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Preface

An econometric model was used to prove damages in antitrust litigation.

The diffi culti es in such proof will be explored. For plaintiffs' counsel,

an econometric analysis may seem quite attractive. Here is scientific,

objective proof of market power and damages-backed by the prestige of

mathematics, economics, and the computer. However, defense counsel need not

despair. On closer examination, the econometric analysis may turn out to

be no more than a series of unsupported assumptions even if these are

expressed as formidable equations. Once articulated, the assumptions may

prove to conflict with each other or with common sense. Also, the

statistical calculations may turn out to be quite vulnerable to attack.

Furthermore, in many econometric studies the data are of poor quality;

this alone may vitiate the analysis.

Enrico Farms and Diedrich Ranch v. H. J. Heinz et al. Daggett represented
one defendant, and Freedman gave expert testimony on behalf of that
defendant. This paper was adapted in part from materials prepared for the
Federal Court Practice Program, Northern District of California, Lecture and
Workshop Session on Expert Witnesses, February, 1982; and in part from
Freedman's deposition testimony.



-2-

The validity of models, the reasonableness of their assumptions, their

usefulness in forecasting, in policy. analysis, or their probative value

in the courtroom, must therefore be assessed very carefully on a

case-by-case basis. No general rule can be given except this: mathematical

symbols and computer printouts are not in themselves reliable indicators

of scientific merit. All depends on where the equations come from, and

what the computer programs do.

Econometric models are often used in damage litigation. The present

case is used only as a concrete example, to focus the issues and make them

clearer. In any endeavor involving fields as different as the law and

economics, there is ample room for misunderstanding. The object of this

paper is to identify the sort of technical assumptions that are involved

in the legal use of econometrics, and the sort of questions that can be

raised about those assumptions. For other views, see Finkelstein (1980),

Fisher (1980), and the opinion of Higginbotham (1980) in Vuyanich vs.

Republic National Bank 505 F Sup 224. We tried to make this paper accessible

to a fairly wide group of readers, and hope that specialists will not be

put off by the explanations which are unnecessary for them.
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The Case

The litigation was a private antitrust action. The plaintiffs, who

grow and sell tomatoes in the Fresno and Stockton regions, alleged that

defendants Heinz and five other major canners conspired throughout the

1970's in violation of Section One of the Sherman Act to fix, stabilize and

maintain at depressed levels prices the defendant canners paid plaintiff

nirowers for tomatoes. Plaintiffs contended that as a result of the conspiracy,

the prices plaintiffs received from defendants for tomatoes were lower than

the prices they would have received in a free market, entitling plaintiffs

to an award of treble damages and attorneys' fees. Defendants maintained

that no such conspiracy existed, that each defendant canner determined the

price it wanted to offer for tomatoes in the exercise of its own independent

judgment based upon estimates made from year to year of market conditions,

and that in fact tomato prices for the g.reater portion of the period in suit

were fixed and controlled by growers themselves through the California

Tomato Growers Association, which enjoys inmnunity from antitrust liability

under the Capper-Volstead Act.

Plaintiffs proposed to call as an expert witness Richard E. Just,

Professor of Agricultuaral and Resou;rce Economics, University of California,

Berkeley. This expert had developed an econometric model of the California

tomato processing industry, which he used to prove the exercise of market

power by the canners in the purchase of raw tomatoes, and to estimate what

the free market prices for the tomatoes would have been, absent collusion

by the canners. These prices were the basis for plaintiffs' proof of

damages. A preliminary version of the model, and its data base, are
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described in a published monograph, Chern and Just (1978). The model itself

is described in a journal article, Chern and Just (1980). Additional detail

was given in deposition testimony.)

The defense engaged David A. Freedman, Professor of Statistics, University

of California, Berkeley, to review the model and rebut it if possible. The

present article will give some of the institutional background, and then

summarize the model and the review. Some tentative conclusions will be

drawn about the usefulness of econometric analysis in litigation.

The case was Enrico Farms and Diedrich Ranch v. H. J. Heinz et al.,

Nos. CV-75-206-EDP and CV-79-186-EDP (E.D.Cal). This case was called for

trial in April, 1981 at Fresno, but the Court declared a mistrial upon

grounds, among others, that a fair and impartial jury could not be obtained

in the Fresno area. A new jury trial was set for Sacramento; before trial,

all defendants except one settled. The trial was then rescheduled in Fresno;

depositions were taken, after which plaintiffs dismissed the case voluntarily

in March, 1982.

IIn a civil case, before'trial each party can examine the other's witnesses
to discover their anticipated testimony; these proceedings are "depositions."
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Background

Throughout the San Joaquin Valley in the Eastern District of

California, canning tomatoes are harvested over a short season beginning

in early July and ending about mid-October in each year. Canners,

sometimes called processors, contact, purchase and pay for tomatoes for

a variety of end-uses, e.g., canned tomatoes, catsup, canned tomato juice,

tomato soup, spaghetti sauce, and tomato paste. During the harvest season

the work goes on 24 hours a day, seven days a week. Tomatoes are picked up

in the field by trucks and transported to processing plants. If the quantity

of tomatoes delivered to a particular processor's plant on a given day

exceeds the capacity of the plant, tomatoes may be delivered for processing

to another canner's plant with open capacity at the time, and accounts are

settled among the processors later on.

Until 1963, tomatoes in California were picked by hand by migrant workers.

In 1963, mechanical harvesting equipment began to be used by commerical growers

as the result of development of new tomato varieties suitable for harvesting

by machine. Other and different varieties of tomatoes continue to be grown and

picked by hand for sale as fresh tomatoes in stores. It is uncommon in the

industry for a single grower to raise tomatoes for both the canning and fresh

tomato market. Introduction of the mechanical harvester enabled growers to

produce greater quantities of tomatoes per acre at lesser harvesting costs, but

purchase of the equipment required growers to borrow money and incur substantial

financing and other fixed costs. Canners purchas-ing tomatoes harvested by

machine incurred significant changeover costs resulting from new requirements

for handling tomatoes damaged by machine picking and the like. It is not
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likely that consumer demand for tomato products was affected or changed

by the introduction of mechanical harvesting..

During the 1950's, some 57 canners purchased and processed California

tomatoes, and by 1972 the number decreased to 28. Twenty-five of these

were at first named as defendants in the action. Smaller canners were

dismissed before trial, by plaintiffs voluntarily in some instances and by

the Court in others, so that the case went to trial against remaining defendants

who were the largest purchasers of processing tomatoes in the California market.

The named plaintiffs were large qrowers of financial means, and each invested

in mechanical harvesting equipment. In their complaints, plaintiffs alleged

the litigation was a class action in which plaintiffs represented the claims

and interests of all growers of California tomatoes. The Court denied

motions to certify the litigation as a class action upon grounds, among

others, that conflicts of interest among growers precluded plaintiffs from

representing a class.

The purchaser market for California processing tomatoes includes,

in addition to the defendant growers at trial and the smaller growers

previously dismissed, several large member-owned cooperatives. In some

instances cooperatives take delivery of tomatoes grown by members in return

for nonmonetary scrip or points, and distribute funds to members from cash

received from the harvest in proportion to the quantity supplied to the

cooperative by the grower-member. In other instances, cooperatives buy

tomatoes from members and other growers for cash like any other purchaser.

As with other fungible agricultural commodities, tomatoes available

for sale to canners have tended to seek and find a prevailing market price
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during each growing year or season. The prevailing pattern of contract

purchase of processing tomatoes by canners from growers is this: Large

growers tend to sell their tomatoes to the same canner year after year, but

not always. To preserve the soil, crops are rotated in the region from

year to year among tomatoes, grains, alfalfa hay, sorghum, and, in the Fresno

area, cotton and safflower. A grower does not grow tomatoes on the same land

over a period of years; hence& each grower may decide in a particular year to

grow tomatoes or some other crop suitable to the region. After the harvest

each year - at about Thanksgiving cr Christmas - canners' field representatives

discuss with growers how many acres of tomato production the canner is likely

to want to purchase from the grower under contract and how many acres of

tomatoes the grower is planning or willing to plant for the coming season.

A few months later, usually in the January to March period, each canner

informs each grower of the base price the canner proposes to pay for tomatoes

harvested beginning in July. Sometimes, but not always, the canner will

offer a premium price over the base price for purchase of late tomatoes

harvested in September or October. This is done because the risk of bad

weather makes growers more reluctant to plant tomatoes for late harvest than

for maturity in earlier warm months. When agreement is reached on price
among the canner and growers who have decided to sell tomatoes to the canner,

written contracts are signed by the grower and canner under which the grower

will sell the canner the tomatoes harvested from stated acreage at the
contract price. The grower, having already prepared the soil, then plants
his tomato crop. During some growing seasons, the contract price has been

modified upward, on occasion retroactively. Generally, prevailing base prices

have risen from about $20 a ton in 1951 to over $50 a ton in 1975a- when the

premium paid for late tomatoes was about $5 a ton.
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Advocates of "fair prices" for growers attempted during the 1960's

to obtain, but did not obtain, a government marketing order which would

have fixed the price canners paid growers for tomatoes by law. More

recently, beginning in the mid-1960's, grower advocates formed the

California Tomato Growers Association, called "CTGA," to present a united front

to the canning industry in negotiating a price at which members would contract

each year to sell their processing tomatoes. By about 1974, CTGA had

assembled enough grower support to influence significantly, some say, and

exercise control over, say others, the annual prevailing contract price for

processing tomatoes in the region.

