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Statistics and the Scientific Method

by

David A. Freedman

Abstract. Regression models have not been so useful in the social

sciences. In an attempt to see why, such models are contrasted with

successful mathematical models in the natural sciences, including Kepler's

three laws of motion for the planets.

Author's footnote. I would like to thank the following persons for

their help with the essay--in one or two cases, rendered despite serious

disagreement with some of the contents: Persi Diaconis, Morris Eaton,

John Heilbron, David Hopelain, David Lane, Thomas Rothenberg, Richard Sutch,

Amos Tversky.
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1. Introduction
In the social sciences today, much effort is spent running regressions.

As far as I can see, the return on this intellectual investment has been
meager.1 If so, this raises two very difficult questions: Why is it that
regression models have had so little success? And why are they so popular?
As a partial answer, it may help to look at some mathematical models that
have succeeded. I have chosen a few, largely on the bais of familiarity.
They are not regression models. They happen to belong to the natural sciences
rather than the social sciences.

The comparison between typical regression models in the social sciences
and a select handful of the great natural science models may seem unfair or
even irrelevant. Hence it requires some justification. The point is not to
demonstrate the superiority of natural science: there are plenty of bad
models in biology or physics, and much good work in economics or psychology.
The idea is rather to examine some highly successful mathematical models for
natural phenomena, in order to understand the sources of their strength. The
history will be interesting in its own right, and may--or may not--shed some

light on the present issue: why have mathematical methods succeeded so well
in the physical sciences, and not so well in the social sciences?

My view is that regression models are in vogue in the social sciences
largely because of the success of other kinds of mathematical models in the
natural sciences. However, these notions of "model" seem so different to me

that covering both by the same term may be a source of real confusion.
Saying clearly what the differences are is not so simple , but the following
headings seem relevant: natural law, originality, depth, prediction,
stochastics, measurement, and replication. In brief, my points will be as

follows:

On natural law. The great models in the natural sciences result from
a search for truth, namely the laws governing the phenomena under
investigation. Such a model expresses in definite mathematical form the

For some evidence to support this contention see Freedman (1981) or Freedman-
Rothenberg-Sutch (1983), and the references cited there, especially-Christ (1975)
and Zarnowitz (1979). For similar critiques in other contexts, see Hendry
(1970), Karlin (1979), or Kiefer (1979). For related discussions on handling
experimental data, see Hausman and Wise (1982), or Zeisel (1982). For
complementary discussions, see Lucas and Sargent (1978) or Sims (1980, 1982).
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investigator's idea as to how the phenomenon really behaves. By comparison,

social scientists who do regressions are usually fitting curves: they are

modeling the data: see Neyman (1977). It should come as no surprise when such

curves lose their fit after a short time. An investigator who is not looking

for the truth will not find it.

On originality. The great models are brilliantly original; no two are

alike. Each one was discovered through an act of intellectual creativity

of high order. Regression models, by comparison, are right off the shelf,

On depth. In the natural sciences, the great models reflect profound

insight, and show real intellectual elegance. Typically the model succeeds

in explaining some very diverse set of facts on the basis of a few simple

axioms--including facts not available when the model was developed. However,

much hard thinking is needed to get from the axioms defining the model to the

conclusions about the world. With regression models, there is seldom much real

difference between the inputs and the outputs.

On Prediction. Models in the natural sciences are expected to make

sharp and nontrivial predictions about the future, predictions which can be

verified by direct observation. Some models even qive a large measure of

control over the phenomena. Models which fail such tests eventually get

scrapped. For a brilliant, if sometimes perverse account, see Kuhn (1970).

In the social sciences, regression models are seldom exposed to this kind of

risk. But models which are not subjected to rigorous empirical testing cannot

be expected to have much empirical content. And the standard statistical

tests are usually irrelevant, as will be argued below: the main reason is

that the tests themselves make assumptions which are not tenable.
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On stochastics. There are great stochastic models in the natural sciences,

and a lot of attention goes into testing their basic assumptions. After all,

it is the assumptions which define the model. Regression models too make

quite strict assumptions, explicitly or implicitly, about the stochastic

nature of the world. In most social-science applications, these assumptions

do not hold water. Neither do the resulting models.

On measurement. The great models in the natural sciences involve

variables which have been defined clearly and measured carefully. Such

claims can be made for few regression models in the social sciences. Good

models are hard to build on the basis of bad data.

On replication. In the natural sciences, the crucial experiments to

validate important models get replicated as a matter of course. In the

social sciences, few regressions get replicated. This comes back to the

point that few social science regression models are exposed to rigorous

empi rical testing.

I hope this paper will not be construed as making invidious comparisons

between the social sciences and the natural sciences: there are plenty of bad

models in the natural sciences. It is not an attack on the social sciences,

or even on the use of quantitative methods in the social sciences. Indeed,

statistics are clearly very useful in descriptive work; so are survey methods.

My critique is much narrower: the focus is on regression models and variants

like structural equation models. The criticisms seem to apply to many of the

papers in the present volume; for specifics, see Appendices I and II below.
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2. Some models in the natural sciences

In- 1609, Kepler published his laws of planetary motion: the first law,

for instance, is that planets move in elliptical orbits with the sun at one

focus. These laws constitute a "model" for the solar system.1 I use quota-

tion marks because Kepler viewed his laws not as a model, but as a description

of how the planets actually moved in space. The story of Kepler will be

discussed in more detail in section 7, to show his attitude toward natural law,

as well as the originality, depth and power of his discovery.

