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Abstract

The bootstrap, like the jack-knife. is a technique for estimating standard errors. The
idea is to use Monte-Carlo simulation, based on a non-parametric estimate of the un-
derlyiig error distribution. The bootstrap will be applied to an econometric equation
describing the demand for energy by industry. to determine multi-period forecasting er-
ror. and choose among competing specifications. The delta-method for estimating forecast

errors turns out to be too optimistic by a factor of two.
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§1 Introduction

The bootstrap is a relatively new statistical technique which permits the assessment of variability in an
estimate using just the data at hand; see Efron (1979, 1982). The idea is to resample the original observations
in a suitable way to construct “pseudo-data” on which the estimator of interest is exercised. More specifically,
the theoretical distribution of a disturbance term is approximated by the empirical distribution of a set of
residuals. Measures of variability, confidence intervals, and even estimates of bias may then be calculated.

In the regression case, the bootstrap is useful for investigations when mathematical analysis can give only
asymptotic results. Within the scope of the bootstrap are non-normal errors, lag structures, and generalized
least squares with estimated covariance matrices. A previous paper (Freedman and Peters, 1984a) compared
the performance of conventional asymptotic estimates of standard error of coeflicients to the performance of
a bootstrap procedure in the setting of a single econometric equation: also see Daggett and Freedman (1984).
This paper will indicate how to use the bootstrap to develop standard errors for multi-period forecasts, and
to choose among competing equations. The main finding is that in a real example, the delta-method for
estimating forecast errors was too optimistic by a factor of two.

The balance of this paper is organized as follows. Section 2 gives a brief review of the bootstrap idea, in
the context of linear econometric models. Section 3 gives an even briefer review of generalized least squares.
The bootstrap is used to attach standard errors to multi-period forecasts in Section 4, and to choose among
competing equations in Section 5. Section 4 also compares the bootstrap to the method of Schmidt (1974,
1977). Conclusions will be drawn in Section 6.

The approach may be distinguished from the classical work of Brown (1954), or Goldberger, Nagar,
and Odeh (1961): the bootstrap uses simulation rather than asymptetics based on Taylor series, and applies
to multi-period forecasts. The work of Fair (1979, 1980) is closer in spirit to the bootstrap, but somewhat
different in detail: Fair assumes that the disturbance terms follow a multivariate normal distribution, and that
the parameter estimates follow their multivariate normal limiting distribution. The bootstrap is distribution-

free, and develops the appropriate finite-sample behavior for the estimates.



§2 The bootstrap

The bootstrap is described by Efron (1979, 1982). Related papers, which provide a theoretical basis for
using the bootstrap are Bickel and Freedman (1981, 1983), Freedman (1981). The bootstrap is a procedure
for estimating standard errors by re-sampling the data in a suitable way. First, an informal overview of the
idea. In bx:ief, the model has been fitted to data, by some statistical procedure; and there are residuals,
namely the difference between observed and fitted values. Some stochastic structure was imposed on the
stochastic disturbance terms, explicitly or implicitly, in the fitting. The key idea is to resample the residuals,
preserving this stochastic structure, so the model is tested against its own assumptions.

Assuming the model and the estimated parameters to be right, the resampling generates “pseudo-data,”
both for the past and for the future. Now the model can be re-fitted to the pseudo-data for the past, and
used to “forecast” the pseudo-data for the future. In this artificial world, the errors of forecast are directly
observable. The Monte-Carlo distribution of such errors can be used to approximate the distribution of the
unobservable errors in the real forecasts. This approximation is the bootstrap.

A variation on this idea can be used to compare two models, testing each one against the assumptions
of the other. This involves generating the pseudo-data with one model; the second model is re-fitted to the
pseudo-past, and used to predict the pseudo-future. Then the roles of the two models are interchanged. In
this way, the bootstrap can sometimes be used to select forecasting equat,ions.whicln are relatively insensitive
to specification error. An example will be presented in Section 5.

A more explicit, but still informal, description is as follows. Consider a dynamic linear model, of the

form

Y, =Yooy B+ X, C + & (1)

Ixq I1Xq qxXyq Ixp pxy 1xq

In ﬁhis equation, B and C are coefficient matrices of unknown parameters, to be estimated from the data,
subject to identifying restrictions; Y; is the vector of “endogenous” variables at time t; X, is the vector of
“exogenous” variables at time ¢; and ¢, is the vector of disturbances at time t. The endogenous variables are
determined within the model, the exogenous variables by some external process. Technically, endogenous
variables may be correlated with ¢, e;xogenous variables are not correlated with e¢. The following standard
condition is imposed on the error distribution: given the X's, the ¢'s are independent and identically
distributed with mean 0.

