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1. Introduction

The exponential hypothesis is important because

of its implications concerning the random mechanism

operating in the experiment being considered. In

reliability, the exponential assumption may apply when

one is dealing with failure times of items or equipment

without any moving parts, such as for instance transistors,

fuses, air monitors, car fenders, etc. In these examples,

failure is not brought about by wear, but by a random

shock, and the exponential assumption corresponds to

assuming that this shock follows a Poisson process

distribution. Thus testing the exponential assumption

about the failure time distribution is equivalent to

testing the Poisson assumption about the process producing

the shock that causes failure.

Tests for exponentiality are subject to the usual

dilemma concerning goodness of fit tests, namely, only

when the hypothesis is rejected do we have a significant

result. Thus, if the significance level of a test of

exponentiality is a = .05 and the true underlying model

is Weibull and not exponential, the probability of falsely

accepting H0 can be nearly 1 - a = .95.

On the other hand, when a test rejects exponential-

ity it justifies the use of other more complicated models
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and the probabilistic and statistical methods that go

along with these models. Such models and methods can be

found in the books by Barlow and Proschan (1975) and

Kal bfleisch and Prentice (1 980) .

In thi s paper we present some of the tests avail -

able for testing exponentiality. It is not a complete

treatment of the topic and reflects the author's interests

and biases.

In Section 2, we introduce some of the common

parametric and nonparametri c al ternati ves to exponential -

ity. The next section discusses tests designed fo-r

parametric models and it is shown that one of these tests

is appropriate in a nonparametric setting. Spacings

tests are discussed in Section 4, and their isotonic

properties for increasing failure rate alternatives are

developed. In Section 5, tests based on the total time

on test transform are considered, while in Section 6 the

nonparametric optimality of the total time on test

statistic is developed.

Some of the common distance type statistics are

discussed in Section 7 and graphical methods based on

Q - Q plots and the total time on test transforms

are given in Section 8. Section 9 gives some tests

designed to detect "New Better than Used" alternatives.
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The rest of the paper concerns testing for

exponentiality in the presence of right censoring.

Censoring arises in many practical problems when

individuals under study cannot be observed until failure.

Section 10 presents several common types of censoring

and details the notation used for this part. Estimates

and their properties are reviewed in. Section 11. Very

few small-sample results exist for censored data

problems (Chen, Hollander and Langberg 1980). We there-

fore briefly review in Section 12 the weak convergence of

the survival curve and of the cumulative failure rate, or

hazard function, to a Gaussian process. This is used in

later sections to examine asymptotic properties of several

generalizations of tests without censoring. These include

maximal deviation (Kolmogorov-Smirnov) tests which can be

inverted to yield simultaneous confidence bands (Section

13); tests based on spacings and the total time on test

(14); and others including average deviation, or

Cramer-von Mises tests,and linear rank tests (15); Monte

Carlo simultation results are summarized in section 16.

The question of exponentiality is explored using several

tests on data from a prostate cancer study in section 17.



2. Some AZternatives to ExponentiaZity

2(a) Parametric Models

It is often useful to study properties of non-

parametric methods at certain important parametric models.

Two such alternatives to the exponential model are the

gamma and Weibull models whose probability densities are

respectively

f (t;0eA) = X(Xt)1e- t/r(e) , t > 0

fw(t;8X) = xe(xt) 1e() , t > 0

where 0, X > 0. Their properties are discussed in

Barlow and Proschan (1975) and Kalbfleisch and Prentice

(1980). When 0 = 1 both reduce to the exponential

density so the exponential hypothesis can be written

Ho : e = 1.

Properties of alternatives to exponentiality are

most conveniently expressed through the faiZure (or hazard

rate function defined by

A( t) = f(t)/[Il-F(t)] t > 0

where F is the failure distribution defined by

F(t) = P(T < t) and f(t) is its density. The failure
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times of equipment or components with moving parts are

modelled to have an increasing failure rate distribution

since wear would increase the rate of failure.

In the case of gamma and Weibull distributions,

we find that the failure rate is monotone increasing if

e > 1 and monotone decreasing if e < 1. In fact, for

the Weibull density, we have

x (t) = tt61, t > O

Two other interesting, but less familiar para-

metric models are

1 2 2fL(t;e,X) = X(l+eXt) exp {-(Xt+-eX t )}

fM(t;e,X) = X[l+eK(Xt))] exp {-[Xt+e(Xt-K(Xt)]}

whlere e > 0, t > 0, and K(x) = 1 - exp (-x), x > 0.

We refer to these as the linear failure rate density

and Makeham (type) density, respectively. They were

introduced by Bickel and Doksum (1969). Their failure

rates are

XL(t) = x(l+ext)

XM(t) = X[l+6(e Xt)]
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These densities reduce to the exponential density when

e = 0, the failure rates are increasing when e > 0.

2 (b) Nonparametric Models

It is usually hard to determine exactly which

parametric family of densities is appropriate in a given

experiment. Thus it is useful to turn to nonparametric

classes of distributions that arise naturally from

physical considerations of aging and wear. Three such

natural classes of nonparametric models are listed below.

(1) The class of all IFR (Increasing Failure

Fate) distributions. This is the class of distribution

functions F that have failure rate A2(t) nondecreasing

for t > 0.

(2) The class of IFRA (IFR Average) distributions

which is the class of F where the failure rate average

a(t)
=

t f X(x)dx = -t log [l-F(t)]

is nondecreasing. This class has nice closure properties:

It is the smallest class of F's which includes the

exponential distribution and is closed uider the formation

of coherent systems (Birnbaum, Esary and Marshall (1966))

and it is closed under convolution (Block and Savits

(1976)).
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(3) The class of NBU (New Better than Used)

distributions F is the class with

S(s+t) < S(s)S(t) , s > 0 , t > 0 (2.4)

where S(t) = 1 - F(t) is the survival function. Note

that (2.4) is equivalent to stating that the conditional

survival probability S(s+t)/S(s) of a unit of age s

is less than the corresponding survival probability of

a new unit.

The three above classes satisfy

IFR c IFRA c NBU

Thus the gamma and Weibull distributions with e > 1 are

examples of F's for all three classes as are the FL

and FM distributions when e >0.

For further resul ts on these nonparametric

classes, see Barlow and Proschan (1975), and Hollander and

Proschan (1983, this volume) .



3. Parametric Tests

In this section we consider tests that are

asymptotically (approximately, for large sample size)

optimal for parametric alternatives in the sense that in

the class of all level a tests (assuming scale X

unknown) they maximize the asymptotic power. We will

find that one of these tests is consistent for the non-

parametric class of all IFRA alternatives.