Kepler gave a brilliantly simple description of a very complicated set

of planetary motions. Twenty years later, the "Rudolphine Tables" were

published; these used Kepler's laws to predict the positions of the planets

in the sky, and were an imnediate practical success. The earlier Ptolemaic

and Copernican tables were often in error by up to 5 degrees in predicting

planetary positions; the Keplerian tables reduced the error by a factor of

30, to below 10 minutes of arc.2 Still, the mechanism behind Kepler's laws

was unknown. Half a century later, Newton provided the mechanism, whose

centerpiece was the law of gravity. Newton's theory looks very different

from the facts it explains. The law of gravity, for example, is that any

two bodies attract each other with a force proportional to the product of

their masses, divided by the square of the distance between them. This does

not seem to have much to do with an ellipse. However, Newtonian mechanics

implies Kepler's laws (including the elliptical orbits) by a strict mathematical

The language of "laws" and "models" does not cohere so well. For present
purposes, I will construe a "law" as one of the axioms defining a model.
However, such axioms are also truths about the world--although not neces-
sarily self-evident ones. This is an old-fashioned view. Friedman (1953) argues
that useful theory about the world can be developed from axioms which are
false as statements about the world. But this is only another proof of how
clever Milton Friedman really i's. Other investigators would be well advised
not to accept the handicap imposed by false assumptions.

2See Gingerich (1971).
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argument. To bring off this argument, Newton was obliged to invent large

parts of what is now called "the calculus." In this example, the inputs to

the model are very different from the outputs, and a lot of hard thinking is

needed to get from the axioms to the conclusions.

The word "gravity" is so much a part of our vocabularies now that the idea

may be difficult to appreciate. But in its time it was brilliantly original.

In fact, it was almost unthinkable for many of Newton's contemporaries,

and rather hard even for Newton himself, because it involved the idea of

action at a distance.

Newtonian mechanics has come to dominate our view of the physical

world, and has given us substantial mastery over that world. Guided by

Newton's theory, investigators can discover new planets by the anomalies

created in the orbits of the old ones;l and in this century, astronauts

land on the moon. The great models have empirical consequences.

Of course, Newtonian mechanics is not the last word. Einstein

discovered that Newton's laws were only a first approximation, applicable

to relatively small masses moving at negligible fractions of the speed of

light. But Newton's mysterious force of gravity turns out to be a conse-

quence of the very geometry of space--and the tensor calculus.

This brief history may indicate some of the originality, diversity,

and depth of the great mathematical models in physics, as well as their

See Grosser (1962). The existence and position of the planet Neptune was
deduced by Leverrier, from a study of anomalies in the motion of Uranus.
Neptune was first observed (through a telescope) by Galle. Two quotes:

It is impossible to satisfy the observations of Uranus without
introducing the action of a new Planet, thus far unknown... Here
are the elements of the orbit which I assign to the body...

Leverrier to Galle, September 18, 1846
The Planet whose position you have pointed out actually exists...

Galle to Leverrier, September 25, 1846
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explanatory power. There are similar stories in biology. In 1865, Gregor

Mendel proposed a statistical model to explain the mechanism of heredity.1
Seed color in peas, to take a famous example, was postulated to depend on a

pair of "entities," one from each parent. The transmission of these

entities from one generation to the next obeyed carefully-formulated

probabilistic laws, which successfully explained a maze of empirical data.

In this century, the physiological basis for the model has been thoroughly

explored, and most of it can now be photographed under an electron micro-

scope. A cell divides: and a chromosome is either on one side of the line

or the other, with a 50-50 chance. There is even a successful model for the

structure of the chromosome itself: the Watson-Crick double helix. Again,

it is hard to over-estimate the degree of understanding and control that

Mendelian genetics gives us. In the third world, for example, millions of

people live on the "miracle rice" developed at the International Rice Research

Institute, using Mendel's principles. The genetic model too captured the

truth. It was strikingly original and very deep. Its conclusions are

quite different from its assumptions. And it has great explanatory power.

Some references are Judson (1979), Rosenberg (1979), Freedman-Purves-Pisani
(1978, Chapter 25). An interesting sidelight is that fIendel's theory was
overlooked for nearly half a century, and then rediscoyered independently by
some ordinary, working scientists. The triumph is of method, as well as
genius.
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3. Regression models in the social sciences

In social-science regression analysis, the approach is very different. Usually

the idea is to fit a curve to the data, rather than figuring out the process

which generated the data. As a matter of fact, investigators often talk

about "modeling the data." This is almost peryerse; surely the object
is to model the phenomenon, and the data are interesting only because they

contain information about that phenomenon. Whatever it is that most

social-science investigators are doing when they construct regression models,

discovering natural laws does not seem to be uppermost in their minds.

The next point to make is that most statistical models in the social

sciences bear a strong resemblance to one another. Investigators have the

normal curve and regression, the multinomial distribution and logits, time

series and autoregression, used over and over again. Indeed, the choice

of statistical model is usually governed not by logic of the situation but

by the layout of the data files in the computer.

What about the use of social-science regression models to make predictions?

In such models, there is very little difference between the inputs and

the outputs. Investigators postulate a linear relationship between the

dependent variable and some explanatory variables, which may even include

thinly disguised versions of the dependent variable itself. They fit the

model by least squares, and theorize retrospectively about the coefficients.

(If the coefficients come out wrong, they respecify the equations.) Sometimes

they use the model to do simulations--for a world which will be never observed.

And that is where such modeling exercises usually seem to stop. This kind of

work is unlikely to lead to any real advances in the understanding of social

phenomena.
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4. Stochastics

Even off-the-shelf statistical models make quite strong assumptions

about the processes generating the data, and are likely to produce nonsense

if these assumptions fail. However, it is rare indeed to find an

investigator who takes these assumptions seriously--or who backs off when

confronted with the fact that the assumptions are clearly violated by the

phenomenon under analysis. Specific examples will be discussed in the

appendices to this paper.

In Mendelian genetics, by contrast, the stochastic assumptions are

taken very seriously indeed. Maybe that is one reason why statistical

models work so much better in genetics than in the social sciences.
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5. Measurement

In the natural sciences much importance is attached to careful measurement

work. The key variables get defined very cleanly. A lot of ingenuity, and

years of patient work, go into determining the fundamental parameters of

physical models: these parameters get connected to observable quantities. And

the investigators often manage to design the experiments so that measurement

error is held to a very low level indeed.

