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ABSTRACT

Linear models are widely used in many branches of scientific inquiry.

The classical analysis of linear models, however, is based on a number of

technical assumptions whose failure to apply to the data at hand can result

in poor performance of the classical techniques. One method of dealing with

this which has gained some acceptance is the data-analytic approach, in which

graphical and numerical methods are employed to detect the ways in which the

data do not meet the classical assumptions and the data are modified

appropriately before the classical techniques are applied. Another approach

involves the use of robust methods which are appropriate under broader assumptions

and so may be utilized directly with the original data. The application of

one type of robust methods, those based on ranks, to problems of estimation

and testing in the general linear model is reviewed here.
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1. Introduction

The general linear model is one of the most widely used tools devised

by statisticians to help guide scientific inquiry. Applications of linear

regression, analysis of variance (ANOVA), and analysis of covariance techniques

abound in the physical, biological, social, and behavioral sciences, among

them economics, physics, psychology, sociology, medicine, and biology. It

is a basic truth, however, in mathematical modeling that great depth of

inference is usually arrived at only through greatly restrictive assumptions,

and linear models provide no counterexample to this statement. It is worthwhile

to consider these assumptions and to take up the question of what to do in

practice when some or all of them are not reasonable for the data at hand.

The general fixed-effects linear model can be written in the form

Yi g(xii, ....,xip ) + e ,i =1 ........., 11

Here (Yi ; x1,... ,x. ) is the ith of N total observations on the

quantitative dependent variable Y and the p quantitative or qualitative

(nominal or ordinal) independent variables xI...,xpI which are considered

to be under experimenter control and without random error; the e1 are

thought of as stochastic errors or disturbance terms. The Y and e; are

taken to be random variables and the xi to be fixed known constants. The

function g is assumed to be known and to be of the form

p
+ l x (1.2)
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in which the a are unknown parameters. A number of technical assumptions

are made in the classical analysis about the errors ei, which can be listed

roughly in order of increasing severity as follows: the errors are assumed

to have expectation 0, to be independent, to have the same variance for all

i, and to be identically distributed with density f; their density f is

assumed to be symmetric; and, finally, f is assumed to be a specific symmetric

density, the normal. Denote by Q* this full model with all of these assumptions.

Over the past fifty or so years in which the model has evolved in this

form (see Seal (1967) and Scheffe (1959) for some of the history), three basic

approaches have arisen for dealing with the issue of violation of these

technical assumptions:

(1) The data-analytic approach, in which graphical and numerical tools

like residual plots (cf. Draper and Smith (1981)), and quantitative methods

for the identification of influential observations (Weisberg (1980)), enable

one to detect and characterize the various ways in which the data at hand do

not fit the linear model assumptions. The data are then transformed in some

way, through deletion of outliers and other influential observations and/or

functional transformations on the observed x and Y values, and the classical

analysis is applied to the transformed data;

(2) The robust approach, in-which non-classical techniques are applied

which are sufficiently insensitive to deviations from the assumptions that

the data may be analyzed without modification; and

(3) The do-nothing approach, in which the issue of possible violation

of assumptions is never even raised and the classical analysis is applied

without question to the data.
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That the acceptance of method (3) is widespread even today can be seen

by observing, for example, that the ANOVA program in SPSS (Nie et al (1975)),

one of the most widely used statistical computing packages, does not permit

the user to examine in any way the residuals from the model fit. It is my

experience that many users of linear models simply are not aware of any need

to consider the assumptions built into Q*. Among practitioners of method

(3) there also seems to be a class of users who are acting in the hope that

the well-known optimality properties of the classical methods under Q*

continue to hold when some of its assumptions do not, and in the belief that

the classical analysis is robust against significant departures from these

assumptions. These hopes and beliefs persist in spite of evidence to the

contrary; it has been amply shown (cf. Bradley (1978), Scheffe (1959)) that

there are many deviations from the basic assumptions against which the

classical analysis is not robust, and much work has been done (Lehmann (1963b),

Huber (1981), and Bickel (1973), among many others) to show that techniques

exist which perform noticeably better than the classical methods when one

departs from some of those basic assumptions.

Among statisticians who see the need for methods to deal with violations

of the assumptions in Ql*, use of data-analytic techniques has been far more

prevalent to this date than use of robust methods. One of the reasons most

often given for this (see Hettmansperger and McKean (1978)) is that robust

methods so far have generally failed to satisfy the following criteria of

ready usability by the final consumers of the linear model analysis: Whichever

techniques are used

a) should have clear intuitive appeal;
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b) should be of a unified nature and of general applicability rather

than being put together in patchwork form out of solutions of

- separate but related problems; and

c) should possess simple, closed-form expressions, where possible.

It can be seen in recent work (Hettmansperger and McKean (1977), Draper (1981))

and will be seen in this paper that for some robust techniques these criticisms

are no longer valid.

Progress in robust methods in linear models has been based on generalizing

existing robust techniques for the one- and two-sample problems, and on starting

with the ideas which lead to the classical methods and replacing them at key

points with devices which make the resulting techniques more robust. This

work so far has concentrated primarily on the distributional assumptions in

Q*I not because violations of these assumptions are the most critical (they

are not-- departures from the homogeneity of variance and independence

assumptions have more serious consequences (see e.g. Scheffe (1959))), but

probably because this is the most analytically tractable area in which to

begin. Significant effort remains in the development of methods which are

robust with respect to violation of the non-distributional assumptions in

Q^. The considerable progress which has been made in the distributionally

robust metfiods has proceeded roughly along three parallel lines: the maximum-

likelihood-type or M-methods (Huber (1973)); the rank-based or R-methods

(Lehmann (1963b), Jaeckel (1972), Hettmansperger and McKean (1977)); and

methods based on linear combinations of order statistics, the L-methods

(Bickel (1973)). Each of these approaches has its advantages and disadvantages

in terms of robustness, efficiency, and usability. None of them clearly
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dominates the others in efficiency and robustness (Huber (1981)), but with

respect to practical considerations in implementation, like the ones above,

there are some differences. The L-methods appear to be the most awkward of

the three in generalizing to linear models (Huber (1981)), and, while the

M- and R-methods are both quite unified in their approach and intuitively

appealing, the R-methods (particularly in estimation) often have simple,

closed-form expressions while the M-methods do not. Atte-ntion is restricted

in this paper to rank-based methods. A survey of some existing rank-based

techniques which are robust with respect to departures from normality is

presented, and techniques are discussed which in many cases in addition permit

relaxation of the symmetry assumption. Though the emphasis here is on fixed-

effects models, several of the methods described would be expected to work

well in certain random-effects and mixed models also; this is discussed

briefly in Section 2.