Let TlI***,Tn denote n survival or failure

times assumed to be independent and to follow a

continuous distribution F satisfying F(O) = 0. The

exponential hypothesis Ho is that F(t) = K (t), some A,

where

K (t) = 1 -et , t > 0 ; X > 0

Suppose we have a parametric alternative with density

f(t;O,X) in mind, where 6 is a real shape parameter,

X is a real scale parameter, and 6 = 60 corresponds to

the exponential hypothesis.

With this setup, it is natural to apply the

likelihood ratio test which is based on the likelihoo-d

ratio statistic
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sup L(t;e,X)
R(t) = sup L(t; 03,X)

where t = (t ,.6.. tn) is the observed sample vector,
n

L(t;G,) = II f(tni;,) is the likelihood function, and

the sup is over X > 0 and GE®, where ® is the

parameter set for e . In the examples of Section 2,

®= [0,o].
Note that since the maximum likelihood estimate of

X in the exponential model is X = l/t, then

sup L(t;0,X) =
L(t

= 1 en

For smooth models, as in Section 2(a), the value of R(t)

can be computed on a computer. The test rule based on

R(t) is to reject exponentiality when R(t) > ka, where

k, is the (l-a)th quartile of a x2 distribution

with one degree of freedom (e.g., Bickel and Doksum

(1977, p. 229)).

Another test suitable for a parametric alternative

f(t;G,x) is Neyman's (1959) asymptotically most

powerful C(a) test. This test is asymptotically most

powerful in the class of all similar tests, that is, in

the cl ass of all tests that have level a no matter what

the value of the unknown parameter X is.
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Let

h(t) = a- log f(t;6,l)(0=.0+
0

then it can be easily shown that in our setup the C(a)

test reduces to a test which rejects exponentiality for

large values of the test statistic

n
T(h) = (1/v/) E h(t/t)/T(h) (3.1)

i=l

n
where t = (1/n) Z t. and

i=l 1

2(h) = f0 h2 (t)e tdt -[fo th(t)e tdt]2 (3.2)

The test rule is to reject Ho when T(h) > c ,

where c is the upper a critical value from a

standard normal distribution, i.e. c05 = 1.645.

For the four parametric models fG' fw' fL and fM
of the previous section, we find, after some simplifica-

tion

I n 712TG = - E [log(t.dt) +E]/ 6-

n 72
TW 1 {1 + [l-(t./E)] log (t /6)}/ -
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1 n ~ 1 2T = 1~2(t.t ]L Vn 2=n1=1

n
T M= [2K(tn/t) 1m n ~~~~~~~2

respectively, where E = Euler's constant = .5772 and

K is the standard exponential distribution function

e-x
Next,we consider the question of whether any of

these four test statistics will have desirable properties

not only for the parametric alternative they were derived

for but also for non-parametric classes of failure

distributions. We find that

THEOREM 3.1. The test that rejects H0 when TL > ca

is consistent for any alternative F in the class of IFRA

distributions.

PROOF. Rewrite TL as

"2
TL = 1 - [1 a

where n2 Under Hn n TL converges

(in law) to a standard normal random variable. For IFRA

alternatives, a2 = Var(T) exists, thus P2/t2) a2/p2
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a.s. as n -* o, where i = E(T). If F is an IFRA

distribution different from K>(t), then from Barlow

and Proschan (1975, p. 118), (Vt/o) < 1; thus TL 00 (a.s.).

Thus the power of the test converges to one as n o.

Note that this test is equivalent to rejecting

H0 for large values of the sample coefficient of

variation t/cy and that it can be carried out on any
^2calculator that computes t and a2.

EXAMPLE 3.1. In table 3.1 we give 107 failure times for

right rear breaks on D9G-66A Caterpillar tractors. These

numbers are reproduced from Barlow and Campo (1975). We

find t = 2024.26 and a = 1404.35, thus TL = 2.68

and the level aO = .01 test based on TL rejects the

hypothesis. The p-value is pL = 0037. By comparison

we find TM = 4.20, so the test based on this statistic

rejects H0 with negligible p-value.



4. Tests Based on Spacings

Let Tl,. .,Tn denote n survival or failure

times assumed to be independent and to follow a

continuous distribution F satisfying F(O) = 0. The

exponential hypothesis is that

F(x) = 1 - ex , x > 0 , X > 0 (3.1)

We look for a simple transformation of T1...,Tn
that will yield new variables Dli***.Dn with a

distribution which is sensitive to IFR deviations from

the exponential assumption. Such a transformation

is defined by

D; = (n+l-i)(T(i)-(T 1)) i l....,n (3.2)

where T (0) = and T(1) < -.. < T(n) are the

ordered T's. Using the Jacobian result on transforma-

tions of random variables, (e.g., Bickel and Doksum

(1977, p. 46)), we find that under the exponential

hypothesis, Di ,...Dn are independent and each has the

exponential distribution (3.1).

The D's are called the normaZized sampZe

spacings, or just spacings for short. They are useful

since for the important class of IFR alternatives, there

will be a stochastic downward trend in the spacings and

tests that are good for trend will be good for IFR

alternatives. To make this claim precise, we define a



4.2

distribution F to be more IFR than G, written

F < G, if G1 F is convex, where G- F is defined
c

by PF(T 1F(T) < t) = G(t), t > 0 (Van Zwet (1964),

Bickel and Doksuum (1969)). With this definition, "F is

IFR" is equivalent to "F < K", where K(x) denotes
C

the standard exponential distribution 1 - e x. Moreover,

for the gamma and Weibull families FGO9 and Fw e Of

Section 2; F < F and F < F are bothG,62 c G,6 1 W3,02 c W,
equivalent to 61 < 32.

We say that there is a stronger downward trend in

D1 .,**Dn than Dl1 s,... n if DK'/D. is non-

decreasing in i.

Now we can make precise the notion that the more

increasing the failure rate, the stronger the stochastic

downward trend in the spacings.

LEMMA 4.1. Suppose F is more IFR than G. Let

T ...,Tn be a sample from F with corresponding

spacings Dl*,*.*Dn* Then there is a sample T1 ,.... Tn

with distribution G and spacings D 9,...,Dn such

that there is a stronger downward trend in D ,*..,Dn
than in D1 ,... Dn -

PROOF. Let T(1) < ... < T(n) be the ordered failure

times and let T(i) = G 1F(T(f)), i = 1,...,n. Then
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T (),..gT (n) are distributed as order statistics

from G. Next let Di = (n-i+l)(T (i)-T(il)). Since

the function G 1 F is convex, its slope is increasing

and thus

(T'P )-T9( l/T )T( l)< (T ()T9( l)/T j)T(

for i < j. It follows that (D.A/Di) < D /D

i < j.