California Canners League, called "CCL," is a trade association formed

many years ago to which most, but not all, of the defendant canners belonged.

The purpose of CCL, and the nature of its activities, were in dispute.

CCL and its members maintained that CCL exists and acts to deal with

industry-wide problems of a technical nature unrelated to competitive

behavior in the market. Plaintiffs' counsel contended that CCL has at least

provided a fund of information concerning anticompetitive activities in

the canning industry, and that CCL might be found by the jury to have

provided some assistance in, or to have served as a vehicle for, illeqal

price fixing by canners of Drices paid to growers for tomatoes.
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Main points in the deposition testimony of plaintiffs' expert

An econometric model was used to show the existence of "price-leadership

oligopsony" in the market for California canning tomatoes, on the basis of

statistical tests of hypothesis.1 The price leader may have been a single

firm or a set of firms acting "as if" in collusion to set grower prices. The

model, together with additional assumptions and calculations, was then used

to estimate the "effective colluding share" of the market. This share

turned out to be substantially larger than the market share of the largest

single firm. The conclusion: there was a group of firms acting as if they

were colluding to fix grower prices to maximize the joint profits of the

colluders. Finally, the model was used to estimate what "free-market"

prices would have been, absent this-collusion. To establish some background

for this argument, we present a brief review of two basic concepts in

economi cs.

Supply and demand

Two basic concepts in economics are supp7y and demand.2 These

are terms of art, whose meaning differs somewhat from ordinary usage. "Supply,"

for example, refers not to a single quantity of some commodity, but to the

relationship between the price and the total quantity producers will offer

to the market for sale at that price. Such a relationship is represented

by the suppZy curve in Figure 1- below. Price is shown on the horizontal

axis, quantity on the vertical; for each price, the curve shows the total

quantity that would be offered for sale in the market at that price. Notice

An "oligopoly" is a small group of firms controlling the sales of a commodity,
an "oligopsony" is a group controlling purchases. A "price leader" sets the
,price, taking into account the interests of the other firms in the group.

2A standard "principles of-economics" text is Samuelson (1980). A more
advanced reference is Mansfield (1982). A rigorous treatment of competitive
markets is in Debreu (1959). A standard text on oligopoly theory is Scherer
(1980).
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that the curve slopes up: other things being equal, as price increases so does

the quantity offered for sale.

Supply Demand

Or ~~~~~Cr

Price Price

Fig. 1. suppZy and Demand

"Demand" is similar. The demand curve in Figure 1 shows, for each

price, the total quantity of the commodity that would be demanded at that

price by buyers in the market. This curve slopes down; other things being

equal, demand goes down as price goes up. As shown in Figure 2, the

market price and the quantity transacted are considered to be determined by

the intersection of the supply curve and the demand curve. At the intersection

of the two curves, the market clears: supply equals demand. At a higher price,

economists argue, the quantity sellers offer will exceed the quantity

buyers want: this excess supply should drive the price down. Similarly,

at a lower price, the quantity buyers want will exceed the quantity sellers

offer: the excess demand should drive the price up.
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Price

Fig. 2. Market cZearing

The supply and demand curves express important behavioral assumptions:

that there is a stable relationship between the quantity supplied and price;

likewise for demand. This relationship is assumed, as economists say,

ceteris paribus; other things being equal. That is, there are factors other

than the price of the commodity which affect its supply: these are called

the determinants of suppZy. For tomatoes, the price of fertilizer, the

price of alternative crops, and agricultural labor rates may all be important

determinants of supply. Likewise, there are determinants of demand, such

as consumer income. In Figure 1, the determinants of supply and demand are

held constant.

Of course, the curves are in a sense hypothetical constructs, for

they represent quantities and prices in transactions which are not observed:

only the market-clearing prices and quantities are observable. Furthermore,

the curves in Figure 1 are so far qualitative rather than quantitative:

no numbers appear on the axes. Qn the other hand, as will now be explained,

,by imposing additional assumptions, economists can make the curves quanti-

tative and estimate them from actual transactions data.



In order to proceed,, a crucial assumption must be made,

as to the algebraic form of the curves in Figure 1. Economists refer to

the choice of algebraic form as a specification. They rmy specify linear forms:

(la)

(lb)

Supply

Demand

aO + alP
b - b1P

Or, they may specify log linear forms:

(2a)

(2b)

Supply

Demand

log Q

log Q

= aO + a1 log P

= bo - b1 log P

Still other choices are possible, and present economic theory is not

sufficiently well developed to dictate which is the right choice in any

given situation.

In these equations, Q represents quantity and P,

price; a1 and bl, for example, are parameters, or constants of nature

which govern the market. Usually the numerical values of the parameters

are unknown, and must be estimated from data.

Plaintiffs' expert specified the linear form (1) for California

canning tomatoes, and we focus on that by way of example. It is customary

to think of a succession of market periods, taken as calendar years in the

tomato example. These are represented by the subscript t for "time."

The primary data are the price P t which obtained in year t, and the

quantity Qt transacted in that year. For the tomatoes, t ran from 1951

through 1975. Rewriting the equations,

lIn Chern and Just (1980); in Chern and Just (1978), however, the
specification was log linear.
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(3a) Supply Q = a0 + a1pt

(3b) Demand = b blpt

We turn now to the determinants of supply and demand. First, take

supply. The determinants-of supply are usually considered to come in

through the intercept aO of equation (3a). For example, suppose the only

important determinant of tomato supply is the agricultural wage rate.

Let Wt be this wage rate in year t . An economist may specify that



(4a) aO = ct a1Wt

As W changes, the supply curve (3a) shifts up and down parallel to

itself; the slope a1 does not change. Likewise, constimer

income may be the important determinant of demand for tomatoes, and in the

framework of (3b) an economist may assume that

(4b) b = + I

Here, It denotes income in period t.

Again, economic theory does not dictate specific choices

for the major determinants of supply and demand.

Even given these choices, equations like (4a) and (4b) are by no means logically

inevitable. The right equations, for examrle, might turn out to be

2(5a) a0 = aO1xt

(5b) b =S + SVIt

Still other choices are possible.

It is usually considered that many random phenomena will influence

supply and demand; for example, the supply of an agricultural commodity will

be influenced by weather. Likewise, many variables will have some small,

indirect influence on supply and demand; for example, fluctuations in the

stock market may have a marginal effect on consumer decisions to spend or save.

The impact of random phenomena, and of omitted variables, is usually summarized

by adding a "random disturbance term" to the equations: in effect, shifting

the supply and demand curves up and down. These terms may be denoted

by et or Ft. Our linear supply and demand equations now take the form
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(6a) Supply Qt = 1- 1Wt + aiPIt + Et

(6b) Demand Qt = o+ 1t - biPt +t

At this point, it is convenient to introduce still another distinction,

between exogenous and endogenous variables. In the equation above, W and I

would be taken as exogenous: determined outside the system. However, Q

and P are endogenous, determined within the system. Thus, the two

simultaneous linear equations can be solved for the two endogenous variables

Q and P in terms of W, I, £ and 6. A pair of equations like (6a-b)

constitute an econometric modeZ.

The equations above have six parameters: ac, ac. a1, B0, S12 b1. To

estimate these from-actual transactions data, statistical assumptions must

be made about £ and 6. This completes the specification of the model, i.e.,

- Selection of the major determinants of supply and demand.

- Decisions as to the algebraic form of the equation.

- Assumptions about the statistical behavior of the disturbance terms,

sufficient to enable the estimation of the parameters from the data.

The statistical assumptions might be that (ct,6t are independent and

identically distributed from year to year, but have some fixed, arbitrary

covariance matrix within a year. To state this more vividly, imagine a

box of tickets. Each ticket shows two numbers; the first is an E, and

the second a 6. The average of c's is zero, and likewise for the 6's.

For each year t, draw a ticket at random with replacement from the box;

the first number is t in (6a); the second is t in (6b). The box

stays the same from year to year, whatever the.Yalues of the "exogenous"

variables I and W. Technically, exogenous variables are assumed to be
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statistically independent of the disturbances. Then the pair of

simultaneous equations (6a-b) can be solved for Qt and Pt , in terms of

the exogenous variables and disturbances. To estimate the present

system, at least one additional exogenous variable, or instrunent, would

be needed.

How can the parameters of a model be estimated from data? This is

quite a complicated topic, but the idea is straightforward. Suppose that

over time, the demand curve.stays put while the supply curve shifts up and

down. The market-clearing prices and quantities will then trace out the

demand curve.(see Figure 3 ). Conversely, if the supply curve stays put

while the demand curve shifts up and down, the demand curve can be traced

out. In general, both curves will be shifting simultaneously, and statistical

estimation techniques must be used. Since Q and P are obtained by

solving (6a-b), both involve C and 6. This simultaneity is a crucial

technical feature of econometric models: since P is correlated with C

and 6, ordinary least squares is inconsistent. To overcome this difficulty,

econometricians have developed a technique called "two-stage least squares,"

a reference is Theil (1971); or see Appendix C.

Supply shifts Demand shifts

Q Q

Fig. 3. Tracing out the demand and
curves.

It should be noted that the specification of a model involves making

a series of assumptions. These may be more or less reasonable. However,
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in its present state of development, the science of economics does not

permit any exact, objective way of determining the major determinants of

supply and demand, nor the algebraic form of the equation; nor is there

usually any way to deduce the requisite statistical assumptions about the

disturbance terms from generally accepted theory. And there are no generally

accepted statistical procedures for testing the validity of an econometric

model; some of the assumptions can indeed be examined, but only by introducing

still other assumptions.

