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Abstract

Thte bootstrap, like the jack-knife, is a techniiique for estimiiatinig stanidard errors. The

idea. is to use Monte-Carlo simiiula.tioin, based oni a iioni-paramiietric estimiiate of the uni-

derlyivig error distributioni. The bootstrap will be applied to) an econiomiietric equatioll

describinig the demiiaiid for eniergy by industry. to determine multi-period forecastinig er-

ror. anid clhoose aimtonig comiipetinig specificat ionts. The delta-miiet lod for estiimatinig forecasst

errors turnis out to be too optimiiistic bv a factor of two.
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§1 Introduction

The bootstrap is a relatively inew statistical technique wlhiclh permiits the assessment. of variability in ani

est,imiiate usinlg just. the data at lhanid; see Efroni (1979, 1982). The idea is to resamiiple the original observationls

in a suitable way t.o construct "pseudo-data" oni wliclh thle estimator of interest. is exercised. More specifically,

the thieoretical distributioni of a disturbaince ternm is approximated by the emipirical distributioni of a set of

residuals. Measures of variability, conifidenice intervals, anid eveni estimlates of bias nmay theni be calculated.

In the regressioni case, the bootstrap is useful for investigationis wlheii nmatlhemiatical aiialysis cani give only

asymnptotic results. Withiin the scope of thte bootstrap are iioni-niormal errors, lag structures, anid generalized

least. squares withl estimiiated cova.riance miatrices. A previous pa.per (Freedlmiani anid Peters, 1984a.) comlpared

the performiianice of coiiventional asymiptotic estimiiates of stanida.rd error of coefficients t,o the performiianice of

a. bootstrap procedure in the settinig of a sinigle econiomiietric equationi: also see Daggett. anid Freedmiani (1984).

Thiis paper will inidicate hIow t.o use the bootstra.p t.o develop standard errors for miiulti-period forecasts, anid

to choose aimioiig comiipetinig equatioIIs. The imiaini finidinig is tia.t. in a real examiiiple, the delta-miietlhod for

estimating forecast. errors was t.oo optimiiistic by a factor of two.

The ba.lanice of this pa.per is organiiized a.s follows. Sectioni 2 gives a brief review of tIme bootstrap idea, in

the conitext of linlear econtomiietiric mimodels. Sect.ioni 3 gives ani eveni briefer review of genieralized least. squares.

The bootstrap is used to attachi stanidard errors to multi-period forecasts in Sectioni 4, antd to clhoose anmonig

competinig equations in Sectioni 5. Sectioni 4 also comipares the bootstrap to thte mietlhod of Sclhnmidt (1974,

1977). Coniclusionis will be drawii in Sectioi C6.

The approachi mia.y be distinguislhed froml the classical work of Biowii (1954), or Goldberger. Nagar,

aniid Odeli (1961): thte boot.strap uses simulation rathlier thiaii asympet.tics based oni Tavlor series, anid applies

t.o msulti-period forecasts. The work of Fair (1979, 1980) is closer in spiiit to time bootstrap, but, somsewlha.t.

differemit. ini detail: Fair assuimies that the disturbanice termis follow a mlultivaria.te niormial distribuitiomi, anid tla.t.

thle parameter estimiiates follow their nmultivar-iat,e niormial limiitinig distributioni. The bootstrap is distribut.iomi-

free, amid develops tIme appropriate fimiite-sample behla-vior for the estimiiates.

2



§2 The bootstrap

The bootstrap is described by Efroni (1979, 1982). Related papers, whlichiprovide atlheoretical basis for

usinig thie bootstrap are Bickel anid Freedmiiani (1981, 1983), Freedmiiani (1981). The bootstrap is a procedure

for estimiiatinig stanidard errors by re-samiplinig thie data ini a suitable way. First, ani iniform-ial overview of the

idea. In brief, theimiodelhias been fitted to data, by soimie statistical procedure; and there are residuals,

niamlely the difference betweeni observed anid fitted values. Somie stoclhastic structure wasc imiiposed on the

stochastic disturbanice term s, explicitly orimliplicitly, in the fittinig. The key idea is to resam pletlle residuals,

pIreservinig this stoclhastic structure, so the miiodel is tested against its own assuImiptioiis.
Assumiinig the miodelanldthle estimiia-ted paramiieters to be right, the resamliplinig geniera.tes "pseudo-data."

botlh for the past anid for thte future. Now the miiodel cani be re-fitted to the pseudo-data for the past, anid

usedt.o "forecast" the pseudo-data foI thie future.It this artificial world, the errors of forecast are directly

observable. The Monte-Carlo distributioni of suchl errors cani be used to approximiiat.e the distributioni of the

uniobservable errors in the real forecasts. This approximiatioln is thle bootstrap.

