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Abstract

The bootstrap, like the jackknife, is a technique for estimating standard

errors. The idea is to usc Monte Carlo simulation, based on a non-parametric

estimate of the underlying error distribution. The bootstrap will be applied to an

econometric model describing the demand for capital, labor, energy, and materials.

The model is fitted by three-stage least squares. In sharp contrast with previous

results, the coefficient estimates and the estimated standard errors perform very

well. However, the model's forecasts show serious bias and large random errors.
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1. Introduction

The bootstrap is a relatively new statistical technique, which permits the assessment of

variability in an estimate using just the data at hand; see Efron (1979). The idea is to resample the

original observations in a suitable way in order to construct "pseudo-data" on which the estimator of

interest is exercised. More specifically, the theoretical distribution of an unobservable disturbance term

is approximated by the empirical distribution of an observable set of residuals. Measures of variability,

confidence intervals, and even estimates of bias may then be calculated.

In the regression case, the bootstrap is useful for investigations when mathematical analysis

can give only asymptotic results. Within the scope of the bootstrap are: non-normal errors, lag

structures, generalized least-squares with estimated covariance matrices, and developments like two-

stage or three-stage least squares. This paper, a sequel to Freedman and Peters (1983), investigates the

performance of widely used econometric estimators in an example consisting of a set of simultaneous

equations. In the example studied here, for two-stage or three-stage least squares, the coefficient

estimates and the conventional estimates of standard error perform very well. This is in marked contrast

to the RDFOR example reported in Freedman and Peters (1983), and the model of the California

canning-tomato industry discussed in Daggett and Freedman (1983). In the RDFOR example, the

conventional estimates of standard error were too small by a factor of three. In the tomato example,
there were similar difficulties with the standard errors; in addition, there was appreciable small-sample

bias in the coefficient estimates. Elsewhere, we hope to explore the reasons for such differences.

The balance of this paper is organized as follows. Section 2 gives a brief review of the

bootstrap idea, in the context of linear econometric models. Sections 3 and 4 give even briefer reviews

of generalized least squares, two-stage, and three-stage least squares. These sections pinpoint the

technical issue to be addressed by the bootstrap. Section 5 applies these ideas to the Bemdt-Wood

(1975) model. The bootstrap is used to attach standard errors to forecasts in Section 6. As it turns

out, the Berndt-Wood model does well in policy-analysis mode, but quite badly in straight forecasting.
Conclusions are drawn in Section 7.

The approach may be distinguished from the classical work of Brown (1954), or Goldberger,
Nagar, and Odeh (1961): the bootstrap uses simulation rather than asymptotics based on Taylor series.

The work of Fair (1979, 1980) is closer in spirit to the bootstrap, but somewhat different in detail: Fair

assumes that the disturbance terms follow a multivariate normal distribution, and that the parameter

estimates follow their multivariate normal limiting distribution. 'l'he bootstrap is distribution-free, and
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develops the appropriate finite-sample behavior for the estimates. In effect, the bootstrap is just a

simulation experiment, where the parameters are fixed at the values estimated from the real data, and

the error distribution is chosen to be the empirical distribution of the residuals from the real data.
( 99

These choices are by no means critical. In the context of "seemingly unrelated nonlinear regressions,"

Gallant (1975) reports a Monte Carlo experiment with artificial data-sets which demonstrates that the

conventional estimates of standard error mildly underestimate actual coefficient standard error; he does

not address forecastiLig performance.
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2. The Bootstrap

The bootstrap is described by Efron (1979, 1982). Related papers are Bickel and Freedman

(1981, 1983), Freedman (1981), and Freedman and Peters (1983). The bootstrap is a procedure for

estimating standard errors by resampling the data in a suitable way. This idea can be applied to

econometric models, where the technical difficulties include simultaneity, correlated errors, heteros-

cedasticity, and dynamics. First, an informal overview of the idea. In brief, the model has been fitted

to data by some statistical procedure, and there are residuals, namely the difference between observed

and fitted values. Some stochastic structure was imposed on the stochastic disturbance terms, explicitly

or implicitly, in the fitting. The key idea is to resample the residuals, preserving this stochastic structure,

so the model is tested against its own assumptions.