I will cite two important physical constants that seem almost

impossible to measure. The first is the charge on the electron. How can

youmeasuresomething that small? Millikan did it, using a drop of oil.

Or what about the speed of light, which is practically infinite?

Michelson is famous because he measured it. See Franklin (1980), Holton (1978),

Livingston (1973), and Swenson (1972).

With social-science regression models, it is altogether different. Few

investigators do careful measurer;ent work. Instead, they factor-analyze

questionnaires. If the scale is not reliable enough, they just add a few more

items. Such techniques are not serious, by comparison with the sort of

measurement work done in the natural sciences.1

For a well-known critical review of the accuracy of economic data, see
Morganstern (1963).
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6. Repl_ication

In the natural sciences, most of the crucial experiments and observations

are replicated not just once but dozens and hundreds of times. The really

classic ones even get incorporated into high school and college lab courses.

Replication is another characteristic feature of the natural sciences.

In the social sciences, by comparison, few studies are done more than once.

But replication is a relevant idea, even for ingestigators fitting regression

models to observational data. After running the regressions, the investi-

gators can collect some more data and see if the equations survive. Econo-

metricians are almost forced into this, because year by year new data comes

pouring in. And the half-life of a coefficient in an econometric model is

measured in months, not years. I do not wish to be unkind, but the contrast

is stark. Astronomers still use Kepler's model. He got it right.
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7. Some responses

There are three standard objections to my line of argument:

* Natural scientists can do controlled experiments; social scientists

cannot.

* Social scientists deal with more complicated problems than natural

scienti sts.

* Social science models should not be judged so harshly, because the

investigators are only doing data analysis.

My reactions are as follows.

On controlled experiments. Astronomy, for example, is mainly observa-

tional. And learning theorists in psychology do a lot of experimentation

on human subjects. Controlled experiments are very useful, but not crucial.

On complexity. Some problems in the natural sciences now look very

clean and simple, but only because of the analytical work that has been done.

To appreciate this point, imagine trying to figure out the orbit of tlars for

yourself. You go out on a clear night, look up into the sky, and see thousands

of points of light. Which one is Mars? To begin closer to the beginning,

which ones are the planets and which the stars? Continuing to watch for

several hours might only confuse matters further: for the pattern of the stars

will gradually change as the night wears on. Even recognizing this change

depends on prior knowledge; for it is hard to see the shifting pattern of the

stars without using the constellations.

It took many thousands of years of patient study before astronomers

were able to recognize the existence

of the planets ("planet" derives from a Greek word meaning "wanderer"), or

stars which moved against the background created by the constellations of

fixed stars. And even after astronomers recognized the fixed stars and the
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planets, they needed a theory to enable them to measure positions in the sky.

Such a theory was developed by the Greeks, who imagined the stars as

fixed to a heavenly sphere, with the earth at its center. This sphere

revolved once a day. The sun moved along the sphere in a path called the

ecliptic, compl-eting one circuit every year. And each planet moved along

the heavenly sphere in its appointed orbit. This theory now seems quaint

or even absurd. But in its time it was a brilliant advance, for it permitted

astronomers to record the positions of the planets by separating their

movement against the stars from the apparent daily rotation of the heavens.

So when Brahe and Kepler went to work, they could draw on centuries of skillful

observation and theorizing. The main elements of the problem had been identified,

and some techniques for making relevant measurements had been well developed.

One conclusion from this history: before scientists can make good

measurements, they need to have a clear idea of what it is they are going to

measure. In other words, good measurements often depend on good theory.

A second conclusion:insofar as the problem of the planetary motions now looks

clean and simple, that is the result of many centuries of hard work.

A final conclusion: the social sciences may well be at the pre-Keplerian

stage of investigation--the equivalent of figuring out which are the planets

and which the fixed stars. If so, using sophisticated analytical techniques

like regression is bound to add to the confusion. The problem is to define

the basic variables, to figure out ways of measuring them, to perceive the

main empirical regularities. Estimating coefficients by least squares before

The Signs of the Zodiac are the constellations through which the sun moves,
along the eclTic. Today, the ecliptic is defined as the apparent path
of the sun against the fixed stars.
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the basic variables have been understood is like using a scalpel to clear a

path through the jungle.

On data analysis. "Data analysis" is one of the current slogans in

statistics, but it is not a fair description of the kind of statistical

work usually done in the social sciences. Data analysts emphasize close

inspection of the numbers, displayed graphically. Conventional methods

involve histograms, scatter diagrams, and residual plots. The more radical

ones involve the stem-and-leaf, hinges, and hanging root-a-grams. But all

data analysts draw pictures. In the social sciences, graphical analyses of

the data are quite rare. Data analysts work very hard to develop models

for their data, and run diagnostics to see if the models are sensible.

They spend endless hours dealing with outliers, or changes in the relation-

ships from one region to another, or non-linearities. In the social sciences,

this kind of analysis too is quite rare. Data analysts seldom make conven-

tional statistical tests, like t, x2 or F, because such tests are valid

only under severely restrictive mathematical assumptions. There are few

statistical papers in the social sciences without a battery of such tests.

The conclusion seems inescapable. In general, social scientists who run

regressions are not doing data analysis. Instead, they are mechanically applying

regression models in situations where the assumptions do not hold. The computer

outputs--the parameter estimates, the standard errors, the t-tests--are

usually devoid of scientific meaning. Rather than facing up to this issue,

however, the investigators just label the outputs as "descriptive

IThe paper by Duncan in this volume is an example of what can be done by using
simple, and appropriate, statistical techniques for looking at data..
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statistics." This is a swindle. If the assumptions of the regression

model do not hold, the computer outputs do not describe anything: they are

mere numerical artifacts.
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8. The story of Keplerl

One of the great mysteries of the ancient world was how to explain the

motions of the planets, for their apparent paths in the sky were extremely

complicated. The problem was made even more difficult by the doctrines of

Aristotle and Plato, who held that the earth was stationary at the center

of the universe, and furthermore that the planets went around the earth in

perfect circles at constant speed--the rule of absolute motion. By ignoring

some of these obstacles, the Greek astronomer Ptolemy (second century AD)

perfected an astronomical system which explained the apparent paths of the

planets reasonably well.