A variationi oni this idea cani be used to comipare two miiodels, testinig eaclh onie aga;inist the assuimiptioIIs
of the otlher. This inivolves genieratinig the pseudo-data. withl one iuodel; the seconid miodel is re-fitted to thle
pseudo-past, anid used t.o predict the pseudo-future. Tlhen the roles of thie two miiodels are initerclhaniged. In

this way. the bootstrap cani sometimes be uised to select forecasting equationis whlicii are relatively ilselnsitive
to specificationi error. Ani examiiple will be present.ed in Sectioni 5.

A miore explicit, but still iniformiial, descriptioni is as follows. Conisicer a dynamiiiclinear iiodel, of the

formiii

Y' =-Y,- I B + Xt C + Et (1)
Ix. ] Ix] #I

X
J
I X,1 ,
x 'IX Ix.l

In this equation, B antd C are coefficienit. mlatrices of unkniowni parameters, to be estimated fromi the data,

subject to idenitifyinig restrictionis; Yf is the vector of "endogenious" variables at timle t; Xt is tlle vector of

"exogenious" variables at. timie t; anid Et is the vector of disturbances at timiie t. The enidogenous variables are

deterninied within the msodel, the exogenous variables by somle externial process. Teclhniically, enidogellous
variablesmay be correlated with E, exogenous variables are nlot correlated withl E. The followinig standard
conditioni is imposed oni the error distributioni: given the X's, the e's are inidepenidenit and idenitically

distributed witlh mieani 0.

Data are available for t = 1, ..., n anid Y, is available too. The coefficient matrices are estimated as B

anid C by some well-defined statistical procedure, like genieralized least squares (Sectionis 3 and 4). The X's

are forecast for timiie t = n+1, ..., n+ m, by somiie procedure externial to the miiodel. The Y's are forecast frolmi
the model for this time interval by substituting B anid C for B and C in (1), setting E,,+1...I c,,+,,, equal

to 0, anid solving iteratively. Call these forecasts Y,,+ , . .., Y,, (Thlis forecastinig procedure is standard,
but not optimal.)
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In algebraic terms, I',, = Y,, anid for n < t < n + m,

= ±t I = Y'B t X1t+C

= Yt_,B- + XtCB + +t+XC

8 Bt XIt*,+ I CBt- . . . +XLt'B Xtat C

Here, Xt deniotes the forecast for XI at. time t > n. Likewise,

}t1= ,'.Bt 1 -"tz,+?1+1CBt -tt + XtC(B +X_-C

+ E,,_lBt-1' + . t. B -t- Et±i

The forecast. error Y,,l,,,- l,,,,, is due to:

* The difference betweeni B, C anid B, C.

* The termii involvinlg E,, ...., ,, Whlicli is dropped in miakinig the forec.ast..

* The differenice betweeni Xt anld Xt.

For ani aiialytic treatnment, of the seconid component in the liniear case, see Findlev (1984).

Coming niow t.o thle bootstrap, wlhent B anid C are comlputed, residuals are definied:

=t - Y4_B - tC ()

Thlese are estimiat.es for the true disturbanices ct in the miodel (1). Let p be tlhe emiipirical distributioni of

the residuals, assigninig mass 1/n t.o eachi of E', .. ., ?,,. To avoid trivial coml)lications. assume the equations

hiave init.ercepts, so thie residuals hlave mieaii zero.

C-onisider niext a miodel like (1), but. wlhere a11 thie inigredienits are klnowli:

* Set the coefficienits at B anid C respectively.