One powerful empirical test of a model is often available: use it

to make predictions about the future, and see how accurate these turn out

to be. Such tests are seldom made, and when made give conflicting results:

see [9) or [131 and the references cited there, especially Christ (1975)

and Zarnowitz (1979). The ability of a model to predict the future must be

distinguished from its ability to reproduce the past. Given the flexibility

described above in specifying a model, it is often possible by trial and

error to get equations which reproduce the past very well indeed; such

equations may be quite unsatisfactory when used to predict the future

and may not capture the essential features of the market in question. For

a more technical discussion, see [2] and [10].
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The Model and the Proof of Market Power

Coming back to our case, plaintiffs' expert used an econometric model

to conclude that the market behavior he examined was consistent with

collusion among canners in buying processing tomatoes and inconsistent

with competitive behavior in that market. Summarizing the previous

discussions, the econometric model includes as hypothetical constructs a supply

curve and a demand curve for processing tomatoes in the area studied.. The

supply curve represents the quantity of tomatoes which will be sold at a

given price; the demand curve represents the quantity of tomatoes which

will be purchased at a given price. The supply curve and demand curve thus

represent relationships between quantities and prices. They are hypothetical

constructs in the sense that they represent quantities of tomatoes which

would be supplied or demanded at prices which have not been observed in

actual transactions. The curves are estimated by statistical methods,

however, from data in actual transactions.

In a market consisting of numerous tomato growers in competition with

each other, introduction of machine harvesting must cause a shift in the

supply curve in two respects, according to plaintiffs. First, at any given

price the supply of tomatoes will be larger than it was before machine

harvesting. Second, the tomato supply will be less responsive to any given

change in price after the advent of machine harvesting than it was before.

The explanation is that investment by growers in harvesting equipment

made the grower less free to choose to grow crops other than tomatoes on

his land while the harvesting machinery remained unused. In short, the

grower is "locked in." This shift in the supply curve is illustrated in

Figure 4 .
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Supply shift Market power: demand shift

Q Q

Step,

p p

Fig. 4 . The harvester shifts the supply curve. If the
canners exercise market power, the perceived
demand curve will shift when the supply curve
does.

If the canners compete in buying tomatoes, a shift in the supply

curve will not cause any shift in the demand curve. The reason is that

demand for canning tomatoes is a function of consumer demand for the

tomato end-products and is not determined by supply. On the other hand,

if tomato prices are determined or tend to be determined by canners acting

in collusion, after the introduction of machine harvesting the perceived

demand curve, i.e., the demand curve facing the growers, will shift in two

respects. First, at any given price, the demand for tomatoes will be less.

Second, tomato demand will be less responsive to changes in prices than

before machine harvesting (see Figure 4 ). Likewise, tomato demand will

become less responsive to changes in the determinants of demand, such

as income.

Perceived demand is a nonstandard construct. In brief, with a linear

supply curve for canning tomatoes, and a linear demand curve by consumers for

tomato endproducts, and canners exercising market power, there exists a
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linear "perceived demand curve," whose intersection with the supply curve

gives the transacted price and quantity for canning tomatoes. The slope

of this curve depends on the slope of consumer demand curve and on the slope

of the supply curve; the intercept depends on the foregoing and on the

intercept of the consumer demand curve; the intercept of the supply curve

does not come in. See Appendix A for details.

From the data in Chern and Just (1978), plaintiffs estimated supply

and demand curves for the years before and after introduction of machine

harvesting, omitting the transition period 1964-66 when hand-picking and

machine-harvesting were both used. Post-machine harvesting, the supply

curve shifted to show supply was less responsive to changes in price,

consistent with free competition among growers. On the other hand, the

demand curve shifted to show that demand was less responsive to changes in

price after machine harvesting than before, consistent with the existence

of a "colluding share" of the canner market and inconsistent with tomato

price behavior in a market having canner-purchasers acting in free competition

with each other. Likewise for the determinant of demand, income. See

Tables 1 and 2 on pp. 596-7 of Chern and Just (198&0).

Weaknesses in the Argument

There are three major reasons for concluding that plaintiffs'

stati.stical argument failed:

- The logic of the model is open to serious question.

- The sta.tistical calculations are wrong.

- Even taking the empirical results at face value, they admit
several plausible interpretations other than price-leadership
ol igopsony.
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These reasons will now be considered in more detail.

With respect to the logic of the model, many assumptions are made

without any empirical support. For example;

1) Competition among the growers.

2) Supply curve for processing tomatoes linear in price.

3) Demand curve for tomato end-products linear in price.

4) Constant unit processing costs.

5) Perfect knowledge by the colluding processors, of the
supply and demand curves, and processing costs.

Assumption #1 is important, because if any significant number of the growers

exercise market power, there is no supply curve to estimate: a monopoly

or oligopoly does not have a supply curve.1 Assumptions #2-3-4 are also

critical, because they are needed to derive the "perceived demand curve,"

without which construct the model is vacuous. Assumption #5 is needed to

do the profit maximization on behalf of the colluding processors.

Plaintiffs' expert admitted in deposition testimony to having made no

study supporting these assumptions: indeed, he made no study of individual

processors, and no study of demand at the consumer level. No arguments

were given in support of the linearity assumptions, except that any smooth

function can be approximated by a linear one: a function differentiable at

a point can be approximated near that point by a line. In short, for small

changes, linear supply and demand curves may be good enough. But the

relevance of such observations to the issues at hand is not so clear.

1This may seem like a paradoxical assertion, but it is standard doctrine.
'The reason is that a monopolist sets price to maximize profit, and in the
calculation uses the slope of the consumer demand curve. Hence, there is
no stable relationship between the price set and the quantity offered.
All depends on the demand curve. See p.285 of Mansfield (1982).
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Plaintiffs used linear supply and demand curves over a 25-year period,

during which California tomato production increased threefold, while grower

prices doubled and consumer income went up by a factor of four.1 These are

not small changes.

What does it mean to say that e.g., the consumer demand curve is linear

in price? Just this: that a 10¢ increase in the price of a can of tomatoes

has the same impact on consumer demand in 1951 as in 1975, whether the can

costs a quarter or a dollar, whether the consumer is making $5,000 a year

or $15,000. A very strong assumption.

Two additional assumptions are needed to develop plaintiffs'

theory of price-leadership oligopsony:

6) Segmented market for tomato end-products.

7) Fungible product within each segment.

Assumption #6 is easiest to explain in terms of a hypothetical

example: that there are "red-label" and "blue-label" canned tomatoes,

virtually identical but differentiated by the label and perhaps by advertising.

The competitive canners, such as cooperatives, sell the "blue-label" product;

the colluding canners sell the "red-label" product. The colluding canners

fix the grower price to maximize joint profits; the competitive canners

take the grower price as given.

No evidence is presented to support assumption #6, which is a

nonstandard way to develop price-leader theory.2 This unorthodox approach

1We are following plaintiffs here in using current rather than constantdollars, an issue to be discussed later.

2For the standard theory, see Mansfield (1982, pp. 349-50) or Scherer (1980).
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is necessitated by assumption #4 above, of constant unit costs. It is

also worth notinq that plaintiffs treated the two markets independently,

admitting no cross-elasticity of demand. To use the hypothetical example

given above, consumer demand for red-label canned tomatoes depends only on

the price of the product; it does not depend at all on the price of the

blue-label product: again, this is against standard doctrine.

Assumption #7 is unrealistic: consumers do not drink a glass of chilled

tomato paste before dinner; neither do they have a bowl of hot, nourishing

tomato juice for lunch. On occasion, plaintiffs suggested that while

canned tomatoes, juice, puree, catsup and paste may not be interchangeable,

their quantities may be measured in terms of the weight of raw

tomatoes needed for their manufacture. However, the cost of a tomato

end-product does not depend solely on the weight of its raw tomato content.

(With a No. 303 can of tomatoes, for example, the can costs more than

the raw tomatoes.) In sum, this suggestion of plaintiffs' violates the

idea that in a given market, a commodity has only one price. Specifically,

the price of a ton-equivalent of the "commodity" will depend on how that

quantity is distributed amongst the end-products.

We turn now to another set of issues. Plaintiffs began with an

"analytical model" of the market for processing tomatoes. This considers

only one geographical market for the tomatoes, and does not bring in

determinants of supply and demand. A linear supply curve is assumed, of

the form

Q a0+ a1P

Plaintiffs then introduced an econometric model which considers eight county

markets for the tomatoes, and does bring in determinants of supply and
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demand. Thus, the post-harvest supply equation is assumed to be:

Qct ac+ alPct + a2Yct+ Ict

In county

Qct
Pct

Yct

cct

ac
a1

c and year t,

is the quantity of canning tomatoes sold in thousands of tons

is the price of canning tomatoes, in dollars per ton

is the average yield over the previous three years, in
tons per acre; an "expectations" variable

is the disturbance term

is a county-specific intercept

and a2 are parameters, the same for all counties

Likewise for the demand equations.

The econometric model is at the level of raw tomatoes: the supply

considered is by the growers; demand is by the canners. The following

aspects of the econometric model must be considered:

1) The supply equation includes a lagged three-period moving
average of yields as an "expectations variable," and the
corresponding standard deviation as a "risk variable" in the
pre-harvester period.

2) The pre-harvester period supply equation includes the price
of only one alternative crop, viz.,sorghum; post-harvester,
no alternative crop prices are included.