Data are availablefor t = 1,...,n and Y), is available too. The coefficient matrices are estimated as B
and C by some well-defined statistical procedure, like generalized least squares (Sections 3 and 4). The X's
are forecast for timet = n+1,...,n+m, by some procedure external to the model. The Y's are forecast from
the model for this time interval by substituting B and € for B and C in (1), setting €,41,---,€ntm equal
to 0, and solving iteratively. Call these forecasts )7',,_,.1, ey f’,,.;.,,,. (This forecasting procedure is standard,

but not optimal.)
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In algebraic terms, Y,, = Y,,, and forn <t < n + m,

~ A

)A"H.l =Y,B+ /{—t+16

~ A~ A A

:)';-IBZ‘f'X' §+X—f+l(,;

~A A
i

=},'"Br+l—n+X"+ICBt—v:+”.+ ¢ 'B“" v+1(‘
Here, )?, denotes the forecast for X; at time ¢t > n. Likewise,

e =Y, Bt 2 X, ., CB™" + ..+ X{CB+ X, ,C

'-LC,,._IBt_" + ..nft‘,B-ré,_H

The forecast error Y, ,,, — Y, 4, is due to:
e The difference between B, C and B, C.
e The term involving €,,....., €, 4., which is dropped in making the forecast.

e The difference between X, and X;.

For an analytic treatment of the second component in the linear case, see Findley (1984).

Coming now to the bootstrap, when B and € are computed, residuals are defined:
&=Y -Y..,B-X,C (2)

These are estimates for the true disturbances ¢, in the model (1). Let u be the empirical distribution of
the residuals, assigning mass 1/n to each of é;,...,¢,. To avoid trivial complications, assume the equations
have intercepts, so the residuals have mean zero.
Consider next a model like (1), but where all the ingredients are known:
e Set the coefficients at B and C respectively.
e Make the disturbance terms independent, with common distribution u.
The exogenous X's, past and future both, are kept as before, as is Yi,. Using this simulation model, pseudo-

data can be generated for the past, namely periods t = 1,...,n. These pseudo-data will be denoted by stars:

Y,,...,Y, . Likewise, the pseudo-future can be generated: Y, ,,..., Y, . The construction is iterative:
Y, =Yy, andforallt =1,...,n+m,
Y =Y B+ X,.C+¢ (3)

the €¢'’s being independent with the common distribution u

Now pretend the pseudo-data come from a model like (1), with unknown coefficient matrices. Using the
previous estimation procedures, estimate these coefficients from the pseudo-data; denote the estimates by B
and C~. Likewise, use the previous forecasting procedure to generate a forecast for period n + m; denote this

by l’?,,f+,,,‘. The distribution of the pseudo-errors f’,,‘.,_,,, - Y, ,,, can be computed, and used to approximate
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the distribution of the real errors }A’,,+,,, - Y, 4+, This approximation is the bootét.ra.p. It 1s emphasized that
the calculation assumes the validity of the model (1), and accurate forecasts of the exogenous variables. The
distribution of the pseudo-errors can be computed, e.g., by Monte Carlo, simply repeating the procedure
some number of times and seeing what happens.

The procedure can be modified to take into account stochastic errors in forecasting the X's as well as
measurement. errors in past X's. In effect, on each run, the X's can be perturbed to mimic any assumed
error structure. That is, X; for t > n can be replaced by a forecast value X involving a stochastic error;
likewise, X; for t < n can be replaced by X:. which differs from X, by measurement error. The distribution
of these errors must be specified, and this is a very delicate thing to do. In this paper, the X; will be held
fixed. For an application of the idea, however, see Finke. Flood, and Theil (1984).

Turn now to model comparisons. Suppose there are two competitive models for a certain data series.
Suppose each fits reasonably well. Suppose that each, if an adequate representation of reality, is likely to
forecast reasonably well. How to choose between the two models? This can be investigated by a variation
on the foregoing:

e Use model #1 to generate the pseudo-data and pseudo-future; but fit and forecast with model #2;
compute the pseudo-error of forecast ¥ = Y
e Now interchange the two models.
If, e.g., model #1 forecasts well both on its assumptions and on those of model #2, while model #2 fails
in the world of model #1, then model #1 is more robust and is to be preferred on this ground. A case of
interest 1s where model #1 is a simplification of model #2, and there iz a trade-off between precision and
bias.