A coherent simulation world is obtained by assuming the model, with the parameters fixed

at their previously estimated values; the errors are assumed to follow the empirical distribution of the

residuals. The resampling generates "pseudo-data," and the model can be re-fitted to the pseudo-data

obtaining new parameter estimates. In this artificial world, the errors in the parameter estimates are

directly observable. The Monte-Carlo distribution of such errors can be used to approximate the

distribution of the unobservable errors in the real parameter estimates. This approximation is the

bootstrap: it gives a measure of the statistical uncertainty in the parameter estimates (Section 5) and

the forecasts (Section 6).

A more explicit, but still informal, description is as follows. Consider a simultancous-equation

linear model, of the form

Yt = Yt A + Xt B+Et (1)
1Xq lXq qXq lXp pXq lXq

Linearity is assumed to simplify the exposition; the method is easily adapted to cover nonlinear models,

although the computational costs may be prohibitive. Lagged variables are easily handled, but would

only complicate the exposition. For an explicit treatment of dynamics, see Freedman and Peters (1983).

In the equation, A and B are coefficient matrices of unknown parameters, to be estimated

from the data, subject to identifying restrictions; Yt is the vector of endogenous variables at time

t; Xt is the vector of exogenous variables at time t; and Et is the vectot", of disturbances at time

t. The endogenous variables are determnined within the model, the exogenous variables by some

extcrnal process. Technically, endogenous variables may be correlated with E, cxogenous variables are
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independent of E. The system (1) has q equations in q endogenous variables; there are p exogenous

variables. The matrix I - A is assumed invertible; identifying restrictions are imposed on A and B.

To be more specific about the stochastic assumptions:

The Et are independent and identically distibuted in time. (2a)

E(ct) = 0 and cov(Et) = V for all t. (2b)

The X'8 are independent of the E'8. (2c)

Here, V is a q X q positive definite matrix. As is conventional, we normalize A so Ajj, 0 for all j.

Write Ytj for the jth component of the vector Yt. Then the jth equation in the system (1) explains

Ytj in terms of the other endogenous variables, and the exogenous variables:

Ytj =YtAj+XtBj+Etj

Here Aj is the jth column of A and B, is the jth column of B.

Data are available for t 1, ... , n. The coefficient matrices are estimated as A and B by

some well-defined statistical procedure, for example three-stage least squares (Section 4). Coming now

to the bootstrap, when A and B are computed, residuals are defined:

Et Yt -YtA-XtB (3)

These are estimates for the true disturbances Et in the model (1). Let !L be the empirical distribution

of the residuals, assigning mass 1/n to each of c,... , e. To avoid trivial complications, assume the

equations have intercepts. See Freedman (1981) on centering. Also some inflation of the residuals

may prove desirable, to compensate for the deflation in fitting. However, there is no generally valid

rule, except in the case of a standard regression model with homoscedastic errors where the factor

f/nT77p is appropriate. The residuals are linearly dependent, again due to the fitting. It may be

appropriate to transform the residuals as in Theil's (1971, pp. 205-206) BLUS procedure; but this is

not done here. It is unlikely that inflation or the BLUS transformation would have much impact in

the present setting.

Consider next a model like (1), but where all the ingredients are known:

* Set the coefficients at A and B respectively.

> Make the disturbance terms independent, with common distribution it.
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The exogenous X's are kept fixed. Using this simulation model, pseudo-data can be generated for the

past, namely periods t = 1, . ., n. These pseudo-data will be denoted by stars. The mechanism is

suggested by solving (1) for Y:

t (Xti+Et)(I)-1A) (4)

where the E*'s are independent with the common distribution 1s. It is assumed that I - A is invertible.

Now pretend the pseudo-data (4) come from a model like (1), with unknown coefficient

matrices. Using the previous estimation procedures, estimate these coefficients from the pseudo-data;
AA^̂ ^ A A

denote the estimates by A* and B*. The distribution of the pseudo-errors A*-A and B*-B

can be computed, and used to approximate the distribution of the real errors A - A and B - B.

This approximation is the bootstrap. It is emphasized that the calculation assumes the validity of

the model (1). The calculation also depends to some extent on the choice of parameter values and

error distribution; although experience shows this dependence is slight. In case of doubt, various

combinations of parameter values and error distributions can be tried.