* Make the disturbanice termis inidepenident, witlh comimiioni distributiOnl j.

The exogenious X's, past. anid future both, are kept as before, as is iZ,. *Using tlhis sinmullationi imodel, pseudo-

data canl be genierated for the past, iianaely periods t = 1, . . ., n. These pseudo-data will be denioted by stars:

Y, . Likewise, the pseudo-future cani be genierat.ed: Y"+' .Y, ',>,,,. The conistructioni is iterative:

, =Y,), and for all t = 1, .. .,n m,

Yt = I7l1fi+ x + E' (3)

the E' 's beinig inidepenidenlt withi the comimiioIn distribution 8

Now pretenid the pseudo-data comiie fromii a niiodel like (1), withi unikniowni coefficienit miatrices. Using the

previous estimlationi procedures, estimiat.e thiese coefficienits fromii the pseudo-data; deniote the estimiates by B'

anid C*. Likewise, use the previous forecasting procedure to genierate a forecast. for period n + m; deniote this

by Y?*+.,. The distribution of the pseudo-errors Y,,+,,, - Ytl+ cani be comiputed, anid used to approximate
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the distributioni of the real errors Y',,,,, - Y,,±,,, This approximliatioIn is the bootstrap. It is eiiiplhasized thatt

the calculationi assumies thle validity of the imiodel (1), anid accurate forecasts of the exogenious variables. The

distributioni of tlhe pseudo-errors cani be comiiputed, e.g., by Monte Carlo, simiiply repea.tinig the procedure

somiie iiumlbei of timiies anid seeinig wlhat hiappenis.

The proceduie can1 be imiodified to take inito accouIIt. stociastic errors in forecastinig the X's as well as

mieasuremienit. errors in past X's. In effect, oni eachi run, the X's caii be perturbed to mimllic anly assumiied

error structure. Tlhat is, XI for t > n cani be replaced by a forecast. value Xt inivolving a stoclhastic error;
likewise, XI for t < n cani be replaced b) Xt, wlhichi differs fromii X, by mweasuremient. error. The distributioni

of these errors mlust be specified, anid this is a verv delicate thlinig to do. In this paper, the Xt will be hield

fixed. For ani applicationi of the idea, hlowever, see Finike. Flood, anid Tlheil (1984).

Turni Inow to nmodel comiparisonis. Suppose thlere are two comipetitive mlodels for a certaini data series.

Suppose eachi fits reasonably well. Suppose that eachi, if ani adequate representation of reality, is likely t.o

forecast. reasoniably well. How to clhoose betweemi the two miodels? This cani be inivestigated by a variation

on1 the foregoinig:

* Ise imiodel #1 to genierate the pseudo-data aiid pseudo-fuiture; but fit anid forecast withi miiodel #2;

comlpuite the pseudo-error of forecast It+,,, -
* Now initerchantge the two imiodels.

If, e.g., nmodel #1 forecasts well both oni its assumptions anid omi those of mlodel #2, wlhile mlodel #2 fails

in the world of miodel #1, tlheni miodel #1 is miore robust anld is to be preferred oni this grounid. A case of

interest is where model #1 is a simiplificationi of imiodel #2, and there is a trade-off betweeni precisioni anid

bias.

Ammotlher procedure, imiore in the spirit of Efroni (1983), involves creatinig a "nieutral" miodel, as a Iiniear

comlbiniationi of the two comlpetinig imiodels. This canl be fit.ted to thie originial data, and used to gelnerate

pseudo-data for both past amid future. In this imeutral simiiulatiomm world, thte forecastimig perforinammce of eacl

coimipetinig imiodel cani be studied, by fittinig it to the pseudo-past anid usinig it. to forecast the pseudo-future.

We do n1ot pursue this idea lhere. There is still ammotlher approachi described in Cox (1982), usinig likelilhood

ratio tests.
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§3 Generalized least squares

Conisider the miodel

Y =X- + E, E(E) =O, cov(t) (4)

Witih - kntowii, the genieialized least squa.res (gls) estimate is

= (AT X)iX (5)

As usual,

E(:,,1..) = , (6.)