Another procedure, more in the spirit of Efron (1983), involves creating a “neutral” model, as a linear
combination of the two competing models. This can be fitted to the original data, and used to generate
pseudo-data for both past and future. In this neutral simulation world, the forecasting performance of each
competing model can be studied, by fitting it to the pseudo-past and using it to forecast the pseudo-future.
We do not pursue this idea here. There is still another approach described in Cox (1982), using likelihood

ratio tests.



§8 Generalized least squares

Consider the model

Y=XB+e¢ E()=0, cov(e)=Z (4)

With £ known, the generalized least squares (gls) estimate is

Bp. = (XTT7IX)"IXTEY (5)

As usual,
E(Au.) =8 (6)
cov(fy.) = (XTI X)~! | (7)

When I is unknown, statisticians routinely use (5) and (7) with T replaced by some estimate . Iterative
procedures are often used, as follows. Let 3'") be some initial estimate for £, typically from a preliminary
ordinary least squares (ols) fit. There are residuals ¢! = Y — XA!"). Suppose the procedure has been

defined through stage k, with residuals

Let £, be an estimator for ¥, based on é'*'. Then

BTt = (XTSI TIXTERY (8)

. . . k) .
This procedure can be continued for a fixed number of steps, or until ,'*7,‘,,._ settles down. To ease notation,

ﬁ,‘,f_' will be refered to as the (g/s,k)-estimator. This paper only considers the (gls,1) estimator.



¢4 Bootstrapping RDFOR

The object of this section is to illustrate the bootstrap procedure for determining forecast errors in a
real example, the Regional Demand Forecasting Model (RDFOR). This is a system of econometric equations
designed to forecast demand through 1995, for various fuel types, by consumption sector and geographical
region, as a function of prices and other exogenous variables. The focus here is on that part of the model
concerned with the industrial sector demand for fuel. For more detailed discussions of RDFOR, see Freedman,
Rothenberg, and Sutch (1983), and Kuh et al (1982).

The model distinguishes ten geographical regions, indexed here by r. The equation for total demand by

the industrial sector in geographical region » = 1,...,10 and year t = 1961, ..., 1978 is taken as
Qrf=ar+l’crfTChr?+dprt+CQr.!—1+fvrr"'frr (9)

where in region r and year t: g, is the log of an index of fuel consumption, ¢, is the log of cooling degree
days, h,; is the log of heating degree days, p,+ is the log of a fuel price index, v, is the log of value added in
manufacturing, ¢, is a stochastic disturbance term, and a,, b, ¢, d, e, and f are parameters to be estimated.
This particular equation is the one reported by Kuh et al (1982). Notice that the coefficients b. ¢, d, ¢, and
f are constant across regions; however, the intercepts a, are region-specific. The equation is dynamic in the
sense that the lagged endogenous variable g, -, appears on the right hand side.

The assumptions on the stochastic disturbance terms ¢,4 are as follows:

E(er+) =0 for all r and ¢. (10a)
The ¢, are stochastically independent of the cp¢, hrs, pre, and vp. (10b)
The vectors ¢; = (¢).4,...,€10,¢) are independent and identically distributed in time. (10c)

This model is outside the framework of standard regression theory because of the dynamics: ¢4 is corre-
lated with ¢, ,_,;. It is outside the framework of standard multivariate theory because the coefficients are
constrained to equality across regions. However, equation (9) does fit into the framework (1) with ¢ = 10
and p =5 x 10 + 1 = 51; the coefficient matrices are subject to numerous constraints.

Historical data for estimating this regression relation were taken from the SEDS (State Energy Data
System) data base. SEDS was previously called FEDS. This data base is reviewed in Freedman, Rothenberg,
and Sutch (1983). This data base contains the annual data required for the period 1960 through 1978. The
fitting period, however, runs from 1961 to 1978: a year of data is lost due to the lag term.