The distribution of the pseudo-errors can be computed, for instance by Monte Carlo, simply

repeating the procedure some number of times and sceing what happens. The distribution of the

pseudo-errors is of interest only as an approximation to the distribution of the real errors.
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3. Generalized Least Squares

Consider the model

Y=Xp +e, E(e) = O, cov(c)=> (5)

For historical reasons, X is called "the design matrix." With E known, the generalized least squares

(gls) estimate is

Aga = (XTElX)-1XTr1y (6)

As usual,

E(i.Rgia) = /B (7)

COV(I9gJ) (XTE-1X)-l (8)

When > is unknown, statisticians routinely use (6) and (8) with E replaced by some

estimate 2. Iterative procedures are often used, as follows. Let $°(O) be some initial estimate for ,

typically from a preliminary ordinary least squares (ols) fit. There are residuals 'e(-) Y-XP).
Suppose the procedure has been defined through stage k, with residuals

e k) =_ r-XI^()

Let Sk be an estimator for E, based on {e) Then

,ak:1) = (XT- Ek)-1XTS-1y (9)

This procedure can be continued for a fixed number of steps, or until (k1) settles down: a convexity

argument shows that f(k) convcrges to the maximum likelihood estimate for /, assuming e is

independent ofX and multivariate gaussian with mean 0.

The covariance matrx for 9.1) is usually estimated from (8), with Sk put in for E:

CO(k+l) = (XT^1X)-1 (10)

This may be legitimate, asymptotically. In finite-sample situations, all depends on whether Sk is a

good estimate for
E

or not. If Sk iS a poor estimate for , the standard errorA estimated from (10) may

prove to be unduly optimistic, and approximate gls estimators are often used when there is too little

data to offer any hope of estimatiiig E with reasonable accuracy: an example is given in Freedman and.
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Peters (1983). In such circumstances, the bootstrap is a useful diagnostic, and in many cases it gives a

more realistic estimate of the standard errors.

To ease notation, A{k) will be refered to as the (gls,k)-estimator. This paper only considers

the (gls,l) estimator, which in many situations has full asymptotic efficiency; see Cox and Hinkley

(1974, p. 308). In some examples, further iteration seems to make the coefficient estimates better, but

also exaggerates the optimism of the standard error estimates. In other examples, iteration actually

makes the coefficient estimators worse. The effects of additional iteration are considered in Peters

(1983).

In econometric work, it is usual to constrain / to fall in some linear space A; these are the

"identifying restrictions." Typically, many elements of, are constrained to vanish, and others are

constrained to equal each other. T'he constraints are often incorporated by re-expressing the model

in terms of linearly independent parameters: this involves linear manipulations of the columns of the

design matrix X. A more elegant solution is to make unconstrained estimates, as indicated above,

and then to project the unconstrained estimator A = into the constraint space A. However, the

projection must take into account the covariance structure of, ie., the constrained estimator IR is

the element of A minimizing the distance

uR -R)TW u(A-A).(1

where W is the estimated covariance matrix of,u. Thus, the constrained gls estimator is found by

two applications of unconstrained gls. See Chapter 6 of Theil (1971).
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4. Two-stage and Three-stage Least Squares

The object of this section is to review two-stage least squares (2SLS) and three-stage least

squares (3SLS). These are estimation techniques designed to overcome the problems created by the

presence of endogenous variables, ie., explanatory variables correlated with the disturbance term. The

present exposition is self-contained but terse. The idea is to bring out the connection with work

reported in Freedman and Peters (1983). For a fuiller account, see Theil (1971).

We return to the model (1). By conditioning on the exogenous X's, we may suppose them

nonrandom: see (2). Multiply (1) by XT and sum:

R = R A + S B + A (12)
pXq pxq qXq pXp pXq pXq

where
n n n

R=ZX t S=EXXtXt =>XTEt (13)
t=1 t=1 t=1

Notice that the jth column of (12) corresponds to the jth equation in (1). The manipulation leading

to (12) can be motivated by analogy to ols

In applications, [A, B] is constrained to fall in some linear space A. of dimension at most

pq. Thlen A and B can be estimated from (12) by some variant of constrained least squares, as in the

previous section. Notice that S is constant (non-random) since X is. It is conventional to treat R

on the right side of (12) as constant. This may be legitimate asymptotically, but is false in any finite

sample. Indeed, R is correlated with A, and this is the source of "small-sample bias" in 2SLS and

3SLS estimators.