As an application of this Lemma, we note that

there is a stronger downward trend in spacings from an

IFR population than in spacings from an exponential popu-

lation. Since spacings from an exponential population

form a sample from an exponential distribution, there is

no trend in these spacings.

Figure 4.1 shows a downward trend in the spacings

for the tractor data of Example 3.1. The spacings D

are plotted against i/(n+l).

We consider two types of test statistics

appropriate for testing no trend vs. downward trend. The

first is the class of Zinear rank statistics of the form

1 n R.
n Ecn+l) Jn+l)

where R is the rank of Di and c(n11),

c_(n_1J(_n+l J(1n l are constants to be chosen



4.4

subject to the condition that -c(nl) andJ(

are nondecreasing in i. Proschan and Pyke (1967)
* iproposed J( = nil' while Bickel and Doksum (1969)

showed that it is both better and asymptotically optimal

for all alternatives f(t;6,X) to choose J(i4T =

- log (1 - ) Thus we will from now on consider
n+l

n .R.
w =1 c(njl)[- log (1

The choice of c depends on the alternative, and for

the parametric alternatives fG2fw,fL'fM of Section 2

the respective asymptotically optimal choices of c are

(Bickel and Doksum (1969))

cG(u) (1(l-- fu) x- e-x dx

cW( u) = - log[- 1 og( -u)]
(4.1)

c L(u) = log (1-u)

cM(u) = - u

The second class of statistics is the class of

(standardized) linear spacings statistics which are of

the form
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n n
S = E c((nl) D/ E D.

where C(njl) again is non-increasing in i. This

class was considered by Barlow and Prochan (1966). For

the four parametric alternatives of Section 2, the optimal

c to use in S is precisely as in (4.1) above (Bickel

and Doksum (1969), Bickel (1969)). We denote these

asymptotically optimal spacings statistics by SG' SW,

sL and SM respectively.
Next we turn to nonparametric properties of these

two classes of statistics. We say that a statistic

T = T(D 9..*,Dn) is trend monotonic if T(D1 .,Dn) >

T(D1,...,Dn ) when there is a stronger downward trend

in DI,... ,Dnthan in D1 , . . ,Dn .

From Lehmann (1966) and Bickel and Doksum (1969)

we can conclude:

THEOREM 4.1. If -c(n1l) and J(41) are nondecreasing

in i, then the linear rank and spacings statistics

W4 and S are trend monotonic.

Recall that a similar test is one where the

probability of rejecting Ho when H0 is true is the

same for all values of the scale parameters X. This

probability is the significance level a. Tests that

reject Ho when T > k, where k is a critical constant and
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T is trend monotonic, are similar. This is because the

downward trend in XD see*qXDn is the same as that of

D j...9Dn, thus T(D1,...,D ) = T(XD 9...,XDn).

From Lemma 4.1 and Theorem 4.1 we get the

following important result.

COROLLARY 4.1. Let 6(T,F) denote the power of the

test that rejects H0 when T > k, where T is trend

monotonic. Then the test is unbiased and has isotonic

power with respect to the IFR ordering, i.e. if F is

in the IFR class, then the power S(T,F) is greater than

the significance level a = S(T,K), and if F is more

IFR than G, then S(T,F) > 3(T,G).

At this point, we have two classes of tests that

are good for the nonparametric IFR class in the sense of

being unbiased and having isotonic power. In each of the

two classes of tests, we can obtain the asymptotically

optimal test for a parametric alternative f(t;,x)s

by choosing

ch(n) = 1-u !" 1U hi(t)e- dt (4.2)
-log(l)

where h(t) =- log f(t;6,l)I
900 = e0

as in Section 3. The resulting statis*tics Wh and Sh
can be shown to be asymptotically equivalent (in the
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sense of having the same asymptotic power) to the

C(aX) test based on T(h) given in Section 3. Thus the

rank and spacings tests with c given by (4.2) are

asymptotically most powerful for f(t;e,X) in the sense

of maximizing the asymptotic power. See also Bickel

(1969). Formula (4.2) was used to compute the examples

given (in 4.1).

Let c = n
-

£ _n+_ and let
i=l

sc n n (c c) , ci (41)

then the distribution of both /n(W-c)/s c and Vn(S-E)/sc
converge to a standard normal distribution under H

Thus approximate level a tests based on W and S

reject H0 when these quantities exceed the upper

level a critical value c of a standard normal
cx

distribution.

Note that using integral approximations to sums,

c and s c2 can be approximated by p(c) and a2(c)

where

1 2 1 2 2
iP(c) =f c(u)du and C (c) = f c (u)du -P

0 0
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For the four examples CGI cw, cL and cE

of (4.1), we find

2 2
II( cG ) = 1 , a (CG ) = lr- 1

A( CW) = 1 - E , a (CW) =-

1(cL) = - 1, a (cL) = 1
1 ~2 1T

vi(cE ) = , a2 ( cE ) =

where E = . c5772.

In the case of CM(U) = -u, we have

- 1~~~~~~~~
CM and ~~2 1 1

CM =--a2 M = (12)(n-l)/(n+l).

EXAMPLE 4.1. For the tractor data of Example 3.1, we

find sL = - .689, cL = - 979 sL = .931 and

vn(SL CL)/sL = 3.22 which should be compared with the

"asymptotic equivalent" value TL = 2.68 of Example 3.1.

Similarly, SM = -.370 and Vn(SM-cM)IsM = 4.69 as

compared with TM = 4.20 is Example 3.1. Clearly, sL

and SM both reject exponentiality. Note that, in this

example, the spacings tests appear to do better than the

C(a) tests.

Finally, we remark that in terms of finite sample

size Monte Carlo power, the spacing tests were shown in

Bickel and Doksum (1969) to do better than the rank tests.



5. Test Based on the Total Time on Test Transform

In this section, we introduce another transforma-

tion and other test statistics whose distributions are

sensitive to IFR models. Suppose we put n independent

items on test at the same time. Let T(1) < ... < T(n)

denote their ordered failure times. At time T , the

total time the n items have spent on test is

TT; = nT(1) + (n-l)(T(2)-T(l)) + ... + (n+l-i)(T(i)-T(i_l))

i i
= z (n+l-j)(TjT -TU1 = ZD

n n
where T(0) = 0. Note that TTn = j D = E T

The transformation considered in this section is

the one that transforms the survival or failure times

T1,.. Tn into W1 *.. Wnl' where

i
z D.

W. =j=l
1 n

Z D.
j=l J

We call W1, Wnl1 totaZ time on test trans-

forms, or totaZ time transforms for short. Under H0,
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W1, ..., Wn 1 are distributed as the order statistics in

a sample of size n-l from a distribution uniform on

(0,1) (Epstein (1960)) .