Cov(Al)= (XT- 1) (7)

W'hleii E is unikniowni, statisticians routinely use (5) anid (7) with E repla-ced bv somie estimia.te '. Itera.tive
procedures are oft.eni used, as follows. Let 3tI) be somiie iiiitial estinmate for #, typically fromii a preliminary

ordinary least squares (ols) fit. There are residuals e'l = 'y _ ' Suppose the procedure lias beeii

definied tlirouglh stage k, witlh residuals

( 1k) = Y,

Let E.k be ani estimiiat.or for E, based oni e(k Tlieni

1) = (XTv 7X) IV, (8)

This procedure cani be continuiied for a fixed niumiiber of steps, or unltil . sett.les downi. To ease notation,

.(k) will be refered to as thte (gls.k)-est.imator. This paper onily considers the (gls,1) estimator.
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§4 Bootstrapping RDFOR

Thie object. of thiis sectioni is t.o illustrate the bootstrap procedure for determininig forecast. errors in a

real examliple, the Regionial Demiianid Forecastinig Model (RDFOR). This is a systemii of econiomiietric equationis

designied to forecast. deiiianid thlouglh 1995, for various fuel types, by coIIsumiiptioin sect-or anid geographical

region, as a funictioin of prices anid otlher exogenious variables. The focus lhere is on- that. part of thie mlodel
conicerned witlh the industrial sector demanid for fuel. For more deta.iled discussionis of RDFOR, see Freedmianii,

Rotlhenberg, and Sutclh (1983), and Kuh et al (1982).

The nmodel distinguislhes teni geographiical regions. inidexed here bv r. The equation for total demanid by

the inidustrial sector in geographical regioni r = 1,. 10 anid year t = 1961,..., 1978 is takemi as

qrt = ar+ Crt t chhrt * d Prt + eq7.t11 + f Vrt- Ert (9)

wlhere in regioni r anid year t: qrt is the log of ani index of fuel coiisumiiptioin, Crt is the log of coolinig degree

days, hrt is the log of lheating degree days, Prt is the log of a fuel price inidex, Vrt is the log of value added ii

mianiufacturinig. Ert is a stoclhastic disturbaiice term, anid ar, b, c, d, e, aiid f are paramieters to be estimiiated.

This particular equationi is the onie reported byv Kul et al (1982). Notice thlat. the coefficienits k. c, d, e, anid

f are comistanit across regionis; lhowever, thie initercepts ar are regioni-specific. The equationi is dyniamilic in thle

senise that the lagged endogenous variable qr.tI appears oni tlhe riglht lhanid side.

The assuImiptionis oni the stochastic disturbance terimis E,t a-re as follows:

E(c7t) = 0 for all r anid t. (10a)

The Ert are stochastically inidepentdeit, of tile Crf, hrt, Pri, aii(l t'rt- (lOb)

The vectors et = (Elj, .,.t) are inidepenidemit anid idenitically distributed in timle. (10c)

This miodel is outside the framiiework of stanidard regressioni tlheory because of the dyniamiiics: qrt is corre-

lated with ,.t-1. It is outside the framiiework of stanidard multivariate thieory because the coefficienits are

conistrainied to equality across regionis. However, equationi (9) does fit iinto thie framiiework (1) witlh q = 10

and p = 5 x 10 + 1 = 51; the coefficienit matrices are suibject to niumlerous colnstraiilts.

Historical data for estinmating this regressioni relationi were t.akeni fromii the SEDS (State Eniergy Data

Systemii) data base. SEDS was previously called FEDS. This data base is reviewed in Freedmiiani, Rotheniberg,

and Sutcli (1983). This data base conltainls the aminiual data required for the period 1960 tlhrouglh 1978. Tlle

fittinig period, hlowever, runs fromi 1961 to 1978: a year of data is lost due to tlle lag termi.