The main object of this section is to indicate how the bootstrap can be used to develop standard errors
for multi-period forecasts. The idea is that in the simulation world of the bootstrap, we can observe both
the actual value and the predicted value in the forecast year, say 1995; hence we can observe the difference,
which is the forecast error. This idea will be illustrated on equation (9), with a historical period of 1960-78,
and a forecast period of 1979-95. In the equation, the variables c, h, p, and v are exogenous. They are

forecast over the period 1979-95 by some procedure external to the equation. (Value-added was forecast by
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the US Department of Energy; heating and cooling degree days were set at the historical average values;
regional prices were forecast to increase at 5% per vear. The forecast values will be denoted by hats. The
values of the exogenous variables, for the forecast period and the historical period, will be held fixed in all
the simulations described below. Only the forecast year 1995 will be considered.)
The equation (9) is used to forecast the endogenous variable g,, as follows:
o Estimate the coefficients using the historical data from 1960 to 1978.
e Set the disturbances ¢, to their expected value of zero over the forecast period, and solve the

equation iteratively: §r 1075 = ¢r.107s and for t = 1979, ..., 1995

Gro = & + ber + Chey 4 e+ EGri1+ f ony (11)

To get started on the bootstrap, estimate the parameters in the model (9) using the data from 1960 to
1978, obtaining the (gls,1) estimates a,, b, ¢, d. é and f, and calculate the residuals &, . Let &
be the 10-vector (€;+,...,€10.¢) of residuals, and u the empirical distribution of {& : t = 1961,...,1978}.
Make thirty-five independent draws ¢; for t = 1961,...,1995 from u. Let ¢;, denote the r*" component of

¢;. Construct a starred data set with the resampled residuals: ¢; 40 = gr.1060 and for t = 1961,...,1995

]

Grp = Qr +bcpp + Chpy +dppe + €6, ,_ | + fup + €],

For t = 1961,...,1978 , the g;, are simulated historical data. For t = 1979,...,1995 , the g;, are simulated
future “actuals.” Now make the forecasts by the standard procedure. but using the simulated historical
data instead of the real data. In particular, the parameters &;. b', and so forth are re-estimated from the
starred historical data by the (gls,1) regression of g;, on c,t, Art, Pre. 4, _,. and vyy. The forecasts are made

iteratively as in (11): §; 1975 = q; 1975 and for t = 1979,...,1995

The result is a set of simulated actuals ¢;, and forecasts §;, for t = 1979,...,1995. Note that ¢;, g,
because 3 ' and because g, incorporates ¢!, while §!, does not. The difference between the future g;,
and the forecast §;, is the forecast error. This procedure can be repeated, getting new starred disturbances
on each repetition, to develop the distributions of

o the simulated actual demand gq; 49
o the simulated forecast §; 901,

e the simulated forecast error q; ;995 — §;.1005-

Table 1 summarizes 100 replications of the bootstrap forecasting experiment just described. Coefficients
were estimated by (gls,1). Column 1 of the table displays the sample mean of the 100 simulated actuals;
column 2, the sample mean of the 100 simulated forecasts; and column 3, the standard deviation of the 100

simulated forecast errors. Column 2 is very close to column 1, indicating negligible bias in the forecasting
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procedure. The standard deviations in column 3 are the bootstrap measures of random error in the forecasts,
one for each region. They are fairly high, compared with the mean values. The forecasts are subject to large

random error.

Table 1. Bootstrap forecast experiment for equation (9).
Estimation is by one-step gls. There are 100
bootstrap replications.

(1) (2) (3) (4) (5) (6)

Sample Mean  Sample Mean Standard Deviation RMS RMS
Region Actuals g; 99y Forecasts §; 150r 47 1005 — 7. 1008 Delta SE Delta SE  Bootstrap SE

1 .40 41 12 .063 .053 .094

2 .12 .14 .14 .050 .055 11
3 31 .32 12 .045 .055 .090
4 77 .78 11 .068 .055 .093
5 .44 .44 11 .043 .053 .079

6 .96 .97 .14 .073 .059 .10
7 .69 .69 12 . .065 .054 .095
8 .94 .94 .11 .084 .058 .091
9 .55 .56 13 .098 .057 .097
10 .63 .63 11 .061 .051 .087

Schmidt (1974) uses the delta-method to attach a standard error to a multi-period forecast. Applied
to the original RDFOR data, his method gives the results shown in column 4. As can be seen, column 4 is
much smaller than column 3, so the delta-method and the bootstrap give different results. Which is better?

Column 5 of Table 1 reports the results of a simulation experiment showing that the delta-method is
seriously biased downward. To do the bootstrap, we have set up a fully-defined simulation world, where the
parameters and the distribution of the disturbances are all known. In this world, the size of the random
error in the forecasts was determined empirically, and reported in column 3.

The experiment involved generating 100 starred data sets, which we index by «+ = 1,...,100. For the
1*" such data set, we can use Schmidt’s formula to estimate the standard error of forecast. For example, in

region 1, let SE; be that estimate. Then

is reported in column 5 of Table 1. This is smaller than the SD in column 3, by a factor of about two. And
likewise for the other regions.