This transformation is useful since W i tends

to be larger for an IFR distribution than it is for an

exponential distribution, more precisely

THEOREM 5.1. Suppose F is more IFR than G. Let

T1,. . .Tn be a sample from F with corresponding total

time transforms W 1 *,...Wn. Then there is a sample

T1..-*qT,Tn' with distribution G and total time

transforms W18, .. ,W n with

Wj > W. i- - 1 ,. -.n-W. ,

The proof can be found in Barl ow and Proschan

(1966), Barlow and Doksum (1972), and Barlow, Bartholomew,

Bremner and Brunk (1972).

The result suggests using tests based on

statistics that are monotonic in the W's in the sense

that they are coordinate-wise increasing, i.e.

T(W 1 , * * *,Wn) > T(W11 2-.. WnA )

whenever W " > W ,
n - i 1 9 . . . . n - I o
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For such tests we find

THEOREM 5.2 Let X3(T, F) denote the power of the test

that rejects H0 when T > k, where T is monotonic.

Then the test is monotonic and has isotonic power with

respect to the IFR ordering, i.e. if F is in the IFR

class, then the power S(T,F) is greater than the

significance level a, and if F i's more IFR than G,

then 6(T,F) > B(T,G).

One important monotonic statistic is the total

time on the test statistic which is defined by

n-l
V = Z W.

i=l 1

Since V is distributed as the sum of uniform variables

under H0, its distribution is very close to normal.

The exact distribution is tabled in Barlow et al. (1972)

for n < 12. For n > 9,

V 1v'12(n-1l) [n- 1 -2

has practically a standard normal distribution.

A 1 i ttl e al gebra shows that

V = (n+l)(ni1 + SM)
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n n
where Sm = E i D./ Z Di as in Section 4. Thus V

M i=l 1~~~~i 1

is equivalent to SM' asymptotically equivalent to TM,

and asymptotically most powerful for the Makeham alterna-

tive fm(t;9,).
Barlow and Doksum (1972) investigated a more

general class of monotonic statistics, namely

n-1
V3 = E J(W;)

where J is some function on (0,1). They found that

for a given parametric alternative f(t;O,x), the test

based on VJ will be asymptotically most powerful if

J(u) is chosen to equal -c(u) where c(u) is the

function given in (4.1) and (4.2). Thus for the linear
n-1

failure rate alternative fL(t,o,x), - log (l-W.) is
i=l

asymptotically optimal, while for the Weibull alternative
n-l

fw(t;,x),g log[- log(1-W.)] is asymptotically
i=l

optimal

Other tests based on the spacings D. or total time

transforms Wi, have been considered by St"rmer (1962);

Seshadri, Cs?5rg` and Stephens (1969); Cso-r6o, Seshadri; and

Yalovsky (1975); Koul (1978); Azzam (1978); Parzen (1979) and

Csorgo and R6vdsz (1981(b)), among others. An excellent

source for results on spacings is the paper by Pyke (1965).



6. Nonparametric OptimaZity

In Section 3,4 and 5, we have seen that different

IFR parametric alternatives lead to different asymptotically

optimal tests. Thus we have no basis on which to choose

one test as being better than the others.

In this section, we outline the development of a

theory that leads to one test, namely the one based on the

total time on test statistic V, as being asymptotically

optimal. These results are from Barlow and Doksum (1972).

We define the totaZ time on test transform H1F

of the distribution function F as

-l ~F-1(u)HF (u) f [l-F(v)]dv , 0 < u < 1
0

and the standardized total time on test transform as

-l -l -lHF (u) = HF (u)/HF (1) 0O < u < 1

Note that HF 1(1) = EF(Ti) = mean of T. The reason

for the inverse notation is that HF 1 can be regarded

as the inverse of a distribution in (0,1). We let- H

or HF denote this distribution. Note that W. of the

previous section can be regarded as H 1(1) where FFn n n

is the empirical distribution function of T
n
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It is easy to check that when F is exponential,

H(u) = u, 0 < u < 1; while F is IFR iff H(t) is

convex and H(t) < t on FO,l]. Thus the problem of

testing for exponentiality can be formulated in terms of

H as testing

Ho: H is uniform on [0,1]

vs. H1: H is convex, H(t) < t, and H is

not uniform on [0,1]

The optimality criteria we are going to consider

is the minimax criteria, i.e. we want to find the test

that maximizes (asymptotically) the minimum power over

a nonparametric class Q. The term minimax is used

since in decision theory terminology, risk = 1 - power.

We can not take Q to be the whole IFR class

since then the minimum power would always be a. The

total time on test transform HF gives us a convenient

way of separating alternatives from H0. We let

Q(A), 0 < A < 1, be the class of all distributions F

where H is convex, H(t) < t, and

sup [t - H(t)] > A.
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If A is fixed, the minimum power over Q(A)

will tend to one, thus we must allow A = An to depend

on n, in fact the interesting cases have

1

A = O(n )n

Let ((PTF) denote the power of the level d

Total Time on Test test which rejects Ho when

V > k , then

LEMMA 6.1. Assume that lim (/in An) exists andn+~~~
equals c where c is some number in [0, co], then

lim [inf (pT,F)] = ( + /3 c)
n-*o F£Q(An)

Now suppose that 6(pj,F) denotes the power of
n-1

the test which rejects H0 when VJ = z J(W.) is0 j ~~i=l 1
greater than the appropriate critical constant. We want

*to choose J to maximize the limiting minimum power.

This is achieved by choosing J(w) = w; thus the Total

Time on Test test PT is optimal in the sense of being

asymptotically minimax. The result follows from the fact

that if lim(vin) = c, cE[O0,o], then
n÷-oo n

lim[inf ) (pjF)] < cb(-k + /3 c)
n-*o FcQ(A n)

The proof can be obtained (under appropriate

conditions) from Barlow and Doksum (1972) and Koul and

Staudte (1976).



7. Distance Statistics

If there is no natural alternative class of

distributions (such as the IFR class), one can use statistics

based on the distance between the exponential distribution

K (t) and the empirical distribution F (t) defined

as F n(t) = n 1[#Ti < t]. If X =O is specified,

the Kolmogorov statistic is given by

Dn(x0) = max |Fn(t) Kx (t)|
t 0

For tables, see Owen (1962).

In the more realistic case with X unknown, we

replace X in KA by A = 1/t and use

Dn*= max IFn(t) - K^(t)n n

where Kj(t) = 1 - exp(-At).