Two rank-based approaches to linear model analysis are described below

in Sections 2 and 3: the analysis of variance techniques of Lehmann (1963b)

and general linear model methods of Hettmansperger and McKean (1976, 1977).

In both approaches the analogy with classical methods is quite strong; one

obtains robust estimates of functions of the parameters B and standard

errors for those estimates, and a robust version of the analysis of variance

table, complete with rank analogues of sums of squares, degrees of freedom,

and F-ratios (Lehmann (1963b), Schrader and McKean (1977), Draper (1981)).

Both approaches use the robust estimation techniques to construct confidence

regions and significance tests and carry out multiple comparisons, Lehmann

using Hodges-Lehmann two-sample estimates (Lehmann (1963a)) and Hettmansperger
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and McKean using the rank-based regression estimates of Jaeckel (1972).

Each method has its drawbacks -- the Hettmansperger-McKean approach as

developed to date requires the assumption of symmetry of the underlying

error distribution, and the Lehmann method only applies to ANOVA situations

with several observations per cell. Moreover, both approaches to testing

yield tests which are distribution-free only asymptotically, so that a check

on their small-sample behavior is needed. This paper describes results

pertaining to two issues -- the implementation of the Lehmann and Hettmansperger-

McKean hypothesis-testing techniques in a way which dispenses when possible

with the assumption of symmetry, and the carrying out of simulation studies

to investigate the small-sample properties of these techniques empirically.

Multiple comparisonsmethods and confidence procedures are not considered here;

for examples of the rank-based robust approach to these inferential tools

see e.g. Hettmansperger and McKean (1978).

It is worth emphasizing that the Lehmann and Jaeckel-Hettmansperger-

McKean methods represent an improvement over the previous Kruskal-Wallis-

and Friedman-type methods of rank-based linear model analysis in two ways:

(1) They address issue (b) above directly in that they present a unified

approach to the analysis rather than offering a collection of separate though

related procedures; and (2) The estimates and quantities based on estimates

from which the test statistics are constructed are on the same cardinal

measurement scale as the original data, i.e., these are not methods which

involve simply transforming the data to the rank scale. The basic distinction

is that the Lehmann and Jaeckel-Hettmansperger-McKean methods are not rank

methods-- they are robust procedures whose motivation stems from-rank methods.
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One advantage they thus possess over the data-analytic methods described above

in situations wherethe data are gathered on a meaningful scale on which it

is desired to carry out pairwise comparisons, etc., is that they permit such

analyses to occur.efficiently on the original scale, whereas the data-analytic

methods may only allow such comparisons to be performed efficiently on a

transformed scale in such a way that it is difficult or impossible to

reinterpret the conclusions back on the original scale. See Draper (1982d)

for more on this issue.

The asymptotic distributions of the estimates produced by both of the

rank-based estimation techniques examined in Sections 2 and 3 depend on the

error density f through 1/e, where

e _ J' f2(x)dx , (1.3)

so it is necessary to estimate 1/e to obtain tests and confidence regions.

.This estimation problem is studied in Draper (1982a); the principal results

are outlined in Section 4 below. Several different methods of estimating

1/e in the context of the linear model were investigated: the techniques

suggested originally by Lehmann (1963c) based on the lengths of confidence

intervals derived from the Wilcoxon one-and two-sample statistics, and a

method due to Schweder (1975) based on window estimation of f. All of these

approaches except the method based on the Wilcoxon two-sample confidence

intervals depend to at least some extent on symmetry of f about 0. The

asymptotic behavior of the methods was worked out and compared; it turns out

that asymptotically all methods studied perform equally well. The most

interesting consequence of this result is that the method not requiring the
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assumption of symmetry is seen to perform as well as those which do need

symmetry, so when applicable it is to be preferred. This method, when joined

with the Hodges-Lehmann two-sample or Jaeckel estimates, forms the basis of

an approach to the analysis of linear models with several observations per

cell which assumes of the errors essentially only that they are i.i.d.

A simulation study (Draper (1982b)) was performed to investigate empirically

the small-sample properties of the Lehmann and Hettmansperger-McKean testing

methods and the associated estimates of 1/e; the major conclusions of this

study are given below in Section 4. Bias of the 1/e estimates, and significance

level and power of the tests using both the asymptotic distributions and small-

sample improvements on them, were measured in a number of balanced and unbalanced

ANOVA models with several observations per cell. The success of the tests

in achieving approximately the desired level was seen to depend mostly on

the bias of the estimator of 1/e used and the choice of approximation to

the small-sample distributions of the test statistics. The Schweder-,ype

methods studied for estimating 1/e were shown to be subject to large bias

and hence to be unacceptable without modifications which adapt the estimator

to the underlying density. Such modifications have not yet been investigated.

The Lehmann-type estimates of 1/e are also in need of bias corrections,

but in thefr case simpler corrections are available, and several methods were

introduced and explored in Draper (1982b). When corrected the Lehmann-type

estimates of 1/e combine with both the Lehmann and Hettmansperger-McKean

testing methods to produce tests which under most circumstances have approximately

correct level and good to excellent power characteristics relative to the

classical methods. By studying the empirical distributions of the test



statistics, deviations of the observed level of the tests from the nominal

were seen to be due to nonoptimal choice of the approximations to the null

distributions. For best efficiency and type I error performance of the tests

it was suggested that'the approximations to the null distributions should be

chosen adaptively, and several methods of adaptation were proposed; see

Draper (1982b) for details. Even without this refinement, however, the tests

performed well in most situations studied.