Ptolemy had to depart from Aristotelian physics in several ways.

Perhaps most important was his use of the epicycle and equant. Take Mars

as an example. Ptolemy postulated that this planet moved at constant speed in

a circle called the epicycle (figure 1). The center C of this epicycle moved

in a larger circle (the eccentric) around the earth. However, Ptolemy placed the

center of this larger circle in space off the earth, and he did not make C

move at constant speed around this center. Instead, he introduced another

point called the equant. In his scheme, the radius vector joining C to the

equant swept out equal angles in equal amounts of time. As we know today,

Ptolemy was forced into these complications because Mars goes around the

sun, not the earth, and does not follow a circular orbit.

Using a half-dozen equants and two dozen epicycles, Ptolemic astronomers

were able to account fairly well for most of the observed planetary motions.

I am grateful to John Heilbron, Professor of History, UC Berkeley, for his
help with this section. Needless to say, I am responsible for all the
faults which remain. Some references are: Butterfield (1949), Dreyer (1953),
Koestler (1963), Koyrd (1973), Kuhn (1969), Russell (1964), Wilson (1968, 1972).
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Figure 1. Ptolemy's theory. Mars moves at constant speed in an
auxiliary circle called an epicycle. The center C of
the epicycle goes around the earth in a larger circle
called the eccentric. The center of the eccentric is
located somewhere in space, off the earth. There is
a further imaginary point called the equant, placed
as far in one direction from the center of the
deferent as the earth is in the other. The radius
vector joining C to the equant covers equal angles in
equal amounts of time.

EylI
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However, there were always some discrepancies between the predictions and

the observations. These discrepancies were especially noticeable for the

motions in latitude, that is, north or south of the ecliptic. The observed

changes in the distances between the planets and the earth, indicated by

changes in their apparent brightness, also presented a serious problem for

the theory. For these reasons,and perhaps because of the artificiality of

their constructions, Ptolemaic astronomers tended to regard their system as

a device for predicting the apparent positions of the planets,and not as a

true description of paths in space.

In the Middle Ages, however, many astronomers took Ptolemy very

literally indeed. They equipped the heavens with crystalline spheres



revolving on spheres to carry the planets along the epicycles. There were

endless arguments about how many spheres were needed, how they fitted

together, whether motion could be transferred from one to another, and how

many angels were needed to keep the spheres going. This state of affairs

went on until the time of Copernicus (1473-1543).

As most high school texts explain, Copernicus rebelled against the

Ptolemaic system, and taught that the earth went around the sun. However,

it was not that simple. What Copernicus seems mainly to have rebelled

against was Ptolemy's use of equants, regarding them as a violation of

Aristotle's rule of absolute motion. As Copernicus himself put it,

according to Koestler (1963, p. 145)

Having become aware of these defects, I often considered

whether there could perhaps be found a more reasonable

arrangement of circles.. .in which everything would move

uniformly about its proper center, as the rule of
absolute motion requires.

After many years of labor, Copernicus found such a system. Part of it

--the orbit of the earth--is illustrated in figure 2. As this shows,

Copernicus imagined the earth to move at constant speed in a perfect circle

around the point C. This imaginary point in turn moves at constant speed in

a perfect circle around the point B. Copernicus is not done, yet, for B also moves,

at constant speed in a perfect circle around the sun.
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Figure 2. The Copernican theory of the orbit of the earth. The
earth moves at constant speed in a perfect circle
around the center C, completing one orbit each year.
The center C moves at constant speed in a perfect
circle around the point B, completing one orbit every
3434 years. The point B moves at constant speed in a
perfect circle around the sun, completing its orbit
in about 53,000 years. This figure is adapted from
Dreyer (1953, p. 332).

The other planets all move on similar nests of circles, ultimately

centered on the imaginary point C, the moving center of the earth's orbit.

Copernicus says with evident pleasure (Dreyer, 1953, p. 343).

Thus Mercury runs in all on seven circles, Venus on five,

the earth on three, and round it the moon on four,

lastly Mars, Jupiter and Saturn on five each. Thus

altogether thirty-four circles suffice to explain the

whole construction of the world and the whole dance of

the planets.

Koestler (1963, p. 572) has complained that when Copernicus got down to

brass tacks, he actually needed forty-eight circles. Whether this is true

or not, the verdict of Butterfield (1949, p. 30) seems right:

When you go down, so to speak, for the third time, long

after you have forgotten everything else in this lecture,



there will still float before your eyes that hazy vision,

that fantasia of circles and spheres which is the trademark

of Copernicus.

Tycho Brahe (1546-1601)
From the Wolff-Leavenworth Collection

George Arents Research Library, Syracuse University

The next figure in the story is Tycho Brahe (1546-1601).

Brahe recognized that in order to solve the mystery of the planetary motions,

thousands of very accurate observations of their positions would be needed,

over a period of many years. He devoted his life to this task, and his

achievement marks the beginning of modern observational astronomy. This

approach was strikingly different from that of Copernicus, who so far as is

known made only twenty-seven observations on the planets.1 Eventually,

And in fact, many of the Copernican epicycles were needed to get the theory
to conform to certain observations made by the Arab astronomers--observa-
tions which have since been shown to be wrong. It is hard to build a good
model on the basis of bad data.

-19-
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Brahe tried to use his observations to piece toqether a theory

of the solar system. He made all the planets except the earth revolve around

the sun--while the sun went around the earth.