The nmain object of this sectiont is to indicate how the bootstrap cani be used to develop stanidard errors

for multi-period forecasts. The idea is that in the simiulationi world of tlie bootstrap, we cani observe botl

the actual value and the predicted value in the forecast year, say 1995; lienice we cami observe the differelnce,

wlhiclh is the forecast error. This idea will be illustrated oni equation (9), withi a historical period of 1960-78,

anid a forecast period of 1979-95. In the equation, the variables c, h, p, amid v are exogemious. They are

forecast over the period 1979-95 by some procedure external to the equation. (Value-added was forecast by
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the tS Departmiieiit of Eniergy; hieatinig aiid cooling degree days were set at the liistorical average valuies;

regionllu prices were forecast to inicrease at 5%/s; per year. The forecast. values will be deniot.ed b) lhat.s. The

values of the exogenious variables, for thte forecast period anid the historical period, will be lheld fixed ini all

the simiiulaltionls described below. Onlv the forecast vear 1995 will be colnsidered.)

The equationi (9) is used to forecast the enidogenous varia.ble qrt as follows:

* Estimate the coefficients usinig the lhistorical data froml 1960 to 1978.

* Set the disturbances Ert to their expected value of zero over thie forecast period, anid solve the

equa.tioni iteratively: q.l'qS= qI.-s anid for t = 1979,...,1995

= ar + brt + ,hrt + Jrt t eqr.t1 f+ rt (11)

To get. started oni the bootstrap, estimlate the paramiieters ini thlie miodel (9) usinig the data frolmi 1960 t.o

1978, obtaininhg the (yls,i) estimiates ar, 1, 6, d,d. aiid f, anid calculat.e the residuals frt .Let

be the 10-vector ( , . . *, .t) of residuals, anid ,u thle emlpirical distributioni of { t: t = 1961, ..., 1978}.

Make tlhirty-five inidepenidenit draws c' for t = 19(il, 1995 froii ,u. Let. Et deniot e the rt comiponienit of

E'. Coonstruct a starred data set witli thie resaniipled residuals: qr. I c. = qr.I9(;' anid for t = 1961, ..., 1995

q=tr + ) Crt tChrt d rt + e q;.t1 t+ Vrf rt

For t
=

1961, ..., 1978 the q't are simulat.ed historical data. FoI t = 1979,.. ., 1995, the qrt are siiuiula ted
future "actuals." Now imiake the forecast.s by thle stanidard procedure. but. using the simiiulated historical

data inist.ead of the real data. Ini particular, thie paramiieters ar. b', anid so fortlh are re-estimiated fronm the

starred lhist-orical data by thlie (gls,1) regressioni of qt oni Cr, hrt, Prt qrt anld Vrt Thte forecasts are mlade

iteratively as in (11): q =q1078 anid for t = 1979,...,1995

qt = ar b' Crt + 8 hrt + d2 Prt + t qr.e-i + f vrt

The result is a set of siiiulated actuals qrt anid forecasts qrt for t = 1979,..., 1995. Note that qrt qr
because , , and because q', incorporates Ert while qtt does not. The differelnce betweell thle future q"

anid the forecast 'qr is the forecast error. This procedure cani be repeated, getting niew starred disturbanices
oIn each repetition, to develop the distributions of

* the simiulated actual deimianid qr 1995

* the simulated forecast q" 99

* the simiiulated forecast error q. -q

Ta.ble 1 summiliarizes 100 replicationis of the boot-strap forecasting experimiienit just described. Coefficienits
were estinmated by (gls,l). Columnli 1 of the table displays the samiple mieani of thte 100 siimiulated actuals;

colunin 2, the sample meani of the 100 simulated forecasts; and columii 3, the staindard deviation of the 100

simulated forecast errors. Column 2 is very close to column 1, indicatinig negligible bias in the forecasting
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procedure. The stanidard deviationis in columniii O are the bootstra.p imieasures of ranidoimi error in the forecasts,

onie for eaclh regioni. Tlhey are fairly lhighi, compared witlh thte mieaii vallues. The forecasts are subject to laIge

ranidonm error.

Table 1. Bootstrap forecast experimiienit for equationi (9).
Estimlationi is by onie-step gis. There are 100
bootstrap replications.