The empirical small-sample efficiencies of the tests relative to the

classical methods were seen to agree well with asymptotic predictions and

to be quite stable even in the smaller layouts studied. As an alternative

to the construction of power tables for the rank-based techniques, this

makes feasible methods based on estimated efficiencies for determinin.g sample

sizes needed by the rank-based methods to achieve a desired power against

an alternative of interest. This issue is also explored in Draper (1982b).

In summary, then, this recent work, together with results of Hettmansperger

and McKean (1977) and others, provides rank-based methods which supply the

linear models user with a comprehensive analysis package, from estimation

and significance testing to confidence and multiple comparisons procedures,

which have excellent efficiency and robustness properties relative to the

classical methods; and which are sufficiently analogous to the classical

techniques that users should have little trouble adapting to them. It is

my hope that these and other robust methods of comparable quality will gain

increasing acceptance in the near future.

-9-
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2. The Methods of Lehmann: Analysis of Variance, Several Observations

per Cell

The model which Lehmann (1963a) considers for ANOVA with several observations

per cell can be written

i pij e. i=eij n = N Is (2.1ys~~~~~~j = 1,+jj.i............,n; i-l n ....... 21

in which the e1j are independent, identically distributed (i.i.d.)

continuous random variables with density f satisfying

0 E f f2(x)dx < Xo (2.2)

2~~ ~ ~

and a2 = Var(e..) < o. Here v is a measure of centering for the ith

of I total cells, YVi is the jth of the n. observations in cell i,

and N is the total number of observations. For the pi to be identifiable

an assumption is needed on the manner in which the distribution of the errors

e.. is centered at 0; for example, if E(e..) = 0 is assumed then pi
is the mean of the distribution of the observations in cell i. In much of

this section the cell centers pi are not as relevant as the differences

j -ij~ between cell centers, and identifiability of the is not necessary.

In such cases the identical distribution of the e1j is enough for p'i - j

to be identifiable as the size of the shift in a two-sample -shift model using

the observations in cells i and j. In what follows, when an assumption

is needed for the identifiability of pi the condition E(e..) = 0 will
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be understood, in which case Ui is the ith cell mean; in other cases where

the choice of centering is immaterial ui will be called the ith cell center.

The above continuity assumption on the e.. and consequently on the

Y.. is made to avotd technical complications involving ties in the ranking

of the data. When ties are present in linear models data they are often due

to the measuring process having made a conceptually continuous variable discrete,

and in such situations, provided the size of the roundoff is not large, the

methods below may be applied with little harm in acting as if the rounding

had not occurred (cf. Lehmann (1975)). The finiteness of 0 and a2 are

needed because division by 1/e and a2 play a role in what follows; these

conditions place little practical restriction on the use of the methods. Note

that the notation of the model (2.1) is most natural only for the one-way

layout, but larger layouts can be accommodated simply by numbering the cells

from 1 to I.

Hodges and Lehmann (1963) had shown earlier how to use rank tests

like the one- and two-sample Wilcoxon procedures to construct robust estimates

of the center of symmetry of a distribution and the size of the shift in a

two-sample shift model, and Lehmann was looking for a way to apply these methods

to linear models. For widest applicability of the results it was preferable

to adapt the two-sample Hodges-Lbhmann estimates, because there is no assumption

of symnetry implicit in their derivation (as there is in that of the one-sample

estimates), so this suggested trying to estimate ui - j for i # j in a

robust fashion. Lehmann reasoned that this would be sufficient as a basis

for robust versions of many of the most useful classical techniques, since

most inference in ANOVA (linear hypothesis testing, multiple comparisons, etc.)
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is based on contrasts in the cells means, and any contrast

I I
= lc1i I Ci = 0, (2.3)

is expressible in terms of differences in the cell means:

I I
Cilci = I bij(i - pj) . (2.4)

i=l ~i=l jir131i

Note that the b.. are not unique. It is not possible with this approach

to obtain estimates of the cell means themselves or of the grand mean

N=_N n i (2.5)

which essentially corresponds to the intercept term aOin the model Q*

of the previous section. In effect, Lehmann was treating the ANOVA setup

as an I-sample shift model and obtaining estimates by working separately with

the (I) 2-sample shift models embedded within it. (With a different

approach Lehmann (1963a) also extended the Hodges-Lehmann one-sample estimates

to linear models with several observations per cell, and (1964) applied

rank-based methods to some linear models with one observation per cell, but

this work is of less generality and is not discussed further here.)

Lehmann found that the simple Hodges-Lehmann estimates of the - pj

D.. = med YjkY -Y : k = l,...,n; 1,...,n (2.6)ikj9,~~~~~~~
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the median of the set of all pairwise differences among the observations in

cells i and j, were unsatisfactory, since these estimates do not satisfy

the linearity constraints which the Pi - uj themselves do:

(i- uj) + (Pi -k) (Pi Ik) (2.7)

but

Dij + Djk # Dik (2.8)

This makes them unsuitable as a basis for tests of linear hypotheses about

the pi. He proposed instead adjusting the Hodges-Lehmann estimates and

estimating - vj by

Wi. = Dj - Dj , (2.9)

where

D = I Dik (2.10)
k=l1

The linearity problem was thus removed, at the cost of offending intuition

by using observations in cells other than i and j to help in the estimation

of Pi--j. Lehmann pointed out, however, that the size of the influence of

cells other than i and j on the estimator of vj - uj tends to 0 in

probability as the sample sizes increase. A different drawback of this

estimation method was noticed by SpjOtvoll (1968) -- cells with unequal numbers of
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observations get equal weight in the calculation of the D0. Spj0tvoll

suggested several ways of remedying the situation, the simplest of which was

to work with

I
Wij = Di - Dj , D. = N1 k nkDikD (2.11)

This is the form of Hodges-Lehmann estimation which is used in what

follows. Note that D is an estimate of

N Ink(Pi I k) = i p (2.12)
k=l

and that, since D.. = -D. ,

i n.D. = 0. (2.13)

A natural estimate of the contrast (2.4) is then

I
i-l I biW ii (2.14)

It seems on the face of it that the resulting estimate will not be unique,

since the bj are not; but in fact it is straightforward to show that, by virtue

of the above linearization, all choices of b lead to the same estimate of p.