The distribution of D * has been studied by

Lilliefors (1969), Stephens (1974) and Durbin (1975),

among others. A very good approximation to the level ct

critical values k of Dn* for a = .01, .05 and .10

are given by

.0.2k
do

k n°- ++ +)o. n ,,n- + 0.26 + (0.5//-n)



8. Graphical Methods in the Uncensored Case

8(a) The Q-Q (QuantiZe-QuantiZe) PZot.

The exponential quantile function evaluated at the

population distribution function is

QF (t) = K1[F(t)]

where K (u) = -log(l-u) is the inverse of the exponential

distribution. If the exponential hypothesis is satisfied

and in fact F(t) = 1 - eXt- K(Xt), then we find

QK (t) = xt

Thus a graphical method for checking exponentiality is to

plot

QF (t) = K [Fn(t)] = -log[l-Fn(t)]
n

and check if this plot falls close to a straight line

through the origin. Since we can not use the log of zero,

we use the modification

Q(t) = K [F (t)

and plot Q(t) for t = t , i = 1,**,n, where {t C)}

are the order statistic of the sample. Since the t are
I ~~~~~~(i)

sample quantiles, the resulting plot of (t(j). K-1[ in½)
is called a Q-Q plot.
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where d= 1.308, 1.094, 0.990 for a = .01, .05,

.10, respecti vely .

An alternative approach to estimating X in

Dn (x) is to first make a transformation of T . . T

to obtain new variables whose distribution does not

depend on X. Thus we could use the distance between

the empirical distribution of W1l , . . ,WnI and the

uniform distribution on (0,1). The distribution of the

resultinq statistic is the same as that of the one-sample

Kolmogorov statistic. Tables can be found in Owen (1962,

p . 423) .

For other distance statistics and their properties,

see Seshadri, Csorgco and Stephens (1969); Durbin (1973, 1975);

Csorgo, Seshadri and Yalovsky (1975); Sarkadi and Tusnady

(1977); and Csorgoo and Rdvdsz (1981(a)).
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The rel iabil ity of 0(t) can be judged by

giving the simultaneous level aO confidence band

[K n(Fn(t) a
k) , K (Fn(t) + k)]

where k is the level a. critical value for the Dn-;, ~~~~~~~~~~~~~~~~n
test of Section 8. We reject exponentiality if the line

t/t does not fall entirely within the band. This

graphical test is equivalent to the D* test of then

previous section.

Note that, using Section 4, a convex shape for

Q(t) indicates an IFR alternative.

8(b). The Total Time on Test Plot.

Barlow and Campo (1975) demonstrated that

H (u) = HF (u) , 0 < u < 1nF n

where HF - is the standardized total time on test

transform of F defined in Section 6, gives a useful

plot for checking exponentiality. Under exponentiality,
-l1Hn should fall close to the identity function on (0,1),n

while for IFR alternatives, we would expect H 1(t) > t

and Hj 1 (t) concave (see Section 6). Figure 8.1 shows

thi s pl ot for the tractor data of exampl e 3.1. An IFR

distribution is strongly indicated for this data.
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The reliability of H l(u) can be judged by

using the asymptotic simultaneous level a confidence

band

bb
[H n (u) - , H (u) + ] , 0 < u < 1

where b is the critical value of the maximum of the

Brownian Bridge on [0,1]. Thus b is given in Owen

(1962, p. 439).



9. NBU Alternatives

Tests designed to detect NBU alternatives are

motivated by measures of the deviation of F from

exponentiality towards NBU alternatives. One such

measure, considered by Hollander and Proschan (1972), is

y(F) = f| fo[S(t)S(v) - S(t+v)]dF(t)dF(v)
0 0

When F is exponential, y(F) = 0, while it is

positive when F is NBU. Thus an intuitive rule is to

reject exponentiality for large values of y(Fn).
Hollander and Proschan (1972) give the appropriate

critical values and prove consistency of this test rule.

Koul (1977) considered

a(F) = inf {S(t+v) - S(t)S(v)}
t,v>O

as a measure of NBUness. a(F) is 0 when F is

exponential and negative when F is NBU. Koul (1977)

gave critical values of the test based on a(F n) for

selected values of at and n.

Kumazawa (1981) measures NBUness through

~(F) S() - S(2t)]dF(t)
0
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and considers the corresponding test statistic C(Fn
He develops the asymptotic distribution and gives the

Pitman asymptotic relative efficiencies 1.86 and 1.83 of

C(Fn) to y(Fn) for linear failure rate and Weibull

al ternati ves, respectively.

For further results on measures of NBU

alternatives, see Koul (1978) and Hollander and Proschan

(this volume).



10. Types of Censoring

Censoring may arise in a variety of ways, leading

to several possible assumptions about the form of

censoring. Here we consider primarily right censoring.

For individual i, i = l,...,n, the observed length of

life, or time on test, is Yi = min(T.,C.), in which T.

is the failure time with survival curve S(t) = P(T.>t),

and C. is the censoring time with censoring curve

G(t) = P(Ci>t). Ti and C i are assumed to be

independent.

"Type I" censoring concerns experiments in which

observation is terminated at a predetermined time

Ci = C, i = 1,... ,n. Thus a random number of failures

are observed. For "type II" censoring, observation

continues until r < n failures occur, with r fixed.

Type II censoring may arise when one wants at least

r failure times, for reasons of power, but cannot afford

to wait until all individuals fail.

In many clinical trials, the beginning and end

of the observation period is fixed, but individuals may

enter the study at any time. This is an example of

"fixed" or "progressive type I" censoring, in which the

C; 9 i = l,...,n, are fixed but not necessarily equal.
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"Random censorship" refers to experiments in

which the censoring times are randomly distributed. This

may occur when censoring is due to competing risks, such

as loss to follow-up or accidental death (Chiang 1969).

However, T. and C. may be dependent, as is the case

when individuals are removed from study based on mid-term

diagnosis. The lack of independence brings problems of

identifiability and interpretation (Horvath 1980; see

Prentice et al. 1978 for review).

Several other possible assumptions deserve mention.

Hyde (1977) and Mihalko and Moore (1980) considered left

truncation with right censoring. Left truncation may

correspond to birth or to entering the risk stage of a

disease (Chiang 1979). Mantel (1967), Aalen (1978),

Gill (1980) and others generalize this to arbitrary

censoring.

Various authors (Loziol and Green (1976); Hollander

and Proschan (1979); Koziol (1980); Chen, Hollander and

Langberg (1982)) assumed a "proportional hazards" model

for censoring. That is, G = SS with 3 the "censoring

parameter".

All these types of censoring are special cases of

the multiplicative intensity model (Aalen (1975, 1976,

1978); Gill (1980)). For our purposes, let N(t), t > 0,

be the number of failures in [0,t] and R(t) be the
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number at risk of failure at time t > 0. If we are

only concerned with right censorship, then R(t) = Y#(Yj>t).