The matrix of crrors A on the right hand sidc of (12) has covariance structure, so generalized

least squares is the procedure of choice. To make contact with the standard format of (5), we stack

the columns in (12): column #1 on top of column #2, ..., on top of column #q. In the stack,

information corresponding to the first equation in model (1) comes first, information about the last

equation comes last.

The parameter vector P in (5) is obtained by stacking A and B: column #1 of A, followed

by column #1 of B, ..., followed by column #q of A, followed by column #q of B. The design

matrix is obtained by writing R and S down the diagonal, and padding with,zeroes.

The left hand side Y vector in (5) consists of the stacked R matrix; the error E vector consists

of the stacked A matrix. The full system of equations (12) is layed out in stacked form below, with
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Rj being the jth column of the matrix R, and likewise for the other matrices.

-Ri- -RS ° °0 °. °o-A- t

R0 OR 'S... 0 0 B (4OORS...OO ~~+ (14)
Aq

q J O O O ...RS Bq LAq-

At this point, the design matrix is highly singular, having dimension pq X (pq + q2). Usually the

elements of 3 known a priori to vanish are suppressed, and the design matrix is adjusted accordingly

by deleting the corresponding columns. An alternative approach is to use generalized inverses: see

Chapter 6 of Theil (1971), or Maddala (1977, p. 447). By (2), the covariance matrix of the error vector

(the stacked A matrix) is the Kronecker product

[ VilS V12S ... ViqS]

I V21S V22S ... V2qS (15)

L VgiS Vq2S ... VqqS]

We can now give a brief description of two-stage least squares, focussing on the connection

with generalized least squares, and sharpen-ning the idea that 2SLS is a "single-equation" method.

Consider each column of (12) in isolation. Take column j, corresponding to equation j in system (1):

R =R A, + S Bj + Aj (16)
pXl pXq qXl pXp pXl pXl

The 2SLS procedure amounts to estimating (16) by gls, treating R on the right as a constant. The

constraints specific to the 3th equation would be imposed, but not the cross-equation constraints. The

covariance matrix of Aj is required. Plainly, cov Aj VjjS, where S-= _ XTXt by (13).

Thus S is computable from the data; V,j is unknown, but enters only as a constant of proportionality,

and its value is immaterial. With large enough samples, this procedure is preferable to ols, because it

takes account of the correlation between e and Y on the right side of (1): this correlation would make

ols inconsistent.
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Let A,, and BII denote the 2SLS estimators. To estimate their covariances, let

A A

=t= Yt -YtAn -XtBrr (17a)

V
'

t (17b)
t=1

The t'8 are the residuals, and V is an empirical covariance matrix which estimates V in (2b) and (15).

And the covariance matrix of [A,,B,,] can be estimated by the gls formula (8) as (XTE>lX)l,
A A

where X denotes the relevant design matrix, and E = cov A= VjjS is estimated as -= Vjj S. It

is conventional, for the purpose of estimating cov(Aii, B,] only, to inflate Vjj by n/n - r, where r

is the number of variables actually coming into the jth equation.

Turn now to 3SLS. Having completed the 2SLS estimation, we have in hand the estimator
A

V for V. Approximate generalized least squares can now be applied to the full system (12), putting

V in for V at (15); the entries are not inflated: and we are pretending that R on the right in (12) is

constant All constraints are imposed. This gives the three-stage least squares estimates, to be denoted

A and B. The covariance of these estimators can be estimated as before; a new and much larger design

matrix X is involved; and E = V 0& S estimates the covariance matrix E = V 0 S of the stacked

Aj's: see (14) and (15). The discussion indicates how 3SLS is a "system-wide" method, and bnrngs

out the connection with gls. With large samples, 3SLS improves on 2SLS, by taking into account all

the constraints and all the covariance structure.
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5. Bootstrapping the Berndt-Wood Model

The Berndt-Wood (1975) model explains the shares in year t of capital StK, labor StL, energy

St., and materials StM, in terns of their prices PtK, PtL, Pt_, and ptm,. There are 11 exogenous

variables (including a constant) whose values at time t are written as the 1 X 11 row vector Xt, with

Xt, = 1. (The exogenous variables are defined in the Berndt-Wood paper.) Data runs from 1947

through 1971. For a review of the model, see Kuh and Welsch (1980); also see Berndt-Wood (1979).