3) The demand equation includes an end-product price index.

4) The analytical model applies to a single, integrated market
for raw tomatoes; the econometric model applies to eight
county markets.

Points #1 and 2 may be minor, but they are indicative of the arbitrariness

in plaintiffs' approach. There is little justification for the choice of
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the expectations and risk variables. For example, why not use a four-period

moving average, or the mean absolute deviation? There is also little

justification for including sorghum rather than, say alfalfa or sugar-beets.

To quote (ChernandJust, 1978, p. 19)

For example, more than 100 crops are grown in San Joaquin
County, and it is impossible to single out one or two crops
as the most common alternative crops to processing tomatoes.

In his deposition, plaintiffs' expert argued at times that on the

one hand the omitted crop prices are collinear with the sorghum price, so

there is no point in putting them into the equation; and that on the other

hand, including such prices gave rise to estimated coefficients with signs

known a priori to be incorrect, These two points stand in contradiction to

one another, and both seem wrong. First, the correlation between e.g.

the price of sugar beets and the price of sorghum in the pre-harvester

period (1951-63) is only about 0.32, so these two crop prices moved nearly

independently of each other. Second, if sugar beets belong in the model,

but putting them in gives incorrect signs, plaintiffs' expert concluded

he should drop the beets; rethinking the model seems a better alternative.

Point #3 is a bit more serious. The development of the analytical

model is aimed in part at eliminating the price Pd for end-products from

the perceived demand curve for raw tomatoes: Chern and Just (1980), pp. 591-

92); or see Appendix A. All that belongs in the demand equation are the

"determinants of demand," i.e., the variables which affect consumer demand,

other than price. There is only one such variable in the model: income.

Putting product price back into the demand equation represents a theoretical

inconsistency, and makes quite a difference in the results, as shown in

Appendix B.
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Point #4 is another major difficulty. The analytical model shows

how processor demand for raw tomatoes is driven by consumer demand for

tomato end-products. This consumer demand is national in scope; indeed,

the major processors sell into a national distribution network. Plaintiffs

should have indicated how this national consumer demand is to be parcelled

out amont the eight counties, and failed to do so.

To see the tension between the one-market analytical model and the

eight-market econometric model, consider this basic consequence of the

existence of price-leadership oligopsony in the one-market analytical

model for canning tomatoes. After the introduction of the machine harvester

(Chern and Just 1980, p. 590):

... the perceived demand (the estimated econometric demand)
would be shifted downward ...

That is to say, other things being equal, after the machine harvester comes.

in,at any given price the canners will demand fewer tomatoes from the growers.

Now consider the estimated demand curve for canning tomatoes in Yolo county,

according to the eight-county econometric model. (In 1975, Yolo was the

largest producer among the eight counties considered in the econometric

model.) In round numbers, the demand equations are:

pre-harvester (1951-63) Q = -8 + .7 I + 132 R - 14 P

post-harvester (1967-75) Q = 696 + .14I + 46 R - 3.3P

where

Q = tomato demand (thousands of tons)

P = grower price (dollars per ton).

R = product price index (dollars)

I = U.S. dispos-able personal income (billions of dollars)
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To implement the idea of "other things being equal," choose in

round numbers values for I and R typical for the whole period 1951-75

as follows: I = 500 and R = 5. The equations become

pre-harvester (1951-63) Q = 1002 - 14 P

post-harvester (1967-75) Q = 996 3.3 P

Demand in the analytical model. Estimated demand in the econometric
model; Yolo county.

Q P5ost-harvester

PostdOb

P P

,Fig, 5. The analyti cal model vs. the econometric model:
the demand for canning tomatoes.

Historically, P ranges from about $20 to $60 a ton. Over this

entire range, the post-harvester demand by processors for raw tomatoes

exceeds the pre-harvester demand, at any given price. See Figure 5. In

other words, one of the most basic conclusions of the single-market

analytical model is contradicted by the findings of the eight-county

econometric model. Only two resolutions of the difficulty seem possible:

either the models are wrong, or no market power is being exercised by the

canners. This completes our discussion of the first main reason for

rejecting plaintiffs' argument: the logic of the model is open to serious

question.
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We turn now to the second reason: the statistical calculations are

wrong. Plaintiffs' argument depends upon differences which are "statistically

significant" between the estimates of the demand curves made separately

for the periods before and after machine harvesting, by the t-test. For

this it is necessary to compute standard errors. The formulas used by

plaintiffs to compute standard errors are founded on assumptions shown to

be false by a mere statement of them, for example, that weather patterns in

neighboring counties are unrelated. (For quantitative estimates of the

impact of such assumptions, see Appendix C.) Further, in contexts like the

present one where the amount of data is limited relative to the number of

parameters being estimated, the parameter estimates may be seriously

biased; plaintiffs' statistical procedures do not take this bias into

account (see Appendix C). Apart from such considerations, plaintiffs'

admissio-n that in order to avoid implausible results many variations of

the econometric model were attempted before settling on the final version

is more than sufficient to invalidate the statistical computations:see

[2] and [10].

We turn now to the third main reason for rejecting plaintiffs'

statistical argument. Even taking the empirical findings at face value,

they admit of several plausible interpretations other than price-leadership

oligopsony:

1) Inflation, which plaintiff did not take into account. If a

dollar is worth less in 1975 than in 1951, a dollar increase in the price

of a ton of tomatoes will matter less. Adjustinn for inflation makes

quite a difference in the empirical results: see Appendix B.
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2) Plaintiffs excluded Fresno and Kern county tomato production

from the eight-county econometric model; in 1961, these counties were not

significant producers, but by 1975 they contributed 25% of California

processing tomato production (Brandt et al., 1978). A very short version

of the statistical argument offered by plaintiffs' expert is as follows:

assuming competition, he can figure out how many tomatoes the canners

ought to have wanted to buy, post-harvester, in the eight counties; he

sees they bought less; he concludes they did not compete as buyers. The

alternative: the canners bought the missing tomatoes in Fresno or

Kern or for that matter, anywhere else. Extending this line of thought,

a canner who commits himself to buying the bulk of his tomatoes in

Fresno may well become less sensitive to variations in price or consumer

demand when buying tomatoes in plaintiffs' eight counties; this would explain

the change in coefficients reported by plaintiffs. So would an increase in

processing costs arising from the introduction of the harvester.

3) Awareness or belief on the pa.rt of canners that growers, after

1963, were not only enabled to supply increased quantities of tomatoes to

the market by their investment in harvesting machines but were impelled to

do so. In short, seeing that the growers were "locked in" to tomato

Droduction, the canners bargained harder on price.

Plaintiffs' expert excluded the period 1964-66 as transitional. To

rebut the sort of argument now made, in terms of alternative explanations,

he conducted a "sensitivity analysis," moving the excluded period back and

forth, and finding the most significant differences when this excluded

'period is close to the original one. Plainly, this argument does not meet
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point #3, which attributes the change in perceived demand to the

introduction of the harvester. Nor does it meet point #2, for Fresno and

Kern only became significant shippers of canning tomatoes at the time of

the introduction of the harvester. It does not even cope with point #1

especially well, since the rate of inflation accelerated substantially,

by coincidence, during the period of the introduction of the harvester.

For example, as measured by the CPI consumer prices only increased by

about 20% from 1951 to 1963; but they increased by about 60% from 1967

to 1975. Likewise, fuel prices and fertilizer prices increased

rapidly even in real terms from 1973 through 1975, due to the Arab oil

embargo.

Free Market Prices

To prove damages, plaintiffs used the model to estimate the size of the

"effective colluding share," and to estimate what the free-market prices

would have been, absent collusion by the canners. Even granting the

validity of the model, these subsequent calculations are seriously flawed.1

To estimate the model, plaintiffs' expert disaggregated to the eight

counties. To estimate free-market prices, he reaggregated back to the state

level. However, there is nothing to stop us from using plaintiffs'

equations to compute the "free market" prices in 1975 for Yolo and Sacramento

counties, after the introduction of the harvester, assuming the "effective

colluding share" was 80%. The exogenous variables are set in round

lThe methodology used is not explained in Chern and Just (1978, 1980), but
it is described in desposition testimony, summarized in Appendix A below.
Plaintiffs' expert first estimated the effective colluding share, and then
used the estimate as a datum in computing the prices; his estimate changed
from time to time during the deposition, but 80% seems to be a representative
figure.
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numbers at typi-cal values for 1975 as follows: I = 1000, R = 10, Y = 25.

Large differences across county lines in the model free-market prices are

almost inevitable, due to the county-specific intercepts. For details of-

our computation, see Appendices A-B.

The results are shown in Table 1 below. Comment may be superfluous,

but Sacramento is adjacent to Yolo. Differences in hypothetical prices

across the county line of $50 or more a ton are implausible. The actual

difference in 1975 was only 25¢ a ton.
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TABLE 1. The model 's free-market prices in two counties in 1975.

Case 1 .Case 2

$126 per ton $173 per ton

Sacramento $ 74 per ton $ 87 per ton

Case 1: the canners colluded in buying the tomatoes,
but competed in selling end-products.1

Case 2: the canners colluded both in buying.and
in selling.

1The table is computed usina plaintiffs' formulae, which include a parameter
to differentiate between the two cases. However, it may be questioned
whether plaintiffs. have a coherent theory for case 1. On plaintiffs' assumptions,
it can be argued that if the canners compete in sales, and fix the price of
raw tomatoes, they can only fix it at what the free-market price would have
,been.