More generally R(t) must be predictable, that is left-

continuous with right-hand limits and depending only on

the history of the process {N(u),R(u); o<u<t}. We

assume that for each t>0, the jump dN(t) is a zero-one

random variable with expectation R(t)dH(t), in which

H(t) is the cumulative rate, or hazard function. Aalen

(1975, 1978) and Gill (1980) and later authors use the

fact that

t
N(t) - f R(u)dH(u), t > 0

0

is a square-integrable martingale to derive asymptotic

properties of the estimators and tests presented below.

Note that one does not need to assume continuity of the

survival S or censoring G curve.

The remainder of this paper concerns right

censorship unless otherwise noted.



11. Estimates in the Censored Case

The tests presented in later sections embody

estimates of the survival curve, the censoring curve,

and/or the hazard function. The survival curve is usually

estimated by the Kaplan-Meier (1958) product limit

estimator

0 ( 1O I(Ti <Ci i f 0 < t <

Sn(t) {i<Yjt}

=0 if t > Y(n

with the Efron (1967) convention that the last event is

considered a failure. The censoring curve may be

estimated in a similar fashion, with the relation

Gn(t)Sn(t) = 1 - R(t )/n

sn and Gn are biased but consistent and self-consistent

(Efron 1967). If S is continuous and G is left-

continuous, then sn is asymptotically normal (Breslow and

Crowley (1974)). If S and G are both continuous then

sn is strongly uniformly consistent on any finite interval

in the support of both S and G (Foldes and Rejto (1981)).

The hazard function is estimated by the Nelson

(1969) estimator
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H (t) = - Ci ) t R
n {{ I jY>t} R(YI) 0i~~~~~~

Hn is biased, consistent and asymptotically normal

(Aalen 1978) under the same conditions as those for Sn"

It is also strongly uniformly consistent (Yandell 1981).

Some tests rely on a survival curve estimator

based on Hn' namely

S(t) = exp (-Hn(t)) > t > 0

G(t) is defined in an analagous manner. The properties

of these estimates are presented in Fleming and Harrington

(1979).

The asymptotic variance V of Vn(Hn-H) and of

v'n(S -S)/S has the form (Breslow and Crowley (1974); Gill
n

(1980)))

t
V(t) = f S G dH

0

It can be estimated consistently by

1 -
Vn(t) = n f R (R-l) dN

n 0

I(T1< C.
= n (R Y )R(Y ) l

1l t



12. Weak Convergence

Several asymptotic tests for censored survival

data are based on the weak convergence of the survival

curve Sn or the hazard function to a Gaussian process.

Throughout this section we assume that S is continuous,

G is left-continuous, and censoring and survival

(failure) act independently.

Breslow and Crowley (1974) first proved the weak

convergence for Sn and Hn with G continuous. Meier

(1975) handled the case of fixed censorship for Sn.
Aalen (1978) and Gill (1980, 1981) considered the case of

G left-continuous. The results can be stated in terms

of Brownian motion B on [0,co) or a Brownian bridge

B° on [0,1] with a time change (Efron (1967); Gillespie

and Fisher(1979); Hall and Wellner(1980)). Let o denote

composition.

THEOREM 12.1. Let Zn = n(Hn-H) or Z = vn(S -S)/S.

Then

Zn B o V

z /(1+V) B o (V/(1+V))

in D[O,T] for T < T = inf {t; S(t)G(t) > 01.
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Gill (1981) extended this result to the whole line:

THEOREM 12.2. Let Zn = Vn(Sn-S)/S. Then

Zn/(l+V) - B° o (V/(l+V))

in D[O,TSG]. In addition,

Zn /(l+ V ) B° o (V/(1+V))

in D[O,TSG] provided that

TSG 2 T SG S<f S dV =f SG1dH < o

0 0

Nair (1980, 1981) and Gill (1981) introduced

weight functions which allow weak convergence to weighted
0

versions of B and B

THEOREM 12.3 (Nair 1980).

Z = Hn(S -S)/S. Let q

Tn T<TGS. Then

Let Zn = Vn(H -H)bnneai on
be nonnegative on

or

[0,1], and

1

ZnVn 2 (T )qo(V /V (T )) > (Bq)o(V/V(T))

Z qo(V /(l+V )) =* (Boq)o(V/(l+V))

on D[O,T].

(12.1)

(12.2)
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Gill (1981) proved a similar result on the whole

line for a restricted class of weight functions.

THEOREM 12.4 (Gill 1981). Let Zn = /n(S -S)/S. Let qn ~~n
be continuous on [0,1], symmetric at 1-, nondecreasing

1~~~~~~~~~~~~~~
on(O, 1-

1 -2f q (t)dt < X
0

and (l-t)q (t) nondecreasing near t = 1. Then

Z qo(V /(l+V)) (B0q)o(V/(l+V) )

These results will be used with various weight functions in

later sections.

Cso, go and Horvath (1980, 1982) showed that Zn

(for the survival curve or hazard function) can be

strongly approximated on [O,T] by a Brownian bridge

process. They required continuity of G, but mention

in Remark 3.3 (Csorgo and Horvath 1982) that continuity

and independence of competing risks may not be needed

(see Horvath 1980). Their results, although interesting,

yield the same test statistics as those available from

the weak convergence results.



13. MaximaZ Deviation Tests

One class of goodness-of-fit tests relies on the

Kolmogorov-Smirnov metric of the maximal deviation of

the empirical from the theoretical distribution. Here

we exhibit results for a completely specified null

distribution (S or H). For the exponential family,

S(x) = e or H(x) = Xx, one may view these as

conservative in the sense that if no choice of X yields

a curve close enough to the empirical curve, then the

hypothesis of exponentiality is rejected. In other words,

if one cannot place a straight line completely within the

1 - a confidence bands for H(t), an < t < Tn then

the exponential hypothesis is rejected at level ax.

The basic result (Aalen (1976); Gillespie and

Fisher (1979); Hall and Wellner (1980); Nair (1980, 1981);

Gill (1980)) is for Z=/YH-)o ¶S-)SZn V'n(Hn H) or Znn n(Sn S)/S5

sup Zn(t) o(Vn(t) \ sup q(x)B(x)
s up n n

an- - n l~VT n ) Vn ( n ) <<

sup Zn(t) 0 KVn(t)) sup q(x)B0(x)
an<x<T n l+V n(t) a<Vna<x<b

The cited authors restrict attention to the finite

intervals [a ,T with Tn P T<T and an > 0. Then n nS
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limiting distribution then depends upon S and G,

wi th

a = V(a )/V(T ) and b = 1n n

for the convergence to Brownian motion, and

V(an) V(T n)
a = r n and b =r nI + V(a ) 1 + V(T)n n

for the convergence to B0. In the latter case, if q

satisfies the conditions of Theorem 12 .4, then one can

extend the sup to the whole line for Zn = n(S -S)/S.
The maximal deviation statistics can be inverted

to yield simultaneous confidence bands. More precisely,

the 1 - a confidence band for H(t) is

-

1 ~~v (t)
H (t) + K n 2 (l+Vn (t) )q-l ( n t )n - q9anc +v tn

with Kq ga
the 1 - a point of sup |qB°|.