The comparison between columns 3 and 5 is fair, being made within the same coherent simulation
model. In RDFOR, the delta-method substantially underestimated the random error in the forecasts, and

of course misses any bias which may be present.



Column 6 presents the results from a similar test of the bootstrap standard errors. The bootstrap
does better than the delta-method, but is still biased downward. The details for célumn 6 may be a bit
complicated, but the idea is straightforward. We check the bootstrap by trying it out in our simulation
world, where we know the answer. Column 3 in Table 1 shows the “real” size of the random error in the
forecasts. Column 5 shows the size of these errors as estimated by the delta-method, in a typical starred
data set. Likewise, column 6 shows the size as estimated by the bootstrap.

The experiment involves a nested iteration: at the “outer loop™ starred data-sets are built up one after
another in the way described earlier, and presented to an “inner loop” bootstrap for an estimate of the

standard error of forecast. The outer loop quantities g;,, a and so forth are defined as before. Let

Ty e
€14 = ¢4 — §;¢ be the residuals. Let & be the 10-vector (€} ,,...,€],,) of residuals for year t. Let u' be the
empirical distribution of {& : ¢t = 1961,...,1978}. So u' will change on each pass through the outer loop.
On each pass through the inner loop generate ¢;" for t = 1961,...,1995 as thirty-five independent draws

from p*. Construct a doubly starred data set: ¢, ' 960 = gr.1060 and for t = 1961,...,1995

g, = a, + b Cop + 8 hpp +d' e + € g -~ f v + €,
Obtain the doubly-starred parameter estimates @, ", B . f*" by the (gls.1) regression of q;, on cpy, hyy,
Prts 4,4+, and v, Compute the forecasts and the forecast errors in the conventional way. Repeating the
“inner loop” gives the bootstrap estimate of the standard error of forecast computed from one starred data
set. The “outer loop” may be repeated to develop the distribution of these bootstrap estimates.

Column 6 of Table 1 summarizes an experiment with 100 passes through the outer loop, and at each
pass there were 100 passes through the inner loop. Column 6 gives the root mean square of the 100 bootstrap
estimates for the standard error of forecast, each such estimate being itself the standard deviation of 100
doubly-starred forecast errors. Consider, for example, region 1. Let 7 index the outer loop, and ; index the
inner loop. On pass 1 through the outer loop and pass 7 through the inner loop, a doubly-starred forecast
error q;',g0r, — 4} 1a0r 1s computed; call this value ¢;;. On pass 7, the bootstrap standard error of forecast

is the standard error of the 100 numbers {¢,; : 7 = 1,...,100}: call this SD,. Then column 6 of Table 1

\ 100 ;V‘ESD‘ ~ .094

1=1

reports

This is the typical standard error of forecast for region 1 estimated by the bootstrap method, in the simulation
world. The “real” size of the random error is displayed in column 3 and is .12. Column 6 is uniformly smaller
than column 3, indicating downward bias in the bootstrap procedure. But the bootstrap is closer to the
mark than the results from Schmidt’s delta-method. Indeed the bootstrap is off by 20 to 30 percent; the
delta-method, by factors ranging from 2 to 2.5.

This finding does not diminish the interest in Schmidt’s formula, which applies for n large. The only

conclusion is that some care is needed in using the delta-method on finite samples, and the bootstrap may
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be more robust. Schmidt (1977) already indicates some need for caution, with a simulation study using

artificial data and normal errors. For similar results in a model without dynamics, see Freedman and Peters

(1984b£).
: After §§gi ng. a ?Eif; of Fbis QagiFr,. o
Professor H. Theil asked how much of the difference between columns 3 and 5 was due to the estimation

of the 10 by 10 inter-regional covariance matrix for the €¢'s in (9), and how much was due to the linearization
of ¥, which is a polynomial of degree 17 in B and €. Simulations indicate that the two sources make roughly
!

equal contributions. Of course, if the covariance matrix for the ¢’'s is known, the bootstrap performs very

well indeed.
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§5 Using the bootstrap to choose an equation

The bootstrap can sometimes be used to choose between two equations. For example, in equation (9),

consider relaxing the constraint that the coefficients be constant across regions. The new model is

grt = ar + brcer + Crhpe + drprt +erQri—1 + frip + €rt (12)

Assumption (10) on ¢,+ remains in force. Relaxing the constraints may reduce bias — but increase variance.
The bootstrap can be used to assess the trade-off: as it turns out, for the year 1995 at any rate, the reduction
in bias is almost exactly offset by the increase in variance. (The method outlined in this section can also be
used to compare non-nested models.)