Lehmann's method of constructing robust tests of linear hypotheses based

on these estimates was to look at how the classical tests worked and to replace

the classical estimates by their robust analogues, the Wi. A linear



-15-

hypothesis H in the model (2.1) amounts to placing some number q of

linearly independent constraints on the vector (1l .I) of cell means,

so H can always be expressed in terms of a statement that this vector lies

in an (I-q)-dimensional subspace of IR. The classical test statistic for

such a hypothesis is based on

C= ni(Y. _;**2 , (2.15)

where

ni
yi. = i Y../n. (2.16)

and (i1,.'"I) is the projection of the cell means vector into the subspace

of IR specified by H. This statistic, when divided by the variance a2
of the error distribution, possesses a chi-square distribution with q degrees

of freedom under H when the error density f is N(O,a2), and under mild

regularity conditions (see Huber (1972))

C/a2 x2 (2.17)
under H q

as n ,...,n1 +X even if f is not normal. If a2 is not known, it is

of course necessary to estimate it to obtain a working test statistic for

H; with any consistent estimate a2 used in place of a2 in the denominator

of (2.17), the asymptotic distribution will still be X . The classical

estimate of a2 is
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'2 1 2i(.8a = (N-l)- I I (Y. Y . (2.18)
=1 j=l 13

which, when divided by a2 and multiplied by (N-I), is X
2 when f is

normal, so that since a and C are independent the ratio

FC = (C/2a 2/ = (2.19)
[(N-I)o /a ]/(N-I) a

has a null F distribution with q and N-I degrees of freedom under

normality.

Lehmann's (1963b) approach to obtaining rank-based tests of linear

hypotheses involving contrasts was in effect to note that W.. is an

estimate of pi - pj, with corresponding classical estimate Y. -Y

so that rewriting the classical numerator as

I2
il ni a .(Y. - Y.)] , (2.20)

which is always possible since the j are linear functions of the Y

the robust analogue of C becomes clear:

I2
L= n1 a W. (2.21)

i=l /#

Another way to put it, considering (2.12), is that Di and Y - Y (where
N= n.Yi.) are estimating the same thing, U'. - j), so that the analogue of

C I nI aij [(Y -Y) - (Y -Y)] (2.22)
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is

L = i ni. a Dj(D (2.23)

It is usually not necessary in practice to determine the aij; to obtain

L for a given problem one simply replaces the quantities Y. - iin the

classical numerator by Di (or, equivalently and even more simply, in view

of (2.13) one can replace just Yi, by Di).

Example 1. In the one-way layout, for the usual hypothesis

HA : 11 = *.. = (2.24)

(here q = I- 1), the classical statistic assumes the form

I 2~
CA = l n.(Y - Y) , (2.25)

so the robust numerator is simply

I -2
LA = I n Di . f (2.26)

i=l

Example 2. Consider the r be c two-way layout with equal numbers,

say n, of observations per cell. The usual notation for this model is

y - ii+ct.+ yi +e = l, ..jk,c , (2.27)
i k= l,...n
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subject to the side conditions

r

i=l i Q (2.28)
c

j=l mi

for all Q = 1,...c

the usual analysis of

and m =

variance

l,...,r. The three hypotheses addressed by

table are

HA : al =.* = ar = 0

HB : a1 = *S0 = ac 0

HAB : Yll = ... = yrc =

The classical numerators for HA, HB, and HAB can be expressed as

r

CA = nc I (Y.i0
i=l

c2

cB = nr jl (Y*. - Y

r c2
CAB

= n jl (Y j Y )
_

CA cB

(2.31)

(2. 32)

where as in (2.16) the dot notation indicates averaging over the indicated

subscript(s). Here Y U. and Y... play the roles of Y . and Y above,

and

Y. - Y
1*a 4

(2.33)
1 c

= c I (Y.. - Y
j=

r
I O

1-,

c

j-l

(2.29)

- y )20 0 0
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and similarly for Y,j. - Y..., so

follows:

co 1 umn

row 1

2

r

1

numbering the I = r * c cells as

2 c

the robust numerators, in the notation of model (2.1), come out

A cil (1

LB = nr jIl (r

LAB = n
I

1=1

c _ 2

-l Dj+(i-l )C

r - 2

i=lJ+( 1- C,

LA LB

This approach of replacing classical estimates by their robust counterparts

in the classical test statistic numerators to obtain the robust numerators

works, of course, only when closed-form expressions exist for the classical

statistics. This excludes many situations in unbalanced two- and higher-way

layouts. In problems of this type the classical numerator is often found in

effect by solving a system of linear equations in the Yii, or, equivalently

by sufficiency, in the Y. (cf. Scheffe (1959), section 4.4) to determine

1 2 *- c

c+l c+2 * 2c

.* . 0
* 0 0 0

* . 0 0

(2. 34)

(2. 35)
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the l., after which the pi are substituted into (2.15); no closed-form

expression for the resulting numerator will be possible. In such cases the

form of the Lehmann numerator is equally obscure, but its value can be found

simply by replacing the Yi. by the Di in the system of equations whose

solution determines the classical numerator and proceeding as in the classical

case.

Example 3. In the r by c two-way layout of Example 2 with unequal

numbers n of observations per cell, the robust numerator for HA is

derived by analogy from the classical to be

r Dj+(i-l)c e .9 .(-)A i-lI i 5-I 0 [i..-l (j=l +(i-l)c ); J=l jJ+(-)]
LA= nj(l) r~1~n(i.)c) j~ j(..)] (2.36)

j=1 i+(i-l)ci=l j=lj (i)c

and similarly for LB; but it is necessary to solve a system of linear

equations to obtain the form of the classical numerator for HAB. so that

no simple expression exists for either the robust or the classical numerator

in that case. D

The analogy between the classical and robust procedures carries over to

the asymptotic distributions. Lehmann showed that

D2 D2LIaR d H (2.37)
under H

where



-21-

ICY = (12e2)r1 = [12(ff2)2j-1 (2.38)
R

plays the role for the rank-based numerator which the error variance a2
plays for the classical statistic. Their ratio

a la 12a2( (2.39)

is the asymptotic relative efficiency of the robust procedure to the classical;

this is just the familiar expression for the efficiency of the Wilcoxon one-

and two-sample procedures relative to the corresponding classical t-methods.