Yol o
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APPENDIX A

The Analytical Model

The object of this appendix is to give a concise statement of plaintiffs'

analytical model for price-leadership oligopsony, to define perceived demand,

and to indicate the methodology used in computing free-market prices. We

follow Chern and Just (1980). The econometric model will be considered in

Appendix B.

The supply equation for growers is

(Al) Q = a0 + a1Pg

where Q is quantity (1000's of tons) and Pg is the grower price

(dollars per ton).

There is a dominant firm or set of colluding firms, who sell into

one segment of a market, and face the demand equation

(A2) Q = b0 - b1Pr

where Pr is the price of the end-product, assumed fungible and

measured in the same units as supply, viz., raw tomato content. These f

all have the same constant unit processing cost, 0. They set the grower

price, Pg.

Next, there i's a fringe of competitive firms, who take the grower

price Pg as given, sell into another segment of the market, facing the

demand equation

(A3) Q c - c1 r

These competitive firms all have constant unit processing costs 0', 50

P= P + 0'. They will sell
Ir g

firms

Q( = (c0 - cI01) -C1Pg(A4)
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and are allowed to buy this much from the growers.

The dominant share now faces the supply relation

Q = a0 + alPg - Q

a0 = aO - c + c1e

(Y. + alPgad0 g

and 1 = al C1

Take the case where the colluding firms exercise market power in

selling the end-product as well as buying the raw tomatoes. They set Pr
and P to maximize joint profits

(A7); Q(Pr Pg - )

where Q is defined by (A5).

canning tomatoes, so

(A8) ac0 + a1P9

They must also clear the market for

= bo b1Pr = Q

The optimal P9 can be shown to satisfy the equation

(A9)

where

(Al0)

(All)

a0 + alPg = d - d Pg
a =+ a

do (Co C1 )e + bl (bo b e)(c0 -c1 2)+ 1+ b1 0 -b1

1
d1 =c1 +2a1 + b-b

(A5)

where

(A6)
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The right-hand side of (A9) is the "perceived demand curve."

It is assumed that b1, c1, e and 0' are constant over the period

1951-75; that c0 > cIe' and b0 > bI0. If a1, the slope of the supply

curve, diminishes due to the introduction of the harvester, then

al =al + cl will diminish too, and so will d1. Likewise for do.

This is plaintiffs' argument relating the shift in post-harvester perceived

demand to the exercise of mar-ket power in the canners.

We turn now to the model's free-market prices, following

the deposition testimony of plaintiffs' expert. He assumes

b0 b1
(A12) ° =nb0 +c0 b1 +c1 =

No rationale was given for this strong assumption. The idea is that

if the product price were P in both segments of the market, the

colluding firms would have the market share

b- b P

(b -b P) + (C0-c P) =

Since the model is set up to allow different product prices in the two

markets, it seems peculiar to interpret n as a market share. However, he

calls n the "effective colluding share."

Let P = (l-n)/n, so co = pb0 and c1 = b1. To avoid additional

complications, we follow plaintiffs and set e = 0' = 0; in essence, this

redefines the intercepts b0 and c0. Recall (A6). Substitution into (A10-11)

gives
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(A13) do = + bo(al + b1)
2(a1 + cjb1) + b

b1(al + fb )
(A14) d + 2(a1 + bb1) +

Plaintiffs consider (A14) separately for the pre-harvester and post-

harvester periods. The two demand price coefficients (d1-before, d1-after)

and supply price coefficients (a1-before, a1-after) are estimated in the

econometric model. This gives two equations in two unknowns, viz.,, and b1:

it is assumed that b1 is constant over the entire period. Thus q can

be estimated, and then 1n; also b1 is estimated. Now (A13) can be used

to determine b0 from dos the latter being estimated in the econometric model.

In a competitive market with zero processing costs, the free-market price

Pr= Pg = P can now be determined by solving (A8.):

bo -c0 (1 + )b0 -a0
(A15) P b1 + a (1 +4)b + a

The empirical results will be presented after the econometric model is

discussed in Appendix B.
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APPENDIX B

The Econometri.c Model

The object in this appendix is to state briefly the econometric model

in Chern and Just (1980), and show how the results depend on the

specification. The free-market prices will also be computed.

The pre-harvester supply equation in the econometric model is

(B1) Qct = a c + aIpct + a2Yct + a3Dct + a4Ft + a5Gt-l +
a6Wct + 6ct

The post-harvester supply equation is

Qct = ac + aiPct + a2Yct + ect

The demand equation for both periods is

Qct = dc + dlPct + d2I.t + d3Rt + 3ct

In county c

Qct

Pct
Yct

Dct

wct

Ft

and year t:

is the quantity transacted of processing tomatoes in

1000's of tons

is the grower price in dollars per ton

is the average yield over the preceding three years
in tons per acre

is the SD of thos.e three yields, in tons per acre

is the agricultural wage rate, in dollars per ton

is the price of fertilizer, in dollars

(B2)

(B3)



Gt is the price of grain sorghum, in dollars per ton

I is the total U.S. personal disposable income,
in billions of dollars

Rt is an index of tomato product prices in dollars

All money variables are in nominal dollars; a and d are county-specific31 c c

intercepts; a1,...,a6 and d1,d2,d3 are parameters, the same across counties;

Gt, It and Rt are the same for all counties.

£ct and 6ct are stochastic disturbance terms, assumed to have
mean 0, and to be independent and identically distributed
across c and t, given the variables other than quantity
and price. For each c and t, the pair (sct5 6ct) has a fixed

arbitrary 2 x 2 covariance matrix.

To explain more vividly the stochastic assumptions made by plaintiff,

imagine a box of tickets; each ticket shows 2 numbers, the first being an

C and the second a 6; the E's average out to zero, and so do the 6's.

Focus on e.g., the pre-harvester period. For each year t in that period

and county c, draw a ticket at random with replacement from the box; the

first number on the ticket is Ect in (Bi) and the second is 6ct in (B3).

The same box is used for each year, and each county, irrespective of the

values of the exogenous variables (Y, D, F, A, W, I and R). Then equations

(B1) and (B3) are solved for the two endogenous variables Qct and Pct
in terms of the exogenous variables and the disturbances.

In the present case, the stochastic assumption seem quite unrealistic.

For example, these assumptions imply that each county shows the same

random variation, big counties and small alike, in good years and bad; also,

after adjusting for the exogenous variables, the remaining variations of

supply and demand in one county are assumed to be uncorrelated with those

in any other county.
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TABLE Bi. Pl ai ntif fs' paramete

Pre-harvester
1951-63

Supply Demand

11.7 -14.2
9.9

-6.5
-2.1 --

-91
-335 _-

_- .7
-- 132

County Intercepts
quin 871 217

625 -8
316 -319
295 -331

nto 378 -260
aus 300 -349
Rlara 274 -381
lito 227 -406

r estimates.

Post-harvester
1967-75

Supply Demand

3.9 -3.3
15.4

_ - .14
46

261
497

-148
-147
-294

-307
-325

-354

453

696
55

67
-104
-103
-103

-99

Coming back to the data-processing, we attempted to verify plaintiffs'

estimates, and succeeded for the pre-harvester period. For the post-

harvester period, as it turns out, there seems to have been one key-punch

error made by plaintiffs in transferring data from Chern and Just (1978)

to the computer. In 1973 in San Joaquin, Chern and Just (1978) give the

price of grain sorghum as 2.87 dollars per ton; plaintiffs' computer data

set (printed outas one of the deposition exhibits) has 1.43. When this

,error is corrected, the post-harvester demand price coefficient changes

from -3.3 to -1.7, showing how sensitive the model must be to small errors

p

y
D
F

Gt
w
I
R

San Joa
Yol o

Sol ano
Sutter
Sacrame
Stani sl
Santa C
San Ben
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in the data.1

We attempted to respecify the model by dropping the product price

index R. In the pre-harvester equations,.both price coefficients came in

with the wrong sign: demand increases with price, and supply decreases.

post-harvester, demand and supply both increase with price. We also

attempted to respecify the model, keeping R but deflating all monetary

variables to 1967 dollars, using the CPI. Pre-harvester, the signs are right.

Post-harvester, however, demand increases with price. In short, two

attempts to correct misspecifications caused the model to produce

inconsistent results. We did not attempt to adjust for population increase,

which must also have a strong impact on demand.

As part of the data-processing, we fit a very simple dynamic model of

our own:

(B4) Qct = a + b Qct

The estimates: a =-14 and b=1. This simple model has only two parameters,

it takes no advantage of data on price, income, yield, etc., etc. And it

runs right through the transition from hand harvesting to machine harvesting.

But it fits the data just about as well as plaintiffs' model. Our equation

explains just over 90% of the variance; their :equations exDlain between 87%

and 94%.

We return now to the free-market prices, Case 2 in Table 1 above:

n= .8 corresponds to ¢ = .25; the post-harvester version of (A14)

The corrected model is better for plaintiffs. The computer work described
in this section was done by Dr. Thomas Permutt in SAS on the IBM 4341 at
the Uni'versity of California, Berkeley.