The equations of the model may be written as follows:

StK =alK + 7KK 109 + aKL log + 7KE log + CtK (18a)
Ptm PtM PtU

StL = aL + 'ILK 109 + 'YLL. log + 'YLE log + EtL (18b)
PtM PtM PtM

stE = aE + 7sK lg0 - + log-109 + '7EEgog - + EtE (18c)
PtM Ptm Ptm

The y-matrix is constrained by Berndt and Wood to be symmetric:

'YKL = 'ILK 11KE = 'IEK 'LE = 'YEL (19)

To complete the model for simulation purposes, we adjoin three more equations, explaining the log

price ratios in terms of the exogenous variables. 'I'his was necessary to construct simulated data-sets for

the bootstrap. The 3SLS estimates of the full system of equations give values for a and -Y identical to

the 3SLS estimates for the original three-equation system (18). However, the coefficient estimates for

the three adjoined equations differ from the ols estimates. For an outline of proofs, see Theil (1971,

p. 514).

To make contact with (1), we write the complete system as

Yt = Yt A + Xt B + et (20)
1x6 1x6 6x6 IXII llX6 1x6

The assumptions (2) on the c's are in force. Here

Ytl= StK Yt2 StL Yt3- Sts
PtK yPtL PtYt4=log- Y5=log Yt6=log
Ptm Ptm Ptm

Etl = EtK Qt2= EtL Et3= GtE
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The other components of e do not appear explicitly in (18).

0 0 0 00

0 .0 00 0

0 0 00 0

7IKKKILK 7IEK 0 0

'YKL 'ILL "EL 0 0

-7KE 7LE 7EE 0 0

TMe matrix A is

0

0

0

0

0

0^

The symmetry constraints (19) are imposed. Notice that I - A and I - A are automatically invertible,

due to the zeroes in A and A. The matrix B is as follows:

B11 aK B12 =aL B13= as

Bij=0 for 2 < i < 11 and 1 < j< 3

Bij isfreeforl <i< 11 and4 < j < 6

We fit the model (20) by 3SLS. The coefficient estimates (a and -y only) are shown in the

first column of Table 1; the nominal standard errors, computed as in Section 4, in the second column.

Our results differ slightly from those in Berndt-Wood (1975), since they fit by "iterated" 3SLS: in terms

of the notation developed in Section 3, we use the (gls,l) estimators, and they iterate to convergence.

Table 1. Bootstrap experiment for equation (18). Estimation is
by 3SLS. There are 400 bootstrap replications. The
t-test is for the differcnce between the "mean") and
the assumed value shown in the "cstimatc" column.

3SLS Bootstrap

(1)
Estimate

atK .0565
atL .2540
asE*.0443
7YKK .0264
'YKL .000551
7(KE -.00994
7ILL .0734
"(LB -.00439
7IEE .0200

(2)
Nominal SE

.00162

.00199

.00112

.00837

.00424

.00449

.00618

.00287

.00833

(3)
Mean

.0568

.2537

.0443

.0288

.00000360
-.0105
.0743

-.00429
.0183

(4)
SD

.00151

.00210

.000950

.00679

.00414

.00383

.00702

.00257

.00563

(5)
t

-3.58
3.05
.632

-6.89
2.64
2.72

-2.48
"' -.778

5.97

(6)
RMS Nominal SE

.00125

.00184

.000821

.00592

.00353

.00362

.00593

.00228

.00530
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To get started on the bootstrap, let A and B be the 3SLS parameter estimates partially

reported in Table 1. Consider the residuals

A A

Et Yt -YtA-XB

Let ,u be the empirical distribution of {et t = 1947, ..., 1971}. Note that is has mean 0, because

(20) has intercepts. Now simulate the equation (20), where all the ingredients are known:

* The exogenous variables are held fixed.

* The coefficient matrices are set at their estimated values A and B.

* The disturbance terms are independent with common distribution U.

More specifically, let {Et: t = 1947, .. .,1971} be the results of twenty-four draws made

at random with replacement from the set of twenty-four 6-vectors {t: t = 1947,..., 1971}. Thus

C1947 may be drawn twice, but AE1948 not at all. On the other hand, the pattern of the disturbances

across equations does not change. Thus, the simulation preserves the key stochastic assumptions: the

disturbances are independent and identically distributed in time but show a pattern across equations.