Table 1 gives some values of this efficiency as well as values of a2 and
R

1/8 for various distributions.

TABLE 1. a2, 1/e, and asymptotic relative efficiency
of Lehmann's two-sample ANOVA methods to the classical.

Distribution f a2 1/e a2 eL C(f) =a 2a2

Standard normal 1.0 3.544 1.047 0.9549

Standard logistic 3.290 6.0 3.0 1.097

x2 with 8 degrees 16.0 12.8 13.65 1.172
of freedom

Skewed mixed normal
(X=0.75, 11=0, a01=1, 2.426 4.670 1.817 1.335

I2 l.9, 02=2)
(X=0.82, p1=°. a0=f-l 3.558 4.535 1.714 2.076
112=1.99 a2=3.5)

t with 3 degrees 3.0 4.353 1.579 1.900
of freedom

Any f >-- --- >0.864
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The skewed mixed normal distribution referred to in Table 1 has cumulative

distribution function (cdf)

F(x) = X?{(x- 1)/a1 + (1 - X)4(x-I 2)/a2] ' (2.40)

where c is the standard normal cdf.

It can be seen that considerable efficiency gains are possible using

the rank-based methods on heavy-tailed data, with a loss of only about 4%

efficiency for normal data and with a potential loss for any distribution

never to exceed about 14%. These are of course asymptotic results, but, as

is documented in Draper (1982b), empirical small-sample efficiencies support

these figures in designs with as few as N = 10 total observations.
2Just as in the classical case, aR, the denominator of the test ;ta --tic

in (2.37),will not be-known in practice and it is necessary to estimate it

to obtain usable test statistics, and just as in the classical case replacement

of a2 by any consistent estimate a2 will result in a statistic whoseR y n ossn e a R

limiting distribution is still
2

. The estimation of a2R is described in

Section 4 below.

Lehmann's original proposal was to obtain critical values for the usable

test statistlc

L/:C^r2(2.41)L/R

from this 2 distribution, but, as is discussed below and shown in

Draper (1982b), the distribution of
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^ 2 2vaR/aR (2.42)

is approximately 2 for a v which depends on the method used for estimating
2 ad adA2 a

a and L and CT are approximately independent under H, so that a better

small-sample null distribution for the ratio

FL = L/q (2.43)
(vaR/laR)/v aR

is the F distribution with q and v degrees of freedom.

As Lehmann pointed out (1963b), the above rank-based test statistics

would be expected to work well in certain random-effects and mixed models

as well as in the fixed-effects model (2.1), but that possibility has not

yet been investigated.

A computer program to carry out the Lehmann estimation and testing

procedures in arbitrary one-way layouts and balanced higher-way layouts with

several observations per cell, usina a denominator estimate a2 describedR
below in Section 4, is available from the author.



3. The Techniques of Jaeckel and Hettmansperger-McKean: General Linear Model

The model considered by Jaeckel (1972) in his development of rank-based

estimation methods, and by Hettmansperger and McKean (1976, 1977) in their

application of Jaeckel's methods to hypothesis testing, is the general fixed-

effects linear model of Section 1:

p
()Y = + Ix af3 + e. , i = 1,o..,N , (3.1)j=l J

or, in matrix form,

(Q2) Y = 6 + x a + e , (3.2)
N 1 N 01 N p 1 N 1

in which as in model (2.1) the ei are i.i.d. continuous random variables

with density f such that both 0 = ff2 and a2 = Var(ei) are finite;

x is a matrix of known constants. Jaeckel's work simplifies and makes more

usable in practice an approach to robust estimation in the linear model due

to JureEkova (1971), who was generalizing the work of Hodges and Lehmann

(1963) described above on inverting rank tests to obtain estimates. Jaeckel's

starting point is, like Lehmann's in Section 2, with the classical estimates;

but his rank-based modifications are quite different. He considers the errors

or residuals e1 as a function of the parameter vector 0'= ( 9 ,.,3p),
p

e (a ) = y-i I x.. , (3.3)1 1 ~a j=l 133j



and seeks estimates which make the residuals as small as possible. The

measure of residual size minimized by the classical estimates is the ordinary

Euclidean square norm,

DC[e($)] Ije(s)1 -e2N)

N
= 2 e(i)(8)*e($)() ) , (3.4)

in which e(j)(s') is the ith ordered residual. Note however that the

size of a vector of observations z = (zl ...,zN) has both a dispersion

component and a centering component; for example, the Euclidean square norm

of z can be written

2 = liz l2~ 21 2(3.5)

N
where z is a vector all of whose elements are =i

An alternative to minimizing (3.4) in arriving at the classical estimates

involves first minimizing only the dispersion part of (3.5) applied to the

residuals, ||e-j= NVar(e). This yields the classical estimates $.,
not of all of the a but only of (CS,. .., ), since this dispersion

m 1 ~~~~~~p
measure is translation-invariant and s6 drops out. Then the centering

part of (3.5) with the previously found (6l'*** substituted

in is minimized to yield 6 . In effect, first the model (3.1) is recast60
so that 0 is regarded as the center of the distribution of the ei; then

3 = (Sl'sp is estimated by B; and finally S0 is estimated as the
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center of the residuals Yi - (xA)i. Note that in the usual method of

arriving at the classical estimates, in which 1ell 2 is minimized as a

function of a0 as well as of (3l. Sp) the minimizing condition which

specifies 6 in terms of (al' 'p) is e = O, 50 the classical measure

of residual size (3.4, 3.5) can also be thought of as a dispersion measure.