-41-

entails b1 = 5.78. These quantities are the same for all counties,

by assumption. Then (A13) can be used to compute county-specific b 's:0*

the post-harvester econometric results from Table Bi give the left side

of (A13):

d0 = county demand intercept + .14 I + 46 R

Now (A15) can be used to get the county-sDecific free-market price P,

with a from the post-harvester results of Table Bi:

a0 = county supply intercept + 15.4 Y

Case 1 is similar, and proceeds from the assumption that the dominant

firms set the product price equal to marginal cost for the entire

coalition, i.e., taking into account price reaction by growers to increased

demand. Plaintiffs described this as the case where the canners in the

coalition compete with each other in sales -a description whose merit

is not apparent.

1Pre-harvester, bl = 26.18, casting some doubt on-the constancy of b,
over the period 1951-1975.
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APPENDIX C

Two-Stage Least Squares and the Bootstrap

The object of this section is to present a brief account of the

estimation procedures used by plaintiffs, known as two-stage least squares;

and then some details on the bootstrap, a statistical procedure used to

test plaintiffs' calculations. We begin with the more basic generalized

least squares. Consider the- regression model

(Cl) Y= X B + , E(e) = 0, cov e =
nxl nxppxl nxl

For historical reasons, x is called "the design matrix." With z known,

the generalized least squares (yls) estimate is

(c2) %l =(X1 X)-1XT-1y

As is standard,

(C3) E

(C4) cov(O1) =(xTZs1 X)-1

When Z is unknown, statisticians often use (C2) and (C4) with z

replaced by some estimate E. Iterative procedures may be used, as follows.

Let ^(0) be some initial estimate for 8, typically from a preliminary

ordinary least squares (ols) fit. There are residuals e^(o)= Y (°)
Suppose the procedure has been defined through stage k, with residuals

e(k) = ^-X(k)e X~~ Zs

A standard reference on two-stage least squares is Theil (1971). For a more
extended discussion of the bootstrap, see [11) and [121. This section is
joint work with Dr. Stephen Peters, Center for Computational Research in
Economics and Management Science, MIT.
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Let Sk be an estimator for 1, based on e(k) an example will be given

below assuming a block diagonal structure for 2.. Then

(C 5) g(L+1) = ( Sk X) XT k Y

A(k)
This procedure can be continued for a fixed number of steps, or until Zs

settles down. A convexity argument shows that S(k) converges to the

maximum likelihood estimate for 6, assuming e is independent of X and

multivariate gaussian with mean 0.

The covariance matrix for i(k+l) is usually estimated from (C4),
g is

with Sk put in for I:

(c6) o>r (k+1) = (xT 1 X)1

This may be legitimate, asymptotically. In finite-sample situations, all

depends on whether Zk is a good estimate for z or not. If Zk is a

poor estimate for 1, the standard errors estimated from (C6) may prove to

be unduly optimistic: an example is given in[ll]. Unfortunately,

approximate gZs estimators are often used when there is too little data to

offer any hope of estimating z with reasonable accuracy. In such

circumstances, the bootstrap is a useful diagnostic, and in many cases

it gives a more realistic estimate of the standard errors.

To ease notation, () will be referred to as the (gZs,k)-estimator.

The paperEll]only considers the (gZs,l)-estimator, which in many situations

has full asymptotic efficiency. In some examples, further iteration seems

to make the coefficient estimates better, but also exaggerates the optimism

of the standard error estimates. In other examples, iteration actually

makes the coefficient estimators worse.
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In econometric work, it is usual to constrain S to fall in some

linear space A; these are the "identifying restrictions." Typically,

many elements of S are constrained to vanish, and some are constrained

to equal each other. The constraints are often incorporated by re-expressing

the model in terms of linearly independent parameters: this involves linear

manipulations of the columns of the design matrix X. A more elegant

solution is to make unconstrained estimates, as indicated above; and then

to project the unconstrained estimator u = B(k), say, into the constraint

space A. However, the projection must take into account the covariance

structure of S, i.e., the constrained estimator S is the element of

A minimizing the distance

(C7) ( u ~ 1)

where W is the estimated covariance matrix of B . Thus, the constrained
U

gZs estimator is found by two applications of unconstrained gZs.

Changing the meaning of n, p and x, consider next an econometric

model of the form

(C8) Y. = Y. A + X. B +*2- 1', 11
rlxq lxq qxq lxp pxp lxq

In this equation, A and B are coefficient matrices of unknown parameters,

to be estimated from the data, subject to identifying restrictions; Y.

is the vector of endogenous variables at data point i; Xi is the vector

of exogenous variables; and e. is the vector of disturbances. This

is a system of q equations in q endogenous variables; there are p

exogenous variables. The matrix I - A is assumed invertible. To be
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more specific about the stochastic assumptions:

(C9a) The e. are independent and identically distributed
1-,

(C9b)

(C9c)

E(e.) = 0 and cove. = v for all i
I& I~~~~~~~~~~~~~~~

The x's are independent of the c 's

Here, V is a q x q positive definite matrix. As is conventional, we

normal i ze A so A.. = 0 for al l j. Wri te Y.. for the jth component

of the row vector Y.. Then the th equation in the system explains

Y.. in terms of the other endogenous variables and the exogenous variables:

Y.. Y.A .+ X .B. +e..

where A. is the jth column of A and B. is the ,th column of B.

In e.g. the pre-harvester tomato model, i corresponds to the pairs

ct of counties and years, so there are n = 8 x 13 = 104 data points;

q = 2, because there are 2 endogenous variables, price and quantity; and

p = 15 because there are 15 exogenous variables, viz.,

8 county dummy

yield

di spersi on

fertilizer

grower price

wage rate

income

retail price

vari abl es

y

D

F

G

w

I

R
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Coming now to two-stage least squares, by conditioning on the exogenous

x's, we may suppose them constant: see (C9c). Multiply (C8) by XAj and

sum:

(C10) R =R A + S B + A
pxq pxqqxq pxppxq pxq

where

(Dll) R 2x4 jY. s=1 xx A = Ti

Notice that the th column of (C10) corresponds to the th equation

in (C8).

In applications, [A, B] is constrained to fall in some linear space A

of dimension at most pq. Then A and B can be estimated from (C10)

by some variant of least squares. Notice that s is constant (non-random),

since X is. It is conventional to treat R on the right side of (C10)

as constant. This may be legitimate asymptotically, but is false in any

finite sample. In fact, R is not only random but also correlated with

A, and this is the source of "small-sample bias" in 2SLS estimators. In

the tomato model, this small-sample bias is serious, as will be seen

below.

The matrix of errors A on the right hand side of (C10) does have

some covariance structure, so generalized least squares is the procedure

of choice. To make contact with the standard format of (Ci), we stack the

columns in (C10): column #1 on top of column #2,...,on top of column #q.

In the stack, information corresponding to the first equation in model (C8)

comes first, information about the last equation comes last.

The parameter vector 6 in (Cl) is obtained by stacking A and B:

column #1 of A, followed by column #1 of B,..., followed by column #q
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of A, followed by column #q of B. The design matrix is obtained by

writing R and S down the diagonal, and padding with zeroes.

At this point, the design matrix is highly singular, having dimension

pq x (pq+q2). Usually the elements of S known a priori to vanish are

suppressed, and the design matrix is adjusted accordingly by deleting the

corresponding columns. An alternative approach is to use generalized

inverses. In any event, the left hand side Y vector in (Cl) consists of

the stacked R matrix; the error vector is the stacked A matrix. The

full system of equations (CIO) is layed out in stacked form as follows,

with M. being the jth column of any matrix M:

R S O O ... o A A
B1

(C12) OO R s ...O 0

S~ ~ lS72 .. Vl S

* S S S 2 *S 2s

A
q.

- OO O.-..RS q A

By (C9), the covariance matrix of the error vector (the stacked A matrix)

is the Kronecker product

v11sv12S lqs
(C13) V i& =2S22

v SV S ..V0vSql q2 qq

Pretending R is constant, the system (C1o) should be estimated by

generalized least squares, relative to v ®S. Of course, V is unknown

and must be estimated from the data. Coming now to two-stage least squares,
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consider each column of (C10) in isplation. Take column j, for instance:

R. =R A. + S B.
+

A.
(C14) , J00 0

pxl pxqqxl pxp pxl pxl

Now covA. = V. S; the constant of proportionality V.. is immaterial,

so (C14) can be estimated by generalized least squares, treating R on the

right as a constant. Constraints specific to the jth equation would be

imposed, but not the cross-equation constraints. In the tomato model, the

only constraints set appropriate coefficients to zero; e.g., in the pre-

harvester supply equation, income I does not come in; that coefficient

is set to zero.

Let A and B denote the two-stage least squares estimates. Let

AA A

(C15) e=Y. Y.A -XiB

(C16) v e.

The covariance matrix of [a,s] can be estimated frofi (C6), with V

used to estimate V in (C13) and get L. It is conventional, for the

purpose of estimating cov[A,B] only, to inflate V.. by n/n - r,

where r is the number of variables actually coming into the jth

equation. Call this estimated covariance matrix cov.

Turn now to the bootstrap. Let A and B be the two-stage least

squares estimates for A and B in (C8). It will be assumed that I-A

is invertible. The residuals are defined by (C15). These are estimates

for the true disturbances in the model (C8). Let 1p be the empirical

distribution of the residuals, assigning mass 1/n to each of 1,...,n
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Consider next a model like (C8), but where all the ingredients are known:

> Set the coefficients at A and B respectively.

MMake the disturbance terms independent, with common distribution

The exogenous X's are kept fixed. Using this simulation model, pseudo-data

can be generated for i = l,...,n. These pseudo-data will be denoted

by stars:

(C17) yt = (X.B + et) (I -A)

where the e*'s are independent with the common distribution ip.