(1) (2) (3) (4) (5) (6)
Sample Meani Samlple Mean Standard Deviationi RMS RMS

Region Actuals q1.9C,95 Forecasts q; q15r -q q9l' Delta SE Delta SE Bootstrap SE

1 .40 .41 .12 .063 .053 .094
2 .12 .14 .14 .05(0 .055 .11
3 .31 .32 .12 .045 .055 .090
4 .77 .78 .11 .068 .055 .093
5 .44 .44 .11 .043 .053 .079
6 .96 .97 .14 .073 .059 .10
7 .69 .69 .12 .065 .054 .095
8 .94 .94 .11 .084 .058 .091
9 .5-5 .56l .13 .098 .057 .097
10 .63 .C3 .11 .06 1 .051 .087

Schmiidt. (1974) uses the delta-mietlhod to attach a standard error to a mlulti-period forecast. Applied

to the originial RDFOR data, his mietlhod gives the result.s slhowni in coluiiiiii 4. As cani be seemi, columnii 4 is

miuchi smiialler thani columniii 3, so the delta-miietlhod anid the bootstrap give differentt results. W'hlich is better?

Columlln .5 of Table 1 reports the results of a simiulationi experimlentt slhowinig tlhat thie delt-a-miethlod is

seriously biased downtward. To do thle bootstrap, we lhave set up a fullv-definied simiulatioin world, wlhere the

paramneters anid the distribution of the disturbances are all kniowni. In tlis world, thte size of thle ranidom

error in the forecasts was determinied emipirically, anid reported in colulniii 3.

The experimiienit, inivolved generatinig 100 starred data sets, wlhichi we index by i = 1,.. .,100. For thie

jtf' suclh data set, we cani use Sclhniidt.'s formlula to estimlate the stanidard error of forecast. For exanmple, ill

region 1, let SEi be that estimate. Then

1z\
i-1 ZSE2 ; .05310

is reported in columniii 5 of Table 1. This is smiialler tlhan the SD in columnis 3, by a factor of about two. And

likewise for the otlher regions.

The conmparison betweeni columniiis 3 and 5 is fair, being niade withlinl thie samiie cohierenlt simiiulation

nmodel. In RDFOR, the delta-mietlhod substanitially underestimated tIme ranidoml error in the forecasts, amid

of course misses any bias whiclh may be presenit.
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Columniii 6 presenits the results fromii a simiiilar test of thlie bootstrap standard errors. The bootstrap

does better tlhan the delta-miethod, but is still biased downward. The details for cdlunin 6 Imia-y be a bit,

comiplicated, but the idea is straightforward. We clieck the bootstrap bv trvinig it. out in our simiulation

world, wlhere we know the answer. Columiin 3 in Table 1 slhows the "real" size of the ranidoimi error in thie

forecasts. Columniii 5 shtows the size of these errors as estimiat.ed by the delta-miethiod, in a typical starred

data set. Likewise, columniii 6 shows the size as estimiated by the bootstrap.

The experimient imivolves a inested iteration: at. the "outer loop" starred data-sets are built up onie after

aniotlher in the way described earlier, anid presenited to aii "inniei- loop" bootstrap for ani estimiiate of the

standard error of forecast. The outer loop quanitities q,t, a, ... and so forth are definied as before. Let

r= qrt- qrt be the residuals. Let be the C0-vector ( ..j) of residuals for year t. Let Mt be the

empirical distributioni of {t : t = 1961,.. ., 1978). So ,u will clhainge oni eachi pass tlhrouglh tihe outer loop.

Oni eacih pass thlroughi the ininler loop generate E'- foi t = 1961.... 199.5 as thirty-five inidepenidelnt draws

fromi p. Contstruct a doubly starred data set: q ' '

= qr.i9c'anqd for t = 1961. 1995

q = a+ba cr+c hrt +d prt + e qr1 f

Obtain thie doublv-starred paramiieter estimates ',
`

' .f by the (91s. 1) regressioni of q'; Oll Crt hrt,

Prt, q;.' anid Vr1. Compute the forecasts anid the forecast errors in the comivenitionlul way. Repeatinlg tlle

"inniier loop' gives the bootstrap estimiiat.e of thie stanidard error of forecast computed froimi onie starred data

set. The "outer loop" imiayv be repeated to develop the distributioni of thiese bootstrap estimiiates.