Consider several choices of q for this band.

If q(u) = 1/(1-u), one gets bands proportional to 1,

with asymptotic distribution that of sup jB|. This has

distribution (Feller 1971)

su ( X 4 E0 (_,)n eXP(2n+l 22) -3Pr{ sup IB(u)I<x} rE 2+ exp- )-z.4p(x) -3
O<u<l n=_ 2nlex( 8x2
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in which f(x) is the standard normal distribution. With the
1 1

choice q(u) = u (1-u) 2, the bands are proportional
1

to [Vn(t)]2, with asymptotic distribution

2Pr { sup <B(u)1 x} = 2Pr { aup x(u) <
q<u<l /n a <u< 'u(l-u)

tabled by Borokov and Sycheva (1968). The choice

q(u) = 1 yields bands proportional to (l+Vn(t)) with

asymptotic distribution equivalent to the Kolmogorov-

Smirnov distribution tabled by Pearson and Hartley (1976,

table 54) (see Hall and Wellner (1980) for the case

T < TSG).

Useful approximations to the distributions of

sup lq(x)B(x)l and sup lq(x)B0(x)l can be found in the
a<x<b a<x<b_

papers by Jennen and Lerche (1981) and Jennen (1981).

The above tests are consistent but biased against

continuous alternatives. They are distribution-free

asymptotically, up to the choice of interval end points.

The choice of q( ) is open, with the obvious remark

that different choices emphasize different intervals of

the survival or hazard function. The Borokov-Sycheva

(1968) type choice is appealing as the bands are then

proportionally wider than pointwise confidence intervals.

These bands also have equal variance at every point.

Fleming and Harrington (Fleming, O'Fallon,

O'Brien and Harrington (1980); Fleming and Harrington 0(981))

introduced a class of Kolmogorov-Smirnov type tests which
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differ in an important manner from those considered

above. They point out (Fleming and Harrington 1981)

that the asymptotic distribution of tests based on

(12.1) with q = 1 depend on the maximum of a Gaussian

process with variance function which depends on the

censoring curve,

t T
V(t)/V(T) = f G1S1dH/f G1S1dH

0 0

They claim that such a test "has the undesireable

property that its probability of rejection of [the null

hypothesis] based upon information up to time t systematic-ally

tends to zero when censorship of data after time t is

increased." The tests based on (12.1) are asymptotically

distribution-free (Nair 1980), but the power against

alternatives will certainly depend on the choice of T

and the degree of censoring.

Fleming and Harrington (1981) propose instead

to examine

t ~~~~~~~~~~~1
Zn,a(t) = I- [Sa(u)+S (u)]G (u)d(H*(u)-H (u))

0

with a > 0. This converges weakly to a zero mean

independent increment Gaussian process with variance
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Va(t) = J S(2a 1)dH

which does not depend on the censoring G. Their

statistic is

Kn,a OstT(v (T)) 2 Z (t)j
K,, =<suT (n,a n,a

(t) =ft §(2a-l)dwith Vn, a = )dHn and T < TSG.

Ka and Ka converge in distribution to sup B and

SUP |B|, respectively. The parumeter a>O acts as a

weighting factor; the early part of the distribution S

is more emphasized if O<a<l while the tail is more

heavily weighted if a>l. This can be seen by noting

th at

-d(Sa) = Sa-l dS = SadH

See Fleming and Harrington (1981). Note that T may be
preplaced by Tn P T and the weights and transformations

discussed in Section 12 may be used here, with the

obvious modifications.

One-sided maximal deviation tests and

simultaneous confidence bands arise in an analogous

manner. See the above references for details.



14. Spacings and TotaZ Time on Test

Barlow and Proschan (1969) first derived the

distribution of the total time on test plots under the

exponential hypothesis for censored data. Barlow and

Campo (1975) considered several types of censoring,

showing the form of the total time on test and

indicating how censoring may affect the stochastic

ordering of scaled total time on test plots. Others

(Lurie, Hartley and Stroud 31974); Mehrotra (1982)) considered

weighted spacings tests under type II censoring.

Aalen and Hoem (1978) considered the multiplicative

intensity model of Aalen (1978), generalizing earlier

results to arbitrary censorship. The Aalen-Hoem approach

will be considered here.

We construct a random time change on the counting

process of failures to derive a stationary Poisson process

under the null hypothesis of exponentiality. The total

time on test transform, based on this random time change,

has the same distribution as that in the noncensored case.

Define

t
iP(t) = f R(u)du

0

in which R( u) is defined -s in Section 10. If
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t0=O and tl<t2 < ... < tk are the k di sti nct

failure times, assuming no tied failures, then

t.
Di = J 1 R(u)du = i(t.) - (t. 1)

ti-1

is the ith spacing.

the survival curve is

Aalen and Hoem (1978) show that if

S(t) = exp(-H(t)) then

N*(t) = N(ip 1 ( t ) )

is a Poisson process with parameter h(*) = H(*)

(their results are more general). If S(*) is exponential

then N* is a stationary process. Hence

N*(i (ti ) ) = i , i =1 ,. . . ,k

and (D15...,Dk) has the same distribution as a random

sample from S( * ). For exponential S(x) = e Xx,

Pr{D1 >x } -l1=Pr{t >~p (x)}I

= Pr{N(1 (x) ) = O}

= Pr{N*(x) = O}

-Xx
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Thus many results for noncensored data apply to

(D, .4.9.,Dk). The scaled total time on test transform

is

i = O ,1 , . . . ,k o

This is plotted for some censored data on prostate cancer

in Section 17. The tests based on spacings presented in

the first part of this paper generalize in a natural way.

In particular the cumulative total time on test statistic

of Barlow et al. (1972) becomes for fixed k,

k-l
Vk = Z p(ti )/P(tk) -

The weak convergence also applies for S(-) exponential.

Define for k fai 1 ures

H 1 1 i -lHk (u) = -j (t.),ik < u ' -k i =

Then following Barlow and Campo (1975),

{v'k (Hk (u)/Hk (1 ) - u) ; uE[O,l ]} - Bo

as k - co.

bands .