The pseudo-data can now be built up for t = 1947,...,1971:

Yt (XtB+E*)(I-)A)1

Bootstrap parameter estimates A* and B* can now be obtained by applying 3SLS to the starred data.

This procedure was repeated 400 times. On each repetition, a new set of starred disturbances

was generated, hence a new set of pseudo-data, and therefore a new set of starred parameter estimates.

Columns 3 and 4 in Table 1 show for each parameter in the original model the sample mean and

sample standard deviation (SD) for these 400 starred estimates. These SDs are the bootstrap estimates

of variability in the parameter estimates.

Comparing columns 1 and 3 in Table 1 indicates the presence of a significant small-sample

bias in the coefficient estimates, due to the fact that R in (12) is correlated with A. For example, in

our simulation, "IKL is set at 5.51 X 1o-4; the 3SLS estimate averages 3.60 X 10-6. This difference

is very unlikely to be due to variability in the Monte-Carlo, as shown by the t-statistic in column 5.

With 400 replications the standard error of the mean is

4.14 X 10-3oV4i_i = 2.07 X 10-4
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so

t = (5.51 X 10-4 - 3.60 X 10-6)/(2.07 X 10-4) = 2.64

The difference between the true value of 7KL and the mean of the estimated values is very hard

to explain by sampling error (p < .005). The other entries in column 5 may be interpreted in a

similar way. Small-sample bias is statistically significant in four of the estimates; however, the practical

significance may be small, because the means are so close to the assumed values. On the whole, 3SLS

is performing well: bias in the cocfficient estimates is small in practical terms, and the nominal standard

errors are close to right.

Column 6 in Table 1 shows the RMS of the nominal SEs computed by applying formula

(10) to the starred data set Take, for example, yKL. In the simulation world of the experiment, the

real variability of the 3SLS estimate for yKL is .00414 from column 4. But the apparent variability,

from the conventional asymptotics, is in a typical run only .00353, from column 6. This is

400

oo E SE?

where SE, is the nominal SE for 'KL computed from (10) applied to the ilh starred data-set. In a

typical starred data-set, the formula (10) is off by about 10 percent. The other entries in column 6

may be interpreted in a similar way. The nominal SEs are too small by 10 to 20 percent, but the bias

is not nearly as bad as it was in RDFOR; see Freedman and Peters (1983). Much of the bias may

bc due to the impact of fitting, in making the residuals smaller than the disturbance terms. On the

whole, the conventional formnulae seem to be doing very well. (Whether or not they have moments,

tlhe bootstrap distributions of the cocfficient estimates are well approximated by normal distributions

with the parameters indicated in Table 1.)

Table 2 shows similar results for 2SLS estimation. The pseudo-data are built up as before,

i.e., A and B are the 3SLS estimates based on the original data. However, the parameter estimates

A*, and B;I are computed from the pseudo data using 2SLS, and their nominal SEs are computed

using the appropriate conventional fornulae. Again, small-sample bias in the coefficient estimates is

statistically significant, and in several cases (7KL, 'iLK, 'YLE) perhaps of practical significance. There is

no pattern of bias in the nominal SEs: some are a bit high, some a bit low. The correction factor

n/n - r discussed near the end of Section 4 seems to help. (We used 3SLS estimated coefficients and

residuals for the simuladon, as these are considered the most reliable.)
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Table 2. Bootstrap experiment for equation (18). Estimation is
by 2SLS. There are 400 bootstrap replications.

3SLS

(1)
Estimate

LkK .0565
aOL .254
a5E 0443
7KK .0264
'YKIL .000551
7YKE -.00994
"LK .000551
"ILL .00734
"ILE -.00439
"15K -.00994
TEL -.00439
'lEE .0200

(2)
Mean

.0572

.253

.0445

.0292
-.000820
-.0130
.00441
.0752
.00697

-.00922
-.00481
.0185

2SLS Bootstrap

(3) (4)
SD t

.00210 4.86

.00307 4.36

.00114 -3.68

.00792 -7.02

.00523 5.24

.00168 3.59

.0138 -5.59

.00777 -4.76

.0263 -8.66

.00452 -3.19

.00293 2.87

.00897 3.26

(5)
RMS Nominal SE

.00213

.00347

.00121

.00821

.00541

.0161

.0133

.00879

.0261

.00464

.00307

.00915

To indicate some of the difficulty in assessing standard errors, we repeat the bootstrap

experiments for the three equations adjoined to (18). These equations explain the log price ratios in

terms of the cxogenous variables Xt. Only the intercept terms will be considered. Table 3 presents

the results of an experiment using the 3SLS estimator. The nominal SEs in column 5 are more than 30

percent smaller than the actual variability observed in the simulation experiments, the SDs shown in

column 4. This is substantially worse than the situation reported in Table 1. The reason may be that

the nominal SEs for the adjoined equations depend on all of the 6 by 6 estimated covariance matrix