This alternative approach is the one taken by Jaeckel and Hettmansperger-

McKean. As in the classical case Jaeckel also restricts himself to translation-

invariant dispersion measures and makes no attempt to estimate o;
Hettmansperger and McKean later proposed a rank-based estimate of a0 which

is described below.

The trouble with the classical method is that the classical dispersion

measure (3.4) places too much weight on the extreme residuals when the data

contain gross errors or have a distribution with tails heavier than those

of the normal. Jaeckel's dispersion function replaces one of the ordered

residuals e(i) in the product in (3.4) by a value or score a(i) based

on it which gives less weight to the largest and smallest errors:

N N
D [e(a )] = i a(i)e( &) = a[R1(')]e-(a) (3.6)

where R;(&') is the rank of e1(8 ) among el(' ),...,eN(§'). To insure

the translation invariance of D Jaeckel requires of the scores a(i)

that they sum to zero; with this condition Dj[e(a )] no longer depends

on So

N
Djy - ao -x6] Dj[y - xa] a=Ril - -[Y (x6);] , (3.7)
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where RiW is the rank of Y1 - (x1)i among Y- (x)l,...,YN - (xB)

Further, in order that the resulting dispersion measure D be convex, and

thus readily minimized, the scores must be monotone:

a(l) <...s a(N) . (3.8)

Hettmansperger and McKean add to these requirements that of symnetry of the

scores,

a(i) = -a(N+l - i) , (3.9)

an assumption which is not necessary in general and which is natural only

in the context of the assumption that the e1 are symmetrically distributed

(a restriction which is also not needed in Jaeckel's estimation of

(al '*. .'6p) .

Different choices of the scoring function a(*) give rise to estimates

with different properties. The simplest are the piecewise constant sign

scores

aa() = sign[i/(N+l) - 1/2] (3.10)

and the linear Wilcoxon scores

aW(i) = i/(N+l) - 1/2 ( 3.1 1 )
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Other possibilities include Van der Waerden-type normal scores,

aVw(i) g [i/(N+l) - 1/2] (3.12)

and a mixture of sign and Wilcoxon scores proposed by Policello and

Hettmansperger (1976), in which a fraction, m/2 say, of the residuals at

each end are given sign scores and the remaining (1 - n) in the middle

receive Wilcoxon scores.

Choice of scores is based on a compromise between resistance to outliers

and gross errors on the one hand and efficiency considerations on the other.

The sign scores have excellent resistance properties but are too inefficient

for most data. In the one- and two-sample problems the Wilcoxon scores are

known to strike a good balance between efficiency and robustness for many

distributions. Hettmansperger and McKean (1977) suggest choosing the scoring

function adaptively, by using the data to estimate the optimal fraction of

sign and Wilcoxon scores in the Policello mixture. Wilcoxon scores are con-

sidered exclusively here; further work is needed to see if optimizing the

scores by adapting them to the data at hand significantly improves the

performance of this method. (The same investigation could be undertaken for

the Lehmann approach of Section 2, in which the Wilcoxon scores were used

implicitly; see Hodges and Lehmann (1963).)

It is convenient in what follows to renormalize the Wilcoxon scores

aW and use instead

aW(i) = 121/2Ei/(N+l) - 1/2] . (3.13)



-29-

(In general, one way to construct normalized a(i) is to base them on a

score-generating function ¢:[0,1] -1R as follows:

a(i) = A- [i/(N+ 1)]

in which

2 ~~~~12A2 = 2f2(u)du

For the Wilcoxon scores Qw(u) = u - 1/2 and 2 1/12. See JureEkova

(1971) and Hettmansperger and McKean (1977).) The resulting Wilcoxon-type

dispersion measure is

1/2 1i=NDjW[Y - x6] =12 /(N + 1 )1 [Ri s (N + 1 )/2][Y' - (x$)1i

Solving for the A which minimizes DjwEV-x8J yields the rank

analogue of the normal equations:

N
ix(ixi)ER (jw) - (N + 1 )/2] 0O j = 1,...,P,

where

N
Xj = N-1 I x..i i- i=1 1

The "equations" (3.17) are solved in the sense that a value of Bjw is

(3.14)

(3.15)

(3.16)

(3.17)

(3.18)
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sought which makes the left-hand side of (3.17) as close to 0 as possible.

The resulting solutions typically do not have closed-form expressions, and

iterative computer methods are generally needed to find numerical solutions.

Hettmansperger and McKean (1976) have investigated several algorithms, in-

cluding steepestt descent and regula falsi, and report good results with both.

Even worse, however, than the solutions to (3.17) not having closed-form

expressions, the solutions are not necessarily unique; but Jaeckel (1972)

showed that the diameter of the solution set is bounded and goes to 0 in

probability as N -+ c. In theoretical situations where this indeterminacy

is troublesome, a unique estimator can be identified by taking the centroid

of the minimizing set or by minimizing DjwLY-xsjwi (3.16) over all in

the solution set to (3.17). In practice the simpler approach of just being

satisfied with whichever point in the minimizing set the iterative convergence

has yielded seems to work well. Note however that, due to differences in

computer hardware, the same computer program to perform the iterative search

for
""

run on different computers may yield somewhat different estimates.

Example 4. One situation in which the Jaeckel estimates based on Wilcoxon

scores do have a closed-form expression is in linear regression with only one

independent variable. Rewriting the model (3.1) in this case as

Y = a + sx1 + ei , i = l,...,N , (3.19)

the Jaeckel estimate of the slope a, which was first derived by Adichie

(1967) (although Adichie did not realize that his estimator had a closed-

form expression and Jaeckel did not recognize his estimator to be the solution
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of the equation which implicitly defined Adichie's estimate ) is a weighted

median of the set

((Y -Yi)I(x- xi), (i,J) 3 xi # X.} (3.20)

of all pairwise slopes, in which the weights are proportional to the absolute

distance lxi - xjl between the independent variable values. This model is

examined in more detail in Draper (1982c), in which a new rank-based robust

alternative to the Adichie-Jaeckel estimator is proposed for use in models

with several observations per cell. Note that in the usual two-sample shift

model, in which n of the x; are 0 and the remaining mr N -n are 1,

the Adichie-Jaeckel estimator is simply the two-sample Hodges-Lehmann estimate

of the shift 8.