Johannes Kepler (1571-1630)
From the Wolff-Leavenworth Collection

George Arents Research Library, Syracuse University

Now I introduce Johannes Kepler (1571-1630). Kepler went to Prague in

1600 to join Brahe, who had just moved there from Denmark. Kepler spent

many years trying to fit Brahe's data on Mars by means of circular orbits.

But even with the best such orbit, the theoretical position of Mars on a

certain date proved to be eight minutes of arc away frorrr the position observed

by Brahe. Now eight minutes of arc is a very small angle. It is the apparent

size of a penny held at a distance of ten yards from the observer. As in

figure 3, a penny held ten yards from the eye covers both the actual position,

and the theoretical position of Mars computed from the circular orbit. However,

Kepler knew that Brahe was very unlikely to have made a measurement error that
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large. (Brahe's observations of. the planetary positions were accurate to

within four minutes of arc or so.) So this small difference forced Kepler

to break with the tradition of circular orbits, and in time led him to discover

the true shape of the planetary orbits. As Kepler said (Dreyer, 1953, p. 385),

To us Divine goodness has given a most diligent observer

in Tycho Brahe, and it is therefore right that we should

with a grateful mind make use of this gift to find the

true celestial motions.

Figure 3. Eight minutes of arc is the apparent size of a penny
held ten yards from the eye. The figure is not drawn
to scale, and the angle shown is about 100 minutes of arc.

Penny

<---.-- T,ri yar6 -.

What Kepler found was that the planets really move in elliptical orbits.

As figure 4 shows, an ellipse can be drawn by tying a loop of string around

two nails, tucking a pencil into the loop, and tracing a curve with the

string held taut. Each nail is a focus of the ellipse. The major axis goes

through the foci of the ellipse; the minor axis passes

half-way between the foci, being perpendicular to the major axis and some-

what shorter (figure 4). The ellipse was discovered by mathematicians in

ancient Greece, while they were investigating cones ; before Kepler, there

was absolutely nothing to connect this curve to the paths of the planets in

the sky.



Figure 4. The ellipse. The points S and F are the foci of an
ellipse; as P moves around the ellipse, the sum of the
distances PS+PF remains constant.
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Kepler's first two laws can be stated as follows:

* Each planet (including the earth) moves around the sun in an ellip-

tical orbit, with the sun at one focus.

* A planet moves in its orbit at varying speeds, in such a way that if

it is joined to the sun by an imaginary line, this line will sweep

out equal areas in equal times (figure 5).

Figure 5. Kepler's first two laws. Mars moves in an elliptical
orbit with the sun at one focus. The shaded area is
swept out by the radius vector as the planet moves
from P2 to PV. Equal areasare swept out in equal times.

The first law governs the shape of the orbit; the second, the rate of
motion along the orbit. The third law is that the square of the period of
rotation is proportional to the cube of the average distance from the sun.

p

I
5 F
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A theory assuming circular orbit for Mars causes only a small discrepancy

between predictions and observations, because the elliptical orbit of Mars

is in fact nearly circular: the ratio of the minor axis to the major is

199 to 200, compared to a ratio of one for a perfect circle.1

Kepler's attitude belongs to the great age of science. He was looking

for the true path of Mars in space, rather than a device for computing apparent

positions. Indeed, he seems to have been the first astronomer to define the

problem that way. He was willing to spend years on the search and in the end

go against centuries-old physical doctrine, because he was certain that the

true shape of the path would be accessible to the human mind. And his theory

had to explain all of Brahe's observations on Mars. Not some of them, or

most of them, all of them. He was guided by faith that some natural law would

be found to govern the shape of the orbit, if he could only see what that shape

was.

I sometimes have a nightmare about Kepler. Suppose a few of us were

transported back in time to the year 1600, and were invited by the Emperor

Rudolph II to set up an Imperial Department of Statistics in the court at

Prague. Despairing of those circular orbits, Kepler enrolls in our

department. We teach him the general linear model, least squares, dummy

variables, everything. He goes back to work, fits the best circular orbit

for Mars by least squares, puts in a dunmy variable for the exceptional

observation--and publishes. And that's the end, right there in Praque at

the beginning of the 17th century.

lUsing an eccentric circle, with speed regulated by.an equant, makes the
circular motion even closer to the elliptical one--down to the eight
minutes of arc.



Appendix I. Discussion of the Joreskog-Sorbom Paper

in this Volume

My major criticism of this paper has to do with the underlying model,

which the authors do not spell out in anything like enough detail. Once

stated clearly, the main assumptions may seem quite implausible. If so,

the analysis is without adequate foundation. Let me now state the assumptions

explicitly, following the Joreskog-Sorbom notation as closely as possible.

We have children indexed by c , each child belonging to some cohort

g ; tests i are administered at times t . Thus, Yg denotes the

score obtained by child c in cohort g on test i at time t . There

are four cohorts, three tests, and three times.

The model is summarized in two equations:

cit it it ct cit

(2) nct =g + 6ang + 69t t ctl ct

Here, rict is a latent variable, intended to represent child c's

"intelligence" at time t . The coefficients V? and X9 in (1)it it
relate the scale of the latent variable n to the scale of the observable

test scores y . The coefficients are assumed constant across children

within cohorts. For the bulk of the paper, they are assumed constant

across times and cohorts as well. Equation (2) states that n evolves in

an autoregressive way. Again, the coefficients are assumed constant across

children'.
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To finish specifying the model, it is necessary to spell out the

assumptions governing the "terrors"1 £ and 6 in (1) and (2).

I believe that the assumptions needed to justify the statistical manipulations

are the following:

(3) Children are independent, and within cohorts identically distributed,

i.e., the vectors

{cit ct' cit' t i,t = 1,2,3}

are independent across c's , with a multivariate distribution dependent

only on g .

(4) The E's are independent of the 6's

(5) The e's are independent across tests; however, dependence is allowed

within child and test across times: so £9g and Eg have non-zeroCis ci't
covariance which depends on g , i , s and t , but not on c

(6) The S's are independent across time; the variance of 69 is allowedct
to depend on g and t , but not c

(7) All variables are jointly gaussian -- that is, multivariate normal.