Table 2 summarizes a bootstrap experiment which evaluates the forecasting performance for 1995 of the
model (12) on its own assumptions, as in Section 4. In Table 2, the standard deviations of the forecast errors
are more variable and on the whole larger than those appearing in Table 1, which gave a similar analysis for

equation (9). The regional patterns in Tables 1 and 2 are quite different: the constraints matter.

Table 2. Bootstrap forecast experiment for equation (12).
Estimation is by one-step gls. There are 100
bootstrap replications.

Sample Mean Sample Mean Standard Deviation
Region Actuals g7 1405 Forecasts §; |99 9r.1005 ~ Gr.1005
1 .71 71 .13
2 -.076 -.073 .074
3 .53 .32 .048
4 .93 91 .090
5 .94 .92 17
6 .83 .85 .23
7 1.24 1.18 .27
8 1.31 1.31 .097
9 .35 .39 .39
10 .94 .91 .16

The equation (12) can also be tested on the assumptions of (9). This involves constructing the simulated
historical data and the simulated future actual data according to (9), but re-estimating parameters and
forecasting using (12). The results of this bootstrap experiment are displayed in Table 3. The standard
deviations of the forecast errors displayed in the last column of Table 3 are quite large. This is because
the model (12) requires that sixty parameters be estimated. The variability in each estimated coefficient
contributes to the variability of the forecast.

-
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Table 3. Bootstrap model robustness experiment. The
generating equation is (9), the forecasting equa-
tion is (12). Estimation is by one-step gls. There
are 100 bootstrap replications.

Sample Mean Sample Mean Standard Deviation
Region Actuals g; |9q5 Forecasts §; 1o0: 9r.1905 = 4r.1005
1 .40 .45 .24
2 .12 .21 .39
3 31 .36 .25
4 77 .79 .19
5 .44 .49 .26
6 .96 .96 .22
7 .69 .69 37
8 .94 .89 .56
9 .55 .60 .32
10 .63 .60 .28

The roles of (9) and (12) can now be interchanged: construct the simulated historical and the simulated
future actual data according to (12), but re-estimate and forecast with (9). Table 4 presents the results of
a bootstrap experiment conducted this way. Here, the forecasts significantly undershoot the 1995 actuals.

However, the standard deviations are quite small.

Table 4. Bootstrap model robustness experiment. The
generating equation is (12), the forecasting equa-
tion is (9). Estimation is by one-step gls. There
are 100 bootstrap replications.

Sample Mean Sample Mean Standard Deviation
Region Actuals g/ 995 Forecasts §; jo0s, dr.1005 = 4r.1005
1 .71 47 .095
2 -.076 .22 .084
3 .53 .39 .089
4 .93 .82 .10
5 .94 .50 .091
6 .83 1.02 .12
7 1.24 .74 11
8 1.31 .97 .10
9 .35 .62 .11
10 .94 .67 .095

A diréct comparison of the performance of (9) and (12), when each is tested on the assumptions of the

other, can be made by calculating the root mean square forecast error. This criterion takes into account both

13



forecast bias and variability. Denote by FE, the forecast error calculated in the 7'" bootstrap repetition.

l 1o .
— FE;
\‘| 100 ;

Table 5 displays these values. Neither specification appears to hold an advantage. Although model (12)

The RMS forecast error is

tracks the future with less bias than does model (9), the large variability of the forecast errors from (12)

introduced by the many additional parameters nullifies that gain.

Table 5. Comparison of specifications (9) and
(12). RMS forecast error.

Generating Equation (9)  Generating Equation (12)
Region Forecasting Equation (12)  Forecasting Equation (9)

1 .25 27
2 .40 31
3 .25 ' .16
4 .19 .15
5 27 .45
6 .22 .22
7 .37 .51
8 .56 .35
9 32 ' 3

10 28 - .29
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§6 Conclusions

This paper demonstrates the use of the bootstrap to attach standard errors to multi-period forecasts
and to select between alternate model specifications in the context of a dynamic energy demand model fitted
by generalized least squares. By means of a simulation experiment we have shown that the bootstrap SE’s
are more reliable than the asymptotics based on the delta-method. This finding stands in agreement with

other results we have obtained concerning the quality of asymptotic formulae for SE’s.
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