As described above, estimation of a with the Jaeckel-Hettmansperger-

McKean approach involves applying an estimator of location to the residuals

e; =CY- (xJ); As in Section 2, in order that 80 even be identifiable

it is necessary to specify the manner in which the errors e are regarded

as centered at 0; if for example E(e.) = 0 is assumed then S8 is the

mean of the distribution of the random variables Y- (x8)i. If the ei
are further assumed to be synmnetrically distributed about 0, then a reasonable

choice for an estimate of 80 is the one-sample Hodges-Lehmann estimator

applied to the e, namely

= med {(e* + e-*)/2, 1 < i < j< N , (3.21)
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the median of the set of all pairwise averages of the residuals Y. - (x)

This is Hettmansperger and McKean's recommended estimate of 0S

How can the Jaeckel estimation technique serve as the basis for tests

of linear hypotheses? McKean and Hettmansperger's (1976) approach to

constructing tests based on the Jaeckel estimates was, like Lehmann's, to

take as a starting point the classical techniques. In testing a hypothesis

H which places q linearly independent restrictions on the a vector, it

is convenient to parameterize the model (3.1) in such a way that the design

matrix x has full rank p. Denote by w the model Q plus the restrictions

imposed by H. Expressed in terms of the classical residual dispersion

measure, the classical test statistic for H is based on

D DC[Y - x6§,c] - D [y - X^,C] (3.22)

the amount of extra lack of fit imposed by accepting the model w over and

above that inherent in Q. Here Sw,C and C are the estimates which

minimize the classical dispersion measure under w and Q, respectively.

As in Section 2, this statistic, when divided by the variance a2 of

the error density f, is 2 under H when f is normal, and under the
2same mild regularity conditions as in Section 2 is asymptotically X even

if f is not normal. As before it is typically necessary to estimate a ;

the classical estimate is

NA2 _1 A 2
a=[N -(p+1)]Y [YE -(x^ )3-23]

i=l 1 -0,C i o,C] *(.3
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where

N
=09 N1 I EYi (XeQxc)~Io,C ~~i=l

is the sample mean of the full model (Q) residuals Y - X^8 C

The asymptotic null distribution of D*a2 is still 2 but since

[N- (p+l)]a2 X24(p+l) and DC and a2 are independent under normality,

a better small-sample distribution when F is normal for

F = (D*/a2 )/q D /q
C (EN-(p+l)]a la }/[N-(p+l)] a

under H is Fq,N (p+l)

Hettmansperger and McKean proposed using the same approach but with

the Jaeckel dispersion measure instead of the classical. With the Wilcoxon

scores this involves basing a test of H on

DA ADJW Dq[-XXjW] - DjW[y - x^n,JW]

where as above 6 and are the parameter estimates under w

and Q, rdspectlvely, which minimize the Jaeckel dispersion measure.

They found that

2D/lR2JWaR under H Xq

where as before

(3.26)

(3.27)
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aR = l2l/21 1212( ff2)1f (3.28)

Note that, unlike in the Lehmann method, e enters into the asymptotic

distribution of the test statistic through 1/e rather than through 1/62

Even so, Hettmansperger and McKean showed that, as was the case for the

Lehmann method, the asymptotic efficiency of the Hettmansperger-McKean

approach relative to the classical is a2/a2R = 12a202. Thus the Lehmann

and Hettmansperger-McKean methods are asymptotically equally effective.

As in Section 2, with any consistent estimate aR of aR the limiting

null distribution of

2DJW/aR (3.29)

is still 2 and this was the distribution originally proposed in practice

by Hettmansperger and McKean. They later (1977) found that the Xq distribution

is too light-tailed for use in small and moderate-size samples. In searching for

a heavier-tailed approximation to the small-sample distribution of 2D*w/&R,
they suggested, without much justification except by analogy with the classical

methods, the approximation of the null distribution of

(2D*/g)/aR (3.30)

by the Fq,N (p+l) distribution. The success of this and other approximations

is discussed in Draper (1982b) and in Section 4 below.

The distribution of 2D*W/aR under alternatives to the null was also
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considered by McKean and Hettmansperger (1976). They studied its behavior

for a sequence of alternatives contiguous to the null and found that its limiting
2distribution under such a sequence is noncentral x with q degrees of

freedom and noncentrality parameter

2aC/al (3. 31)

where S is the noncentrality parameter for the noncentral x2 distribution

of the classical numerator under the same conditions. The same argument

applied to the Lehmann numerator L of Section 2 yields the same conclusion

about its limiting non-null distribution, raising the possibility of approximating

the distribution of FL (L/q)/Ga (2.43) under an alternative by F

the noncentral F distribution with q and v degrees of freedom and noncentrality

parameter SR .(3.31). The usefulness of these asymptotic facts as the basis

of small-sample power approximations is addressed empirically in Draper (1982b).

Note that the assumption of symmetry of the error density f about 0

is used in the Hettnansperger-McKean approach in three ways: in the estimation.

of 3 ; (as will be seen in Section 4) in the construction of the denominator

estimate aR; and implicitly in the choice of a syrmnetric scoring function

for the Jaeckcel estimates. In the testing of many linear hypotheses it is

not necessary to estimate a0, and in some linear models estimates of aR
are available which do not require the symmetry assumption (S,ection 4). Thus,

as Draper (1982b) shows, in some contexts the Hettmansperger-McKean method

will perform well with asymmetric as well as symmetric f.
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4. Empirical results

The following is a brief description of results pertaining to the estimation
oa2 tr2

of a through estimating e = ff or its reciprocal, and to the empirical
small-sample performance of the rank-based robust testing ratios of Lehmann

and Hettmansperger-McKean outlined above. For more detail see Draper (1982a,

1982b).

Two approaches to the estimation of a2 in linear models were investigated:
aR

a method for estimating 1/e due to Lehmann (1963c) based on the lengths

of distribution-free confidence intervals, and an approach to the estimation

of e due to Schweder (1975) based on kernel-type density estimation of f.