(8) The s's and d's all have mean 0.

These assumptions are not subject to direct empirical verification,

mainly because n is unobservable. However, they are inherently implausible.

To begin at the beginning, why should a child's intelligence be representable

as a single number? Many specialists in factor-analytic theories of intelli-

gence would reject this idea, leaving n without much appeal as a construct.

And whatever ri may be, why would it obey equation (2), especially with

all the other assumptions on the errors?
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The major assumption in the paper is perhaps (3), that children are

independent, and identically distributed within cohorts. Without independence,

the statistical computations reported by Joreskog and Sorbom have little

meaning. Of course, their computer package LISREL will do the arithmetic

in any case. If the independence assumption is wrong, however, the estimates

may be biased--or meaningless.

Joreskog and Sorbom do not discuss the sample design. With e.g. a

conventional cluster sample, some of the children in the study must have known

each other, played together, gone to school together, or even come from the same

family. Under such circumstances, independence is most unlikely. Ignoring these

inter-child correlations biases the estimates. Building them into the model

makes it under-identified.1

Next, consider the hypothesis in (3) that within cohorts, children are

identically distributed. Casual emoiricism and psychological doctrine alike

suggest that different children evolve in different ways -- so the coefficients

in (1) and (2) as well as the covariances of the errors may really depend on

the child in question. Again, if the model is modified to allow this kind

of person-to-person variation, it becomes under-identified. But without this

modification, the parameters may lose their meaning.

For the sake of argument, let us set all this aside for a moment, and

look at assumption (5), that the "measurement errors" £ in test scores are

uncorrelated across tests. This assertion too is quite implausible. Suppose,

for instance, that a child is depressed one year: this could easily lower

all the test scores -- producing correlated E's . Other sources of correlation

are easy to imagine. Building inter-test correlations into the model makes

it under-identified: leaving them out biases the estimates.

1Joreskog and Sorbom concede, in a footnote, that the independence "may be
questionable."
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Finally, consider assumption (7), that the variables are jointly

gaussian. Like (3), this is a strong assumption, and it is not stated

explicitly in the paper. But in the absence of this assumption, the log-

likelihood X2-tests in the paper have no scientific foundation.

These log-likelihood tests are the principal mode of statistical analysis

used by Joreskog and Sorbom, so they are worth considering in some detail.

To begin with, such tests cannot give any absolute, overall check on the

fit of the model to the data. The reason is that log-likelihood tests are

always nested, with some general hypothesis Hgen and a more specific

hypothesis Hspec The log-likelihood test takes Hgen for granted, and

asks whether the data are relatively more or less likely under Hspe . To

spell out the mechanics a bit, let L0(x) be the likelihood of the

(multivariate) data x if the vector of parameters is e . The test

statistic is

T = 2 log supeH La(x) - 2 log SupeEH L0(x)
gen spec

And-this is a measure of relative likelihood. It is a well accepted part

of the statistical folklore that asymptotically, on the null hypothesis,

T follows the chi-squared distribution. This can be proved rigorously

when

the likelihood function is smooth

Hgen and Hspec are open subsets of Euclidean spaces

C the parameter vector corresponding to the null hypothesis is an

interior point of Hspec .

See Cox and Hinkley (1974, pp 33.1 and 355); or Kendall and Stuart (1961,

Vol. II, p. 231).
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Joreskog and Sorbom do not cite any specific theorems whose

assumptions are satisfied in their application. Even if T is

asymptotically chi-squared on the basis of some unspecified theorem,

there still are some formidable technical problems. Each data point

(the test scores for one child) is nine-dimensional: 3 tests by

3 times. So there are 9 means, 9 variances, and ½ - 8 - 9 = 36 covariances

to estimate for each cohort, from about 200 children per cohort. This

only works out to 4 data points per parameter. The asymptotic theory, with

sample sizes going to infinity, may not offer any very reliable guide to

the sampling distribution of T in the present application. Finally, the

joint distribution of scores can hardly be exactly jointly gaussian. Minor

departures from normality may have a major impact on the distribution of T

Now let me waive all such technical objections to the log-likelihood

tests. The substantive interpretation in the Joreskog-Sorbom paper still

presents real difficulties. For instance, consider testing the hypothesis

Hpe that the "factor loadings" v it and X9 in (1) are constant acrossspec it i

cohorts g and occasions t . According to Joreskog and Sorbom,

The test gives x2 = 198.6 with 104 degrees of freedom.

Although the outcome is significant at conventional levels

of significance the residuals are generally small and in

view of the sensitivity of x2 the fit must be regarded

as a reasonably good one. We shall therefore consider the

measurement model to be invariant over occasions as well

as over cohorts. [p. 14, Draft of Feb/811

In fact, the p-value of this test is lO 7: i.e., if Hspec were right,

and the asymptotic theory were valid, we would have only one chance in ten
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million of getting a x2-value as big as or bigger than the one reported by

Joreskog and Sorbom. The only reasonable conclusion is that H isspec
wrong: the factor loadings depend on cohort and occasion.

Social scientists often argue that with large sample sizes, the X2-test
is bound to reject; so X2-points per degree of freedom is used as a measure

of goodness of fit. I am somewhat sympathetic to this argument, when the

model has any prior claim on our sympathy. However, the Joreskog-Sorbom

model is not simple, elegant and useful. It does not have any theoretical

justification. The only possible defence is empirical: it fits the facts.

However as the X2-test shows, H does not fit the facts--even if we takespec

Hgen for granted.