This result allows simultaneous confidence

.(t i)/.(tk) 5



15. Other Tests

Several other goodness of fit tests have been

proposed in the literature for censored data. These

include tests based on contingency tables (Mihalko and

Moore (1980)), average deviations (Koziol and Green (1976);

Cso'rgo" and Horvath (1981); Nair (1980, 1981), generalized

ranks (Breslow (1975); Hyde (1977); Hollander and Proschan

(1979); Gill (1980); Anderson et al. (1981); Harrington and

Fleming (1981)), and kernel density or failure rate estimators

(Yandell (1981); see Bickel and Rozenblatt (1973)). We

briefly present general forms of the average deviation and

generalized linear rank tests.

The average deviation, or Cramer-von Mises,

tests are based on weighted average deviations, from the

null distribution. Let Kn(x) = Vn(x)/(l+Vn(x)) and

Zn (x) = V'i q(Kn(x))(l-.Kn(x))(Sn(x)-S(x))/S(x)

Then the statistics are of the form

TnWn =f nznlidKn i = 152
0

for specified weight function q. Similar statistics

obtain for the hazard function and for the transform

based on equation (12.1). Asymptotic distribution of
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W 2 for q = 1 corresponds to that of the classicaln
Cramgr-von Mises test

2 = n 2-S)2
= nf(s -)dS

in the case of no censoring, and is tabled in Pearson and

Hartley (1976, Table 54). Koziol and Green (1976) show

that Qn2 converges to a distribution which depends on

the censoring parameter S of the proportional hazards

model (Koziol and Green (1976)). Clearly, the choice

of weights q( ) will force emphasis on different

aspects of the distribution S.

Generalized linear rank tests take the form

T

Jn K(s)(dHn(s)-dH*(s))
0

t
in which H*(t) = f I[R(s)>0]dH(s) is the estimable

portion of H(.). K(t) is some function of the history

of the survival process, {(N(u),R(u)), U£[0,t]}.

If K(t) = R(t), this becomes, with Tn =Y(n)

T n
N(T ) - n TdH = N(T ) + E log(S(Y.))n ~0 n i=l1

which is equivalent to Breslow's (1975)
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T 2T
(N(Tn)1f nRdH) If n RdH

0 0

which converges to chi square with one degree of

freedom. Hyde's (1977) statistic is a modification

of this to allow left truncation. The asymptotic theory

for general K(g) is presented in Anderson et al. (1981)

and Gill (1980).



16. Simulation Results

A few Monte Carlo results concerning goodness of

fit tests with c- sored data are available. Koziol (1980)

compared the censored Kolmogorov-Smirnov test D n of

Hall and Wellner (1980), the Cramer-von Mises statistic

^ 2 ~ T 2 2 2Wn = n f (Sn-S) /(S (l+V n))d(Vn/(l+V )

and a "traditional analogue" of the Cramer-von Mises

statisti'c,

2 T 2
= -n f (S -S) dS

He considered scale (S(t) = e )it) and Weibull

(S(t) = exp(-tl)) alternatives to the unit exponential

in the Koziol-Green (1976) proportional hazards model,

with 1000 trials and sample sizes 20 and 50. At

level .059 n2 had the right size, with W2 a close

second. The size of Dn was between .066 and .107,

depending on the degree of censoring (2= 5,1) Qn2

and Wn2 had better power against Weibull alternatives,

but Dn and Wn2 had more power than 2n against

scale alternatives. One may be surprised that Dn

performed as well as it did, since the alternatives
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represent small changes along the whole distribution

rather than marked change at any one point. The power of

Dn against Weibull alternatives dropped from .904 to

.576 as the censoring parameter increased from .5 to 1.

This suggests looking at the statistics of Fleming and

Harrington (1981).

Unfortunately (for our situation), the simulations

of Fleming et al. (1980; Fleming and Harrington 1981;

Harrington and Fleming 1981) were only done for 2-sample

situations. Further, these simulations concern statistics

which differ from those considered here. They examine

variations on Kolmogorov-Smirnov tests and several linear

rank tests.

Hollander and Proschan (1979) compare the

Crame'r-von Mises statistic 2n with two linear rank

statistics.



17. Data Analysis

Data were obtained from Hollander and Proschan

(1979) on 211 patients with stage IV prostate cancer

who were treated with estrogen in a Veterans Administration

Cooperative Urological Research Group (1967) study. The

observations span the years 1967 through March, 1977.

Ninety patients died of Prostate cancer, 105 died of other

diseases and 16 were alive in March, 1977. The live

patients and deaths from other causes were counted as

censored.

Koziol and Green (1976) failed to reject the

hypothesis of exponentiality with parameter X = 1/100.

Using the 4 2 Cramer-von Mises statistic with then

data truncated at an earlier date, Hollander and Proschan

(1979) could not reproduce the earlier value of 2n

but their value and those of the Hyde (1977) and their

own test were not significant at a. = .10. The

significance probabilities of the tests varied

considerably (.86, .49, .14, respectively). Csorgo and

Horvath (1981) state that Koziol has computed the

Cram6r-von Mises Wn2 , the Kolmogorov-Smirnov

Dn , and the Kuiper statistic with p-values of .15,

.1, and .04, respectively. The ordering of p-values

reflects the deviation of Sn from S in Figure 1 of
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Hollander and Proschan (1979). Csorg'o and Horvath's

(1981) version of the Cramer-von Mises test is somewhat

more significant (p=.0405).

Our graphical tests indicate that the data may

not be exponential, or may at least be a borderline

situation. Figure 17.1 is the total time on test plot,

showing the same criss-cross of the exponential case curve

as seen in Figure 1 of Hollander and Proschan (1979).

The hazard function plot of Figure 17.2 suggests that the

data may be exponential over most of its range, but

the rate appears to taper off. Figures 17.3 and 17.4 are

both transformations of the survival curve (see Nair

(1981)). Confidence bands are 80% based on the Borokov-

Sycheva (1968) weights.

The P-P plot in Figure 17.3 shows some discrepancy

with the exponential. This is a plot of

(u,Sn(S-1 (u)) , 0 < u < 1

along with appropriately transformed 80% simultaneous

confidence bands. Note that the confidence bands cross

over the diagonal again near the tail (u -+ 0). Figure

17.4 is a plot of the shift function, which is a version

of the Q-Q plot (see Doksum and Sievers (1976) and Nair

(1981)). The curve is

(x,S 1(Sn(x))-x) xX > 0
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Since S(u) = e UX is continuous, the shift function,

or Q-Q, plot and the P-P plot contain the same

information. The rate parameter for these two plots

was estimated from the data as X = .00939.
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