Columni 6 of Table 1 sunmmarizes ani experimiienit with 100 passes tHrough the outer loop, anid at each

pass tlhere were 100 passes through thle inniier loop. Columni C) gives thle root iimeani square of the 100 bootstrap

estfimiates for the stanidard error of forecast. eachi sucih estimiate beinig itself the st.anidard deviationi of 100

doubly-starred forecast. errors. Conisider, for examiiple, regioni 1. Let z indclex the outer loop, anld j index tlle

inniier loop. 0mm pass i tlhrouglh tilme outer loop amid pass j' tlhrouglh the inniier loop, a doubly-starred forecast

erroI q - is comiiputed; call this value e,,. Oni pass i, the boot.st.rap stamidard error of forecast.

is the stanidard error of the 100 numiibers {e.J j = 1,..., 100}: call this SD.. Tlheni coluIlimn 6 of Table 1

reports

100
\ 0O E SDt. .094

This is the typical stamidard error of forecast for region 1 estimiiated by tIme bootstrap mietlhod, iii the simulation

world. The "real" size of the ranidomn error is displayed in coluiiii 3 and is .12. Columniii 6 is ummiformiily smialler
thalin coluimini 3, inidicatinig downward bias in the bootstrap procedure. But tIme bootstrap is closer to the

mark tlhani the results fromi Sclhmiiidt's delta-miietlhod. Iiideed the bootstrap is off by 20 to 30 percenit; tile

delta-nmetlhod, by factors raniginig from 2 to 2.5.

This finiding does not diminiish the interest in Schimiiidt's formula, whlich applies for n large. The only

coniclusion is that some care is needed in usinig the delta-method onl finite sanmples, anid thie bootstrap may
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be mioie robust. Sclhmidt (1977) already inidicates somiie iieed for caution, with a simiulationi study usilng

artificial data anid niormial errors. For siiilar results in a miodel witlhout dynamics, see Freedmiiani anid Peters

(1984b).
Ater seeinsga draft-of this paper3.
'Professor H. Theil asked how much of the difference betweent columns 3 and 5 was due to the estimiatioln

of the 10 by 10 inter-regional covarianice imiatrix for the '8 in (9), aind lhow imiuchl was due to the liniearization

of Y, whlichl is a polyniomiial of degree 17 in B anid C. Simulationis inidicate that the two sources miake rouglhly

equal contributionis. Of course. if the covarianice miatrix for the 's is kniowii, the bootstrap performs very
well indeed.
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§5 Using the bootstrap to choose an equation

The bootstrap calii sometimes be used to clhoose betweeni two equationis. For examiiple, ini equationi (9),

coiisider' irelaxinig the coiistr-ainit thiat the coefficienits be conistanit across regionis. The niew nmodel is

qrt = ar + 1brCrt + Crhrt + drPrt + Crqr.t-I + frVrt + Ert (12)

Assumiiptioii (10) onl Ert renmainls ini force. Relaxing the conistraints nmav reduce bias but. increase varianice.
The bootstrap cant be used to assess the tra-de-off: as it. turnis out. for the year 1995 at. any rate. thlie reductioin

ini bias is aIlmost exactly offset by the inicrease ini varianlce. (The imietlhod outliined ini this sectioII cal also be

used t.o comiipare noni-nested models.)

Table 2 summiiiiarizes a bootst.rap experimienit. whlichi evaluates the forecastinig performiiance for 1995 of the

miodel (12) o01 its owni assuImiptioiis, as inl Sectioni 4. Ini Table 2, the stanidard deviationis of the forecast. enrors

are miore variable and oni the whtole larger tlhani those appearinig ini Table 1. whlichi gave a similar anialysis for

equationi (9). The regionial patternis ini Tables 1 antd 2 are quite differenit: the constraints miiatter.

Table 2. Bootstrap forecast. experimienit for equationi (12).
Estimlation is by onie-st.ep gls. Thter-e are 100
bootstrap replicationis.