I now wish to sum up the statistical part of the discussion. The

model used by Joreskog and Sorbom is very incompletely specified in their

paper. When completely specified, its major assumptions turn out to be

untestable and in important ways implausible. If these assumptions are

wrong, the parameter estimates and associated standard errors may be

severely biased -- and perhaps meaningless. Even if the assumptions are

right, presently available statistical theory does not justify the paper's

principal mode of analysis: log-likelihood 2 tests. Clearly, Joreskog

and Sorbom have gone off on their own. A final summary point: waiving all

technical questions about these 2-tests, they flatly contradict

the specific hypothesis of the "measurement model," namely, constant

factor loadings: the p-value is about 10'7. Thus, the entire analytic

apparatus used by Joreskog and Sorbom is faulty, from top to bottom.

Having summarized the statistical discussion, I want to make a non-

statistical comment. Nothing seems to ride on the statistical analysis,

because all the inferences are about unobservables: the parameters governing
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the postulated stochastic distribution of the unobservable variable n . The

paper does not say anything about any quantity that could be observed. Not

only is the technical foundation of the analysis somewhat shaky, but its

scientific value remains questionable--until the unobservables are tied

into a theory which is open to empirical testing.
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Appendix II. Discussion of the Markus-Converse Paper

in this Volume.

The main intuitive idea seems to be that partisanship develops in a

dynamic way. The basic equation is a first-order autoregression:

(1) St= Oa + ~S t1 + Ut

where St measures partisanship in period t and ut is a disturbance.

The justification for (1) is that under certain circumstances, a

first-order autogression will have some qualitative properties in common with

the data. However, many other equations would satisfy the same criteria.

One such is

(2) S + I nS +

Another is

(3) St = Y(St-l) ut

These alternative specifications have quite different dynami cal properti'es

from (1), and might lead to different substantive conclusions. However,

Markus and Converse make no effort to justify the choice of specification

(1), rather than (2) or (3) or the infinite number of other possibilities.

Indeed, in the present state of the art, it is very unlikely that any such

effort could succeed. The theory is too crude to make such discriminations,

and so are the data. The authors concede this point, a bit obliquely, in

their footnote 3.
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Period effects are crucial to the argument in the paper. These are

incorporated into (1) by allowing a to depend on t:

(4) St = at + SSt1l + u

At time t, data is available for many different cohorts, which will be

indexed by i. So the model becomes

(5) Si t = at+ s i2t- i,t

Here, Si t is the average partisanship score of cohort i at time t.

The parameters in equation (5) are

* the period effects act

* the coefficient 6 --"stability"

These parameters are unknown, and must be estimated from the data. No

justification is given for the functional form in (5). Indeed, the paper

does not derive the autoregressive model from theory, or test it against the

data: instead, the model is simply assumed.

In the paper, almost nothing is said about the u's. However, their

behavior is crucial to the statistical argument, so a close look is in order.

It will be helpful to say clearly what the u's aren't and this involves some

preliminary discussion. The parameters act and S can be estimated by a

procedure called "least squares;" estimates will be denoted by corresponding

roman letters at and b. These estimates are found by minimizing the sum

of squares

(6) Ji,t(Si,t - at - bSi t.1)2
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Once at, b have been computed, S can be "predicted" from the

independent variables. The predicted value is denoted with a hat:

(7) Si5t =-at + bSi5t-1

There is a discrepancy between the observed value S. t and the predicted

value Si t. This discrepancy is called a residual, and denoted ui t: so

(8) Sj t = at+ bSi9t l +Ui,t

Equation (8) involves perfectly definite, tangible numbers, which can all be

computed from the data. I will call this equation the computer model for the

data. The computer model is different from the stochastic model (5). In

particular, notice the hats on the residuals in (8). This is to signal that

the residuals in the computer model are different from the disturbance terms

in the stochastic model (5).

The arithmetic behind (8), namely the minimization of the sum of squares

(6), can always be done. A computer neither knows nor cares about the stochastic

model (5). However, with some assumptions about the u's, minimizing (6) gives

very sensible parameter estimates.1 With other assumptions, the same

arithmetic leads to complete nonsense. Furthermore, the arithmetic does not

check itself to make sure it applies. The rule is caveat emptor. In order for

the regression to make sense, something must be assumed about the stochastic

disturbance terms u t in (5). Unless these assumptions are made explicity,

the stochastic model must be regarded as incompletely specified. The stochastic

model in the Markus-Converse paper is incompletely specified. So are the

stochastic models in all the other papers presented at the conference.

Markus and Converse use a more complex estimation procedure, designed to
compensate for measurement errors in the data. I will focus on ordinary
least squares, to simplify the exposition. For Markus and Converse,
different cohorts may be in the study for different periods.
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There is a standard set of assumptions to make about the stochastic

disturbance terms ui t' which justify the least squares estimation

procedures. In statistical jargon, these assumptions can be stated as

follows: the errors u.t are independent of one another, and are identically

distributed with mean 0. This translates into quite a definite story:

a story not about the data, but about the mechanism which generated the

data.

This mechanism is assumed to be like the following hypothetical procedure,

in which:

* The variables S.t are public--in the data base.

* The parameters at, 6 are hidden, not known to the investigator.

* There is still another hidden object: a box of tickets, each ticket

bearing a number; these numbers average out to 0.

I do not wish to seem patronizing, but to make the stochastic assumptions

as vivid as possible, I will introduce a fictitious character called "the MC"

(for master of ceremonies). The MC generates the data base, one period at a

time. Suppose we have gotten through period t-1. Focus on one cohort, say

cohort #1. Now the average partisanship score for this cohort is period t-1

has some value, S To generate St t'he MC draws a ticket at random

from the box, and makes a note of the number on it. Then the ticket goes back

in the box, for the future use, and S1 t is generated by the rule

s at + as + Uit

Exactly the same procedure is followed for the other cohorts: the errors
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u are always drawn (at random, with replacement) from the same box:i,3t
so they are independent of one another, and are identically

distributed. In particular, the u's show no trend or pattern. These

are the crucial assumptions about the mechanism for generating the data.