Now pretend the pseudo-data (C17) come from a model like (C8), with

unknown coefficient matrices. Since there are county-specific intercepts,

assumption (C9a) is satisfied. Estimate these coefficients by two-stage

least squares from the pseudo-data; denote the estimates by A* and B*.

Also compute from the starred data the estimated covariance matrix cov*,

using (C15-16) applied to the starred data.

The distribution of the pseudo-errors

A* A, B* - B

can be computed, and used to approximate the distribution of the real errors

A - A, B - B

This approximation is the bootstrap. It is emphasized that the calculation

assumes the validity of the model (C8). The distribution of the pseudo-errors

can be computed, e.g., by Monte Carlo, simply repeating the procedure some

number of times and seeing what happens. The distribution of the pseudo-
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errors is of interest only as an approximation to the distribution of

the real errors.

The next object is to test plaintiffs' statistical calculations using

the bootstrap methodology. Four sets of tables are presented; each of the

four tables has in turn four parts:

i) pre-harvester supply

ii) pre-harvester demand

iii) post-harvester supply

iv) post-harvester demand

The tables correspond to different sets of assumptions about the stochastic

disturbance terms £ and 6 in plaintiffs' model, as specified in

equations (B1-3). In all cases, it is assumed that the 16-vectors

E:ct' 6ct c varies over 8 counties)

are independent and identically distributed in time t, with mean zero.

Furthermore, the pre- and post-harvester disturbance terms are assumed

i ndependent.

Case 1. The 16-vectors of disturbances have an arbitrary 16 x 16

covariance matrix across equations and counties.

Case 2. The disturbance terms are independent across equations;

within an equation, the 8-vectors of disturbances have an arbitrary

8 x 8 covariance matrix across counties.

Case 3. The pairs (EZct 6ct) are independent and identically

distributed, as c and t vary; but have an arbitrary 2 x 2

covariance matrix across equations.

Case 4. The disturbance terms are indeDendent across equations;

within an equation, they are independent and identically distributed.
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A priori, Case 1 is the most plausible. Implicitly, Case 3 is assumed in

Chern and Just (1980); and the discussion of the bootstrap presented above

used Case 3. Case 4 is more special than Case 3, so plaintiffs' analysis

must cover this case too. To apply the bootstrap in the other cases, it is

only necessary to modify appropriately the error distribution for the £*.

The main conclusions from the bootstrap analysis are as follows:

* In Cases 2 and 4, there is serious "small-sample bias" in the

coefficient estimates. This bias distorts the statistics in plaintiffs'

favor. The bias can be seen by comparing the "parameter" column 1 with the

"mean" column 3 for e.g. post-harvester demand price in Tables C2 and C4.

* In Cases 1 and 2, the conventional asymptotic formulae for

standard errors are off by as much as 40%, in either direction,

presumably due to the covariance across counties and to the difference

in variances between counties, which are ignored in plaintiffs' analysis.1
This can be seen by comparing the "SD" column 4 with the "RMS

Nominal SE" column 5 in Tables Cl and C2, especially for e.g. pre-

harvester supply price and post-harvester demand price. A downward

distortion of the SE's helps the plaintiffs; an upward di'stortion

hurts.

Columns 1 and 2 in the tables show the results obtained by fitting

plaintiffs' model to plaintiffs' data, with one data error corrected (see

Appendix B). Pre-harvester, the results agree quite closely with those

reported in Table BI; the small differences are probably the result of

round-off error, since the work was done on two different computers using

In deposition, plaintiffs' expert made an ad hoc adjustment in certain
exhibits for these factors. This adjustment is highly suspect, for
the reasons given in [11].
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two different software packages. Post-harvester, the results differ

appreciably from Table B1, as discussed in Appendix B.

In the tables, column 1 shows the parameter estimates; column 2, the

standard errors from the conventional asymptotic formulae. The columns are

the same in all four tables. Columns 3-4-5 give the results of a "bootstrap"

simulation experiment. In this experiment, plaintiffs' model (B1-3) is taken

as true, with parameter values as given in column 1 of the tables. The

disturbances terms obey the conditions laid- out above, e.g., Table Cl. corresponds

to Case 1. On the computer, the disturbance terms are generated by resampling

the residuals from the fit reported in column 1. This is done 100 times, to

generate 100 simulated data sets, according to plaintiffs' theory as expressed

in equations (Bl-3). The exogenous variables are held fixed, and the equations

are solved for the endogenous price and quantity variables. For each-simulated

data set, we use plaintiffs' fitting procedure to "estimate" the parameters

in the simulation model, and to compute the conventional approximations to the

standard errors. The mean of the 100 parameter estimates [A*,B*I is shown

in the "mean" column 3; the standard deviation, in the "SD" column 4. The

root-mean-square of the 100 conventional standard errors is shown in the "RMS

Nominal SE" column 5. This is the square root of the mean of the diagonal

entries in cov* above.

In Table C4, for example, the post-harvester demand price coefficient

is set in the simulation model as -1.68; however, in the 100 simulated data

sets, the mean of the estimates done by plaintiffs' method is 0.32, so

there is an upward bias of 1.68 + 0.32 = 2. Plaintiffs' method for estimating

parameters is strongly biased.
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Likewise, in Table Cl, the standard deviation of the 100 estimates

for the pre-harvester supply price is 6.58; this is a true measure of the

variability in the estimates, in the simulation model. However, the

root-mean-square of the 100 conventional estimates of standard error is

only 4.01. Plaintiffs' method for approximating the standard error is

biased downward by

1 4.01 t 39%16.58 0
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Table Cl. 100 Bootstrap Replications Resampling 16-Vectors

Pre-harvester .SupDly
The Fi t The Bootstrap

Parameter Nominal SE Mean SD

4.11 12.5
5.09 10. 1

11.2 - 6.85
2.28 - 1.90

45.3 - 91.9
154. - 334.

335. 832.
336. 586.
336. 274.
336. 252.
335 . 336.
332. 260.
337. 231.
338. 183.

6.58
6.11
14.4
3.59

73.5
229.
449.
450.
453.
454.
454.
447.
455 .

452.

RMlS
Nominal SE

4.01
4.77
10.4
2.03

42.2
162.

272.
273.
274.
273.
272.
270.
274.
275.

Pre-harvester
The Fit

Parameter Nominal SE Mean

14.3
.700

132.

217.
8.36

319.
332.
260.
349.
381.
406.

5.71
.115

32.1

62.2
62.1
62.2
62.0
62.2
61.9

62.4
62.3

13.7
717

129.

212.
11.2

325.
339.
268.
355.
387.
412.

demand
The Bootstrap

SD

4.52
.129

28.4

74.3
75.2
72. 1

72.3
70.8
72.4
73.0
73.4

RMS
Nomi nal SE

4.46
.118

25.2

61.4
61.3
61.4
61.2
61.4
61.2
61.6
61.4

p

y

D

F

G

w

11.6
9.69

- 6.62
- 2.10

- 91.9
- 328..

San Joa
Yol o

Sol ano
Sutter
Sacto
Stanis
Santa C
San Ben

871.
625.
316 .

295.
378.
300.
273.
227.

p

I
R

San Joa
Yol o

Sol ano
Sutter
Sacto

Stani s

Santa C
San Ben

-
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Table Cl. 100 Bootstrap Replications Resampling 16-Vectors (cont'd)

The Fi t

Parameter Nominal

4.10 1.
14.9 -- 8.

Joa 263. 161.
500. 165.

no - 145. 167.
ter - 144. 172.
to - 291. 160.
iis - 304. 164.
ta C - 321. 174.
Ben - 349. 190.

The Fi t

Parameter Nominal SE-

- 1.68 3.98
.156 .146

35.2 28.5

445. 80.2
689. 80.0
48.4 .80.1
60.4 80.2

- 111,. 80.1
- 111. 80.7
- 111. 80.6
- 107. 80.5

Post-harvester -supply
The Bootstrap

RMlS
SE. Mean SD Nominal SE

48 3.82 1.04 1.13
08 14.1 6.51 6.88

282. 153. 145.
538. 145. 149.

- 116. 141. 150.
- 113. 146. 154.
- 266. 142. 144.
- 277. 146. 148.
- 295. 152. 156.
- 319. 164. 170.

rvester demand
The Bootstrap

RM1S
Mlean SD Nominal SE

- 1.46 2.21 3.28
. 155 .115 . 142

32.7 18,7 24A4
444. 77.5 79.5
707. 83.5 79.7
58.1 56.-9 79.8
70.7 60.1 79.8

105. 62.4 79.7
- 104.
- 105.
- 99.5

59.0
60.1
58.2

79.5

79.3
79.6

p

y

San
Yol c
Sola
Sutt
Sa ct

Star

Sant
San

p
I

R

San Joa
Yol o

Sol ano
Sutter
Sacto
Stani s

Santa C
San Ben

Post-hai
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Table C2. 100 Bootstrap Replications Resampling 8-Vectors

Pre-harvester supoly
The Fi t

Parameter

11.6

9.69
- 6.62
- 2.10

- 91.9
- 328,

871.
625.
316.
295.
378.
300.
273.
227.

Nominal SE

-4.11

5.09
-11..2
2.28

45.3
154.

335.
336.
336.
336.
335.
332.
337.
338.

The Bootstrap
RtlS

Mean SD Nominal SE

11.0 5.27 3.77
9.42 7.00 4.80

- 7.42 13.2 10.5
- 2.14 3.26 2.00

- 89.7 69.2 42.4
- 325. 184. 155.