V; while for the original three-equation system, only the leading 3 by 3 submatrix of V comes in.

With more covariances to estimate, the asymptotics may be less reliable.

Table 3. Bootstrap experiment for the equations adjoined to
(18). Only the intercepts are reported. Estimation is
by 3SLS. There are 400 bootstrap replications.

3SLS

(1)
Estimate

-3.59
-1.13

.316

Bootstrap

(2)
Nominal SE

1.22
.274
.563

(3)
Mean

-3.74
-1.10

.370

(4)
SD

1.36
.393
.878

(5)
RMS Nominal SE

.875

.255

.551
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With a discrete error distribution, the bootstrap distribution of coefficient estimators will

usually have moments of all orders. With a continuous distribution like the normal, moments may not

exist. Still, there is good evidence to show that the bootstrap distribution can be well approximated

by a normal distribution, whose first and second moments can be estimated by the method indicated

here.

All the computations described in this report were perforned on a VAX 11/750 with the

floating point accelerator. The 2SLS and 3SLS estimators were coded in FORTRAN using the

LINPACK library. The computations described in this Section took about one hour of CPU time.

- 16 -



6. Forecasting

The object of this section is to indicate how the bootstrap can be used to develop standard

errors of forecasts. The idea is that in the simulation world of the bootstrap, we can generate both the

actual value and the predicted value in the forecast year, say 1995; hence we can observe the difference,

which is the forecast error. This idea will be illustrated on equation (18), with a historical period of

1947-71. (The absence of dynamics makes the exercise a bit tame.) There will be two flavors: "straight

forecasting" and "policy analysis." In "straight forecasting mode," the exogenous variables are forecast

by some procedure extemal to the equation. The forecast values will be denoted by hats. The values

of the exogenous variables, for the forecast year and the historical period, will be held fixed in all

the simulations described below. In particular, the component of variance due to forecast error in the

exogenous variables is not treated here. (In the simulations, the exogenous variables were forecast to

grow from 1971 to 1995 at the compound annual growth rate observed from 1947 to 1971.)

The equation (18) is used to forecast the endogenous variable as follows:

* Estimate the coefficients using the historical data from 1947 to 1971.

* Set the disturbances Et to their expected value of zero for the forecast year 1995, and solve

the equation:

Y19s9! X1995B(IA-

To get started on the bootstrap, estimate the parameters in the model (18) using the data from

1947 to 1971, obtaining the 3SLS estimates A and B, and calculate the residuals ^t = Yt - YtA- XtB.
As usual, let s be the empirical distribution of {tt: t = 1947,..., 1971}. Make twenty-five

independent draws E* for t = 1947, ..., 1971 and for t = 1995 from it. Construct a starred data set

with the resampled residuals:

=(XtB+ Et)(I - )-I

For t = 1947, ...,1971 , the YZ arc simulated historical data. For t = 1995, the Y arc simulated

future "actuals;" X1995 should be replaced by the forecast X1995. Now make the forecasts by the

standard procedure, but using the simulated historical data instead of the real data. In particular, the

parameters A* and B* are re-estimated from the starred historical data. As u'sual,

A;995 Xlsss& (I-A
=* X199,5B3(1 -A*-
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Table 4. Bootstrap forecast experiment for equa-
tion (18) in "straight forecasting mode."
Estimation is by 3SLS. There are 400
replications.

