*, the argument for

R* and S* being sinilar. Notice that Q* consists of some elements of
n n n
1 yn=l x*Ty* and some of 1- X= YTlYt. We focus on the first group, the
nt nt1It t'
second being similar. If s are independent random vectors, and is

the Euclidean norm, then of course

(6.3) E{jES5j2S = EE{lcs?-E(s)I } + E{cSI
2 } +<'EsE{ICs I + IE E{CSI

If M is a matrix, recall IMI = (Ei Mm.)1/2, so IIMII < IMI, where

IIMII is the L2 operator norm of M. If v is r xl and x is 1 x q,

confirm that |vxI = IvI lxl. Let Pn(1) be the law of I Xn xt=l when

(Xt,Et) has law v. Metrize 9's by d bxa and p's by d2b+a Recall S

and S from (6.1)-(6.2).

Lenima 6.3. The 'n (p) are equi-uniformly continuous functions of p on

the "ball"

{p: iES and J I(x,z)I2p(dx,dz)< c2 < C*}

Proof. Fix p and p' in the ball. We must estimate dbxa[ n(p),i n(1')].

To this end, construct independent, identically distributed 4-tuples

(Xt,Et,xi ,£): t= 0,+1,...

such that (Xt,Et) has law -P. (X',E4) has law i', and

(6.4) E{IXt-Xj2+ I%E-F-1} = db )

See Lemma 8.1 of B&F. Build Yt in terms of its from the (X ,tt s)
and Y' from it in terms of (X'' 6 as in (4.8)-(4.9). Then

t t,s -



25

dbxa[, ((v) )] ' E{1 n T=,(XTY XITY')I}
< E{IX YtY 1(xtYttV

< E{IXTi(Yt Y')I} + E{I(Xt XI)TYI}
= E{IXt IIYt-Y%I} + E{IXt xI I.IYtI

Only the first term will be estimated, the second being easier. By the

Cauchy-Schwarz inequality,

E{IXtI.IYt-Yulj}2 < E{IXtI2IE{IYt Yj12}
< C2 *E[IY~YtI 2

Recall it,s from (4.8); and is is defined analogously, in terms of t s and

xi_s Now - i are independent for s = 0,1,...; equation (6.3)

applies, and shows

Yi 2 12 __ + 2 1E{JY -YI < U 1 2 E{6}I 2

where r < 1 by (4.6) and

= [(E0-FE)+ (x -X')C](I- A)1

This is small if i and v' are close in d2: see (6.4). El

Claim (a) of Theorem 4.1 now follows in respect of
n t=l t t*

Indeed, by Lemma 6.3 the conditional law of -1-lXnTYt given the data

differs little in the sense of dbxa from the unconditional law of
I n xTYt, because 'n differs little in the sense of d2b a from

by Lemma 6.2. The balance of the argument is omitted.

Turn to claim (b) of the theorem. Notice that i-nA* consists of
n

some elements of t=l xt* Et followed by 1 tn The first
grouX ctn-htdeYtd.Fh

group can be handled by Lemma 6.2, and Lemma 8.7 of B&F. For the second
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group, new arguments are needed, and these will now be given.

Recall S and S from (6.1)-(6.2); each equation has an intercept,

so for GE S,

(6.5) F zv(dx,dz) = O
JS

Let On(p) be the law of I n YT et when (Xt,£t) has law i.

Metrize b's by d2 b+a

Lemma 6.4. The b C.) are equi-uniformly continuous functions of p on

the "ball"

{vp: pECS and F I(x,z)I4p(dx,dz)<c4<< .
JS

Proof. Lemma 8.7 of B&F does not apply directly, because the YIt_lEt
are not independent. However, the argument for Lemma 6.3 can be pushed

through. Fix i and i" in the ball. Modify the construction so that

(6.6) E{[IXt-XtI2+ Jst-E4I2]2} < db+a(.,p')4

Then

(6.7) daxa[()(,(m)IJ2 < E{ I 2(YT yjT E1) 2

The terms are stationary and pairwise orthogonal because E{c } = E{E'} = 0.
t t

So the right side of the inequality (6.7) is

(6.8) E{jYO£1 - YOT |2}

Now

T - T(E _E1) + (YT_YyTT)y0E1 0 1: 0 1 1 +(0-Y0 -.
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So the expression (6.8) is bounded above by

2E{I|YO(c -Ej) |2} + 2E{I(YT-YyT)£|I2}
= 2E{1YO| 2012K-6'1 2} + 2E{IY0-YI*2.I| |2}

Only the second term will be estimated. By the Cauchy-Schwarz inequality,

E{IY -YI.I- IC}- < c *E{IY -Y I4}

Abbreviate

E_F=[ -' + (X -Xi )C](I- A)Y

I I= and B = B(I- A)1

Now r= IBI < 1 by (4.6) and Y -Yi = s Rs by (4.8) so

IYo-Y6140 (s=lG5r1)4 = lijk i jkCrj

Therefore E{1YYo-Y64} < A/(l-r)4, where A = max i jkZ E{cicCkck is

small if p and ' are close, by (6.6). 0
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