890.
644.
334.
312.
395.
318.
289.
244.

483.
480.
478.
479.
477.
471.
479.
479-

280.
280.
280.
280.
279.
276.
281.
?82.

Pre-harvester demand

Parameter Nominal SE Mean _ SD

- 11.8
0658

120..

3.59
.108

22.0

226. 63.1
.747 64.0

- 312. 60.5
- 325. 60.4
- 254. 59.9
- 340. 61.1
- 374. 61.7
- 399. 61.1

RtMS
Nomi nal SE

3.83
.108

22.6

59.2
59.3

58.7
58.4
58.7
58.5
58.8
58.6

r)

y

F

G

W

San Joa

Yol o

Sol ano

Sutter
)a cto
Stani s

Santa C
San Ben

The Fi t

p
I
R

- 14.3
;700

132.

San Joa

Yolo
'.ol ano
S utter
Sacto
Stani s

Santa C

San Ben

5.71
.115

32,1

62.2
62.1

62.2
62.0
62.2
61.9
62.4
62.3

217*
- 8.36

- 319.
- 332.
- 260.
- 349.
- 381.
- 406

The Bootstrap
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Table C2. 100 Bootstrap Replications Resampling 8-Vectors (cont'd)

The Fit
Post-harvester supply

The Bootstrap

Parameter Nominal SE Plean SD

1.48
8.08

161.

165.
167.
172.
160.
164.
174.
190.

3.34
17.5

227.

484.
- 172.
- 172.
- 322.
- 334.
- 354.
- 386.

.765
6.71

148.
170.
153.
160.
143.
149.
154.
171.

RMS
tNomi nal SE

.920
6.06

130.

135.
135.
139.
129.
133.
140.
153.

Post-harvester
The Fi t

demand
The Bootstrap

*Parameter

- 1.68
.156

35.2

445.
689.
48.4
60.4

- 111.

- 111.

- 111.

- 107.

Nominal SE

3.98
.146

28.5

80.2

80.0
80.1
80.2
80.1
80.7

80.6
80.5

Mean SD

.223 1.57

.156 .0949
23.4 14.6

438.
713.
57.9
70.0

- 1.10.

- 108.

- 108.
- 102.

57.8

76. 1

50.0
52.0
53.7
49.7

51.0
50.8

RtMS
Nominal SE

2.01
i115

18.5

67.6

74.5
66.6
67.0
66.3
65.9

65.9
65.8

p

y

San Joa
Yol o

Sol ano

Sutter
Sacto

Stani s

Santa C
San Ben

4.10
14.9

263.

500,
- 145.
- 144.
- 291.
- 304.
- 321.
- 349.

p

I
R

San Joa

Yol o

Sol ano

Sutter
Sacto
Stani s

Santa C
San Ben

-
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Table C3. 100 Bootstrap Renlications Resampling 2-Vectors

Pre-harvester supDly
The Fi t

Parameter Nomina
11.6
9.69

- 6.62

- 2.10
- 91.9

- 328.

871.
625.

316.
295.

378.

300.
273.
227.

4.
5.

11.

2.
45.

154.

335.
336.
336.
336.

335.

332.
337.
338.

The Fi t

The Bootstrap

1 SE -Mean SD N(
11 12.2 3.84
09 10.3 4.66
2 - 6.75 10.6

28 - 2.08 1.84
3 - 89.1 40.9

- 331. 167.

844. 250.
596. 250.
288. 248.
269. 249.

354. 248.
272. 246.
246. 251.
198. 251.

Pre-harvester demand

The Bootstrap

RMlS
omi nal S

3.60
4.70
10.4

1.95
41.8

156.
264.
265.
265.
264.

264.
262.
266.

267.

Parameter Nominal SE - Mean SD

- 14.3
0700

132.

217.
- 8.36

- 319.
- *332.
- 260.
- 349.
- 381.

- 406.

5.71
.115

32.1

62.2
62.1

62.2
62.0
62.2
61.9
62.4
62.3

- 13.9
.686

130.

221.
- 5.42

- 316.
- 328.
- 256.
- 347.
- 379.
- 402.

4.77
.104

27.9

58.8
57.4

55.0
58.5
58.1

5903
58.7

5903

RtMS
Nominal SE

4.51
.112

25.2

58.5
58.4

58.5
58.4
58.6
58.3
58.7
58.5

p

y

D
F

G
w
San Joa
Yol o

Sol ano
Sutter
Sacto
Stanis
Santa C
San Ben

p

I
R

San Joa
Yol o

Sol ano
Sutter

Sacto
Stani s

Santa C

San Ben

-
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Table C3. 100 Bootstrap Replications Resampling 2-Vectors (cont'd)

Post-harvester supply
The Fit The Bootstrap

RtMS
Parameter Nominal SE rMean SD Nominal SE

4.10
14.9

263.
500.
145.

144.
291.

304.
321.
349.

1.48
8.08

161.
165.
167.

172.
160.

164.
174.
190.

The Fi t

Parameter Nominal

1.68 3.98
.156 .146

3502 28.5

445. 80.2
689. 80.0
48.4 80.1
60.4 80.2

111. 80.1

111. 80.7
- 111. 80.6

107. 80.5

3.92 1.20 1.17
14.5 6.27 7. 17

269. 131. 150.
516. 131. 154.
126. 130. 156.

135. 129. 160.
275. 134. 150.

285. 134. 153.
308. 143. 162.
332. 151. 177.

Post-harvester demand
The Bootstrap

RMAS
SE Mean SD .Nominal SE

- 1.78 3.52 3.94
.150 .112 .133

35.2 23.4 27.7

447. 67.3 78.1
698. 66.9 78.5
60.4 69.9 78.3
62.4 62.5 77.9

104. 76.4 78.8
98.7 73.6 77.8

104. 70.3 77.9
98.3 65.2 77.9

p

y

San Joa

Yol o

Sol ano

Sutter
Sacto

Stani s

Santa C
San Ben

p

I
R

San Joa

Yol o
Sol ano

Sutter
Sacto

Stani's
Santa C
San Ben
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Table C4. 100 Bootstrap Replications Resampling 1-Vectors

Pre-harvester supoly
The Fi t

Parameter Nominal SE

11.6 4.11
9.69 5.09

- 6.62 11.2
- 2.10 2.28

- 91.9 45.3
- 328. 154.

871.
625.
316.
295.
378.
300.
273.
227.

335.
336.
336.
336.
335.
332.
337.
338.

The Bootstrap

Mean SD

11.2 3.06
9.13 4.79

- 5.67 9.43
-- 2.20 1.90

- 98.8 39.7
- 343. 166.

922.
676.
370.
347.
428.
348.
324.
277.

254.
252.
253.
249.
251.
249.
257.
253.

RM1S
Nominal S_E

3.69
4.77
10.6
2.01

42.2
162.

266.
267.
2670
266.
266.
264.
268.
269.

The Fi t
Pre-harvester demand

The Bootstrap

Parameter Nominal SE Plean

5.71
o115

119
.676

32.1 119.

62.2 221.
62.1 - 2.35

62.2 - 312.
62.0 - 325.
62.2 - 253.
61.9 - 343.

62.4 - 377.
62.3 - 398.

SD

3.75
.107

22.4

50.1
53.6
54.0
50.6
51.0
48.7

51.5
52.7

RMIS
Nominal SE

4.70
o121

26.8

5902
59.3

59.6
59.0
59.5
58.3

59.8
5907

p

y

D

F

G

w
San Joa
Yol o

Sol ano
S utter

Sacto

Stani s

Santa C
San Ben

)O
p

I

R

San Joa

Yol o

Sol ano

Sutter

Sacto

Stani s

Santa C

San Ben

- 14.3
I

.
70

132.

217.
- 8.36

- 319.
- 332.
- 260.
- 349.
- 381.
- 406.
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Table C4. 100 Bootstrap Replications Resampling 1-Vectors (cont'd)

Post-harvester supply
The Fi t

Parameter

4.10
14.9

263.
500.

- 145.
- 144.
- 291.
- 304.
- 321.
- 349.

The Bootstrap

Nominal SE

.1.48
8.08

161.
165.
167.

172.
160.
164.
174.
190.

Mlean

3.35
16.9

245.
484.

- 162.
- 166.
- 315.
- 313.
- 345.
- 372.

RtMS
SD Nominal SE

.879 1.02
5.20 6.48

115* 136.
110. 139.
110. 141.

117. 145.
108. 135.
109. 139.
114. 146.
126. 160.

Post-harvester demand
The Fi t The

Parameter

- 1.68
.156

35.2

445.
689.
48.4
60.4

- 111.

- 111.

- 111.
- 107.

Nominal SE

3098
.146

28.5

80.2
80.0
80.1
80.2
80.1
8007
80.6
80.5

Bootstrap
RtMS

-Mean SD Nominal SE

.320 1.51 2.02

.159 .0928 .120

22.1 12.2 15.3

454. 62.5 66.9
699. 59. 1 66.2
51.9 66.8 69.1
68.1 53.3 65.9

- 104. 59.7 66.5
- 102. 56. 7 66.0
- 102. 53. 1 67.9
- 98.3 60. 1 67.0

p

y

San Joa
Yol o

Sol ano

Sutter
Sacto

Stani s

Santa C
San Ben

p

I,
R

San Joa

Yol o
Sol ano
Sutter
Sacto

Stani s

Santa C
San Ben
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