(1) (2) (3) (4)
Sample Mean Sample Mean Standard Deviation The RMS G-N-O

AA

Actuals Y;995 Forecasts Y*95 -Y995 Standard Error

SK .0207 .00995 .0647 .0417
SL .301 .301 .0370 .0257
SE .0117 .0179 .0344 .0275

10g(pK IPM) -2.38 -2.56 1.65 1.08
log(pL/pm) .500 .492 .456 .314
log(ps/pm) -2.71 -2.74 1.02 .678

The result is a set of simulated actuals Y* for t = 1947,.. ., 1971 as well as t = 1995, and

a simulated forecast Y;95 for the year 1995. Note that eg. A $ A*, and Y* incorporates E* while

Yt does not, so Y *$ Yt. The difference between the future Y* and the forecast Y* is the forecast

error. This procedure can be repeated, getting new starred disturbances on each repetition, to develop

the distributions of

* the simulated actual Y1995

* the simulated forecast Y1995
* the simulated forecast error Y7995 - Y1995.

Table 4 summarizes 400 replications of the bootstrap forecasting experiment just described.

Parameters were estimated by 3SLS. The table displays the sample mean of the 400 simulated actuals,

the sample mean of the 400 simulated forecasts, and the standard deviation of the 400 simulated

forecast errors. The standard deviations in column 3 are the bootstrap measures of random error in the

forecasts. Take for example, the energy factor share SE. The forecasts tend to be 50 percent too high:

column 2 vs. column 1. In addition, the random error in the forecast is about three times the size of

the quantity being forecast: column 3 vs. column 1. For the other quantities, bias does not seem to

be a problem; but the random errors are large. The model does not do well in straight forecasting.

(With our discrete error distribution, moments of all orders usually exist.. With a continuous error

distributions, the bootstrap distribution of forecast error may fail to have moments, but still be close

to normally distributed, with the parameters indicated by the bootstrap.)
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Column 4 of Table 4 shows what happens when the Goidberger-Nagar-Odeh (1961) method

is used to approximate the random error of forecasts. This is a "delta-method" based on Taylor

expansions. As can be seen by comparison with column 3, it substantially underestimates the error.

Furthermore, it ignores bias completely.

We turn now from forecasting to "policy analysis," in effect using the model to answer

questions about the reaction of the economy to policy initiatives. The Berndt-Wood model is really a

set of demand equations. These may be solved against some (unspecified) set of supply equations to get

prices and quantities. The Berndt-Wood paper is not very specific on this point, but the endogeneity of

prices may be ascribed to this implicit simultaneity. In policy analysis mode, consider a policy which

sets the prices of capital, energy, labor, and materials at pre-assigned values, without changing the

distribution of the c's. What happens to the factor shares? (Whether this is a sensible question or not

is a very deep question, which we will ignore.) The equation (18) gives the factor shares corresponding

to the assumed prices.

To predict the factor shares from (18), we set the parameters at the values estimated from

the historical data, and drop the c's. The likely size of the chance error in this prediction may be

assessed by the bootstrap. Historical starred data and the starred parameter estimates are built up as

before. But the starred actuJals Y;995 are derived from (18), the starred disturbance terms E , e*L
6tm being the first three components of f drawn from 0. For this experiment, the prices in 1995

for capital, labor, and materials were taken to be the same as those in 1971, the price of energy was

doubled from its 1971 value. The results are shown in Table 5 below. From this point of view, the

model seems to be doing fine. To sum up, in policy analysis mode the forecasts seem quite good. The

straight forecasts, however, are subject to serious bias and large chance errors.

Table 5. Bootstrap forecast experiment for equa-
tion (18) in "policy analysis mode." Estimation
is by 3SLS. There are 400 replications.

Sample Mean Sample Mean Standard Deviation
A ~~~A

Actuals Y;995 Forecasts Y;995 Y;995-Y1995

SK .0706 .0723 .00866
SL .233 .233 ' .00699
Si .0494 .0480 .00557
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7. Conclusions

This paper demonstrates the use of the bootstrap to attach standard errors to coefficient

estimates and forecasts in a static simultaneous-equation energy demand model fitted by three-stage

least squares. In contrast to previous findings, the asymptotic formulae for coefficient standard errors

performed reasonably well. At present, there does not seem to be any good rule of thumb for deciding

when such formulae will give acceptable results. Developing such a rule would be a good focus for

future research. In the present example, the usual asymptotic methods for estimating standard errors

of forecast do not seem satisfactory: They miss the appreciable bias, and substantially underestimate

the random error component. Of course, the bootstrap procedure has troubles of its own: see Bickel

and Freedman (1983) or Freedman and Peters (1983) or Peters (1983).
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