Samiiple Meaii Samliple Meaii Stanidard Deviation
R egioni Actuals qr1,5 Forecasts q q - q.1995

1 .7{1 .71 .13
2 -.076 -.073 .074
3 .53 .52 .048
4 .93 .91 .090
5 .94 .92 . 17
6 .83 .85 .23
7 1.24 1.18 .27
8 1.31 1.31 .097
9 .35 .39 .39
10 .94 .91 .16

The equationi (12) caii also be tested onl the assumiptions of (9). This involves coIistructiing the simlulated
Ihistorical data anid the simlulat.ed future actual data accordinlg to (9), but. re-estimiatinig paramiieters anid

forecastinig usinig (12). The results of this bootstrap experimient are displayed in Table 3. The stanidard

deviations of the forecast errors displayed in the last columnii of Table 3 are quite large. This is because

the model (12) requires that sixty parameters be estimated. The variability in each estimiiated coefficient

contributes to the variability of the forecast.
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Table 3. Bootstrap imiodel robustniess experiment. The
generating equationi is (9), the forecasting equa-
tion is (12). Estimation is by one-step gls. Tlhere
are 100 bootstrap replicationis.

Sailiple Meani
Actuals qr.199

.40

.12

.31

.1 (

.44

.9C

.69

.94

.55

.63

Samiiple Meaii
FoIrecasts 'qr. I rb

.45

.21

.365

.79

.49

.9C)

.C)9

.89

.60

.60

Stanidard Deviation
qr. 105 qr. 1995

.24

.39

.25

.19

.26
).2'
.37
.5)6
.32
.28

Thte roles of (9) anld (12) canli IIow be initerclhaniged: coIIstiuct thLe simulated hiistorical anld the simiiulated

future actual data accoidiiig to (1A2), but re-estimiiate anid forecast, witlh (9). Table 4 preselnts tlle results of

a bootstrap experimiienit coniducted this wav. Here, thte forecasts significantly uniderslhoot the 1995 actuals.

However, the stanidard deviations are quite smiiall.

Table 4. Bootstrap imiodel robustniiess experimlenit. The
generating equationt is (12), the forecasting equa-
tiOln is (9). Estimationi is by one-step gls. Tlhere
are 100 boot.stra p replications.

Samiple Meani
Actuals qr.1995

.71
-.076
.53
.93
.94
.83

1.24
1.31
.35
.94

Samiiiple Meaii
Forecasts q.1995

.47

.22

.39

.82

.50
1.02
.74
.97
.62
.67

Stanidard Devia.tioni
qr.199- qr1995

.095

.084

.089

.10

.091

.12

.11

.10

.11

.095

A direct comiparisoni of the performanice of (9) anid (12), wheni eaclh is tested oni the assumptionis of the

otlher, canl be made by calculatinig the root miean square forecast error. This criterion takes inito accounit botlh
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1

3
4
5
C
7
8
9
10

R egion

1
2
3
4
5
6
7
8
9
10



foreca-st. bias anid variability. Deniote by FE, tihe forecast error calculated in the ii"' bootstrap repetition.

The RMS forecast. error is
E2

100ZFE

Table 5 displays these values. Neitlher specificationi appears to liold ani advantage. Altlhoughi miodel (12)

tracks the future witlh less bias thtani does nmodel (9), the large variability of the forecast errors fronm (12)

iiitroduced by the maniiy additional parameters niullifies tha.t gain.

Ta.ble 5. Comparison of specifica.tionis (9) anid
(12). RMS forecast error.

Genieratinig Equa.tioni (9) Geniera.tinig Equation (12)
Regioni Forecastinig Equationi (12) Forecast.inig EquatioII (9)

1 .25 .27
2 .40 .31
3 .25 .16
4 .19 .15
5 .27 .45
6 .22 .2
7 .37 .51
8 .56 .35
9 .32 .',0
10 .28 *.9
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§6 Conclusioins

This paper demonstrates thte use of the bootstrap t.o attach st.andard errois t.o multi-period forecasts

aind t,o select. between alternate imiodel specifications iii the context. of a dyniamiiic einergy demiiaiid imiodel fitted

by genieralized least. squares. By means of a simulation experimiienit, we lhave slhowni that. the boot,strap SE's

a.re mlore reliable tlhani the asyiiiptotics based oni the delta-mietlhod. This finidinig stands in agreemientt witl

otlher results we hlave obtainied concerninig the quality of asymiiptotic form-lulae for SE's.
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