The Lehmann method has both one- and two-sample versions, which derive from

the idea of estimating 1/e with normalized lengths of confidence intervals

based on the Wilcoxon one-sample (signed rank) and two-sample (rank-sum)

statistics. Schweder's approach to estimating e yields a one-sample

method based on the notion that e = f2 = ff dF, where F is the error

cdf, can be estimated by
"

5 ff dF, in which F is the empirical cdf and

f is a kernel- or window-type density estimate of f. In linear models with

several observations per cell like (2.1) the Lehmann and Schweder one-sample

methods can either be applied to the cells separately, with a composite

estimator formed as a weighted average of the separate one-sample cell estimates,

or to the residuals of the full linear model fit, treating the residuals as

one large sample. (This one-sample residuals idea also of course works in

more general linear models like (3.1).) The Lehmann two-sample estimator

can be applied separately to all pairs of cells in the layout, with a weighted
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average composite estimator again constructed.

The Lehmann one-sample and Schweder methods both have implementational

drawbacks. Since the Lehmann one-sample approach is based on the Wilcoxon

signed-rank statistic, it'requires the assumption of symmetry of the error

distribution f for proper functioning, making its performance with asymmetric

data problematic. Simulations verify that this method of estimating a2 is

subject to increased bias and standard error when applied to skewed data. The

Schweder approach uses window-type density estimation and thus requires specification

of the window width, something which in principle needs to be done in a way which

adapts the window width to the data at hand both in terms of the shape and the

scale of the underlying distribution. Schweder's (1975) implicit position on

this issue was that, as far as shape is concerned, the estimator is not too

sensitive to imprecise choice of the window width, so that apart from the scaling

issue one could get by with a fixed non-adaptive window width which depends only

on the sample size. Simulations unfortunately indicate that this is not so;

estimates of a2 based on the non-adaptive Schweder approach behave poorly

with mis-specified window width. It may be that the Schweder method will work

better when the window width is chosen adaptively, for example using a cross-

validation or nearest-neighbor procedure, but this has not yet been pursued.

The only method of estimating a2 which was found empirically to perform well

is the Lehmann two-sample approach when modified with a simple bias correction,

and it of course only works in models with several observations per cell (in

practice this means that mos.t of the cells in the layout should have at least

3 or 4 observations). In more general linear models the Lehmann one-sample

estimator applied to the residuals with a different bias correction was also

seen to perform well, but only in situations in which the error distribution

is fairly symmetric.



-38-

The asymptotic X distributions for the Lehmann and Hettmansperger-

McKean testing ratios L/a^2 (2.41) and 2D*W/aR (3.29) were found toL/R (241 ad 3.9

provide quite poor approximations to the null distributions with even fairly

large sample sizes. This is because the extra variability imposed on the

2ratios by using an estimate of a R instead of the true value results in

distributions with heavier tails than Xq Huber (1970) conjectured that
42 2the small-sample distribution of vaR/aR might be well approximated by

2 for a value of v depending on the error density f; the bias correctedxv
versions of the Lehmann one- and two-sample estimators of a2 described

R
above were seen in simulations to support this conjecture quite well. This

encourages the approximation of the null distribution of the Lehmann statistic

(L/q)/ 2R by the heavier-tailed Fq,v' but suggests that it might be necessary

to estimate the denominator degrees of freedom v from the data. In practice

it was found empirically that the same F distribution which would be used

with the classical statistic in the linear model at hand provides a surprisingly

good approximation for both the Lehmann and Hettmansperger-McKean ratios

(L/q)/a2 and (2D* /q)/aR. This finding is convenient both from the point

of view of not having to adapt the null distribution to the data and of

preserving the analogy with the classical procedures, thus making the robust

methods easier to use by practitioners accustomed to the traditional analysis.

The resulting tests not only had approximately correct levels with the wide

variety of error distributions listed in Table 1, but also fulfilled their

promise in terms of asymptotic efficiency as indicated in that Table by

exhibiting excellent power characteristics relative to the classical F-test.

Table 2 presents some typical power comparisons, which demonstrate that the
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power loss at the normal model for the robust methods is small while the

gain with skewed and heavy-tailed distributions can be considerable. In

the robust analogues of the estimation and multiple comparisons procedures

typical in linear models work this efficiency gain will of course manifest

itself in more precise estimates and narrower confidence intervals.

TABLE 2. Typical Monte-Carlo power comparisons between
the classical and rank-based robust testing procedures.

Linear Error - Testing Method Power at Level
Model Density Numerator Denominator .10 .05 .01

one-way standard Hettmansperger- Lehmann .94 .87 .70
layout, normal McKean two-sample
6 cells, Classical .96 .90 .75
10 obser-
vations
per cell

one-way t with 3 Lehmann Lehmann .99 .98 .90
layout, degrees one-sample
6 cells, of Hettmansperger- Lehmann .99 .97 .88
10 obser- .freedom McKean two-sample
vati ons Classical .91 .85 .70
per cell

two-way skewed Hettmansperger- Lehmann .72 .61 .34
layout, mixed McKean two-sample
12 cells, normal Classical .62 .49 .24
5 obser- (fourth
vations entry in
per cell Table 1)

Note: Approximate standard errors for these power estimates p based on

n = 1000 Monte-Carlo replications can be calculated in theusual ['(1- /n]

binomial mannerand range for the given power values from about 0.003 to about

0.016.
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In 1959 Henry Scheffe wrote

"... it appears that there probably exist tests which
have the robustness of the [classical] F-tests concerning
type I errors, a little less power against normal alternatives,
but much greater power against 'most' nonnormal alternatives.
At present such tests have not been developed for the
relatively complicated hypotheses usually considered in
[linear models], and even if they were, the methods of
estimation with which one would usually want to follow
them up when they rejected, ..., while then possible in
principle, would seem hopelessly complicated to carry out
in any but the very simplest cases ... ."

Twenty years later such robust testing and multiple-comparison methods have

indeed been developed, and the testing methods, at least, are essentially

ready for general use.
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