The MC and the box of tickets are purely fictitious--as are the

parameters at, 3. All the investigator gets to see are the data: the

Si ,te If the process which generated the data is like the one just

described, least squares is a good way to estimate the parameters at,a.

If the assumptions are wrong, a computer package can still be used to generatc

the least-squares estimates at,b. But these estimates may be biased, e.g.,

if there is serial correlation in the u's. Or the "standard errors" computed

by the package may be off, if e.g. there is correlation in the u's across

cohorts. Or there may not be any parameters around to estimate. So if the

assumptions are wrong, least squares can be an intellectual disaster. Do

the standard assumptions hold for the process in question? Markus and

Converse do not face this issue squarely. Their footnote 12 acknowledges,

again obliquely, that the assumptions are open to some question.1
The stochastic disturbance terms are unobservable. When you come

right down to it, there is only one way to show that the stochastic disturbance

terms satisfy the standard conditions: by argument a priori. This involves

developing some theory to show where the disturbance terms come from.2

Markus and Converse do not discuss the assumptions behind the Wiley estimation
procedure used for 5; nor the legitimacy of using that procedure for S
followed by ols for the a's, with S held fast at its estimated value: this
is not standard procedure. The ols estimate for 5 is .71: see footnote 11.
The Wiley estimate is .95: the choice of statistical procedure matters a lot--
and therefore assumptions are crucial to the analysis.

2For technical discussions of the impact of assumptions on performance of
statistical procedures, see e.g. Breiman and Freedman (1983), Freedman (1983),
Freedman and Peters (1983).
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One response to this kind of criticism is crudely empirical:

"But the model fits." So let us consider the fit. The model is autore-

gressive: partisanship this time is explained in part by partisanship

last time. Autoregressions are expected to fit quite well, because most

time series evolve smoothly: ordinarily, tomorrow will be rather like

today. The Markus-Converse model includes almost 20 period effects, one

for each election: even if some of the elections depart from the auto-

regression, the "period effects" should bring them back into line. The

model is run on aggregate data; this too usually promotes very hiqh correlations.

Even so, the r2 is only 0.7. Waiving all questions about the assumptions,

surely the crude empirical conclusion is that equation (5) does not fit: lots

of variance gets away.1

Another issue to consider is aggregation. Let us suppose, for the

sake of argument, that the Markus-Converse model (5) is correct--for individuals:

n,t n,t n n,t-1 n,t

Here, S is the n'th person's partisanship score in period t . Forn,t
the sake of argument, let us even stipulate to the standard assumptions

about the un,t : they are independent of one another and have a common

distribution with mean 0 and finite standard deviation.

The Darameters in (11) were deliberately subscripted: person

"n" has his or her own personal "period effect" an t and "stability

coefficient" 5n If these parameters are in fact constant across people,

then they can be estimated either from aggregate data or from panel data.

1A draft version of the paper gives the r2 on microdata as 0.3.
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But the basic assumption seems quite unlikely. To test it, separate

regressions would have to be run for each oerson in the panel study;

and the variability in the resulting parameter estimates would have to be

analyzed. Markus and Converse do not test this basic assumption, or even

mention it. If this assumption is false, the specification (5) is likely

to be quite wrong, and serious bias in the estimate of the stability coefficient

is likely; see Freedman (1981).

There is another way of looking at regressions. Suppose,

for example, that there was a stable population of voters in the United

States over the period of the Markus-Converse study. Index these voters

by n: so S t represents the partisanship score of individual n at

time t. If Sn,t was known for all periods and voters, it would be

possible to run the regression

(12) sn,t = at + asn,t-l + 6n t

That is, the parameters act a can be defined by the requirement that they

minimize the sum of squares
)2

3In,t(Sn,t at
- sn,t-1)

This definition shortcircuits any question about the errors

6nt they are defined by (12). The coefficients at, a may be

construed as statistics describing the population of voters. So far, so

good. The catch is that we cannot do the minimization in (13)., because

1In a draft version of their paper, they argue the weaker assertion, that
estimates from aggregate data and panel data are in reasonably good
agreement.

2Are these descriptive statistics any good? To find out, we have to consider
the same issues of linearity and homogeneity raised before, so this
reconstruction may only move the difficulty to another place.
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we do not have data on all the voters, but only on the ones in the sample.

So it is impossible to compute the parameters at 3. However, it is

possible to run the regression on the sample, hoping the coefficients

at, b obtained that way will be good estimates of the population values

at, X, hoping too that the standard errors printed out by the computer package

will indicate the accuracy of these estimates.1

Unfortunately, it all depends on how the sample was chosen and

how the residuals in (12) are related to the variables. TIhe conventional

assumptions of simple random sampling and homoscedasticity are embedded in

all the computer packages. But the design of the sample used by Markus

and Converse involved a series of repeated cross-sections. And each cross-

section presumably involved a multi-stage cluster sample. This design is

far from a simple random sample, so the standard errors computed by the

conventional formula can be off by a large factor. Markus and Converse

do not face the issues created by sample design or heteroscedasticity.

Neither did any other paper presented at the conference.

To summarize, the form of relationsihip among the basic variables

of the Markus-Converse paper is unknown, so there is no basis for the proposed

model or the estimation procedure. Therefore, the conclusions drawn by Markus

and Converse do not have adequate scientific foundation.

What are the alternatives? There is no easy, mechanical answer.

In particular, I think it would be wrong to introduce still more technique

(causal modeling, latent variables, two-stage least squares). I believe it is

necessary to begin much closer to the beginning. This means figuring out what

Of course, some of the basic assumptions needed to bring off this sampling-
theory justification are quite wrong. The population of voters over the study
period was not stable. Most of the regressions were run not on individuals
but on cohorts.
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the basic variables are, and how to measure them. It means collecting good

data. It means developing some theory and some ways of looking at the data

which will bring out the fundamental laws connecting the variables. Finally,

it is necessary to test the theory by making nontrivial predictions about the

future, and seeing whether they come true.
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