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Summary

We study robust estimation in the general normal regression model

with random carriers permitting small departures from the model. The

framework is that of Bickel (1981). We obtain solutions of Huber (1982),

Krasker-Hampel (1980) and Krasker-Welsch (1982) as special cases as well

as some new procedures. Our calculations indicate that the optimality

properties of these estimates are more limited than suggested by Krasker

and Welsch.
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1. Introduction

Our aim in this paper is to compare and contrast robust regression

estimates proposed by Huber (1973, 1982), Hampel (1978), Krasker (1978)

and Krasker and Welsch (1982) as well as to derive and motivate other

estimates using infinitesimal neighbourhood models as in Rieder (1978),

Bickel (1981) for instance. Some of the results are stated in the

discussion to Huber (1982) while others were presented at the 1979

Regression Special Topics Meeting in Boulder.

We consider a "stochastic" regression model. We observe (x.,yi),
i =l,...,n independent with common distribution P where the x; are

1 xp, yi scalar. We think of these observations as being obtained by

contamination or some other stochastic perturbation from ideal but

unobservable (x,yi*) which follow an ordinary Gaussian regression,

y.= xeoT +ui . =,.,
i i~ ~ 1

where the u'* are independent N(O, 2) Our aim is to estimate e using

the (x.,y.). For this formulation to make sense we must either:

(a) Specify P so that e is identifiable. For instance let

Xj = X1.

and = T +U

where the u; are independent of x; with common distribution symmetric

about 0. This is the usual generalization of the linear model discussed

eg. in Huber (1973). For less drastic alternatives see Sacks and Ylvisaker

(1978). This has the disadvantage of implicitly assuming that conta-

mination conforms to the linear structure of the original model.
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(b) Suppose that P is so close to the distribution P0 of

(x,4y) that biases necessarily imposed by the lack of identifiability

of 0 are of the same order of magnitude as the standard deviations

of good estimates. That is we assume P is in "an order neighbourhood"
vX

about P0. By suitably choosing the metric defining the neighbourhood

we can make precise our ideas about what departures we want to ouard

against as well as gauge the best that we can do against such departures

in terms of classical decision theoretic measures such as M.S.E. For a

general discussion of this point of view see Bickel (1981) hereinafter [B].

This is the approach we take in this paper.

We apply this point of view to several types of neighbourhoods

below and derive the optimal solutions. For regression through the

origin we recapture the by now classical estimate of Hampel as well as

Huber's (1982) MIA:A solution. For the general regression model we

derive various natural extensions of the MIA:A procedure as well as the

Hampel-Krasker and Krasker-Welsch procedures. Finally, we derive some

negative results suggesting that the (1982) Krasker-llelsch conjecture

is false.

Specifically, let u; = y T- x.eT, i =l,...,n. Suppose a2 = 1.

Write F = (G,H(* H)), F0 = (G%A4) where G, respectively Go, is

the marginal distribution of xl, H(.lx) is the conditional distribu-

tion of u1 given x1 = x and 4 is the standard normal distribution

(of U4). Since P and F determine each other we can describe

neighbourhoods through conditions on F, H(-|-). Such neighbourhoods,

which will depend on n, will be denoted by F(t) (with subscripts)

where tn1/2 is the size of the neighbourhood, t > 0.
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Error free x neighbourhoods: G = G0 (or x = x*)

Contamination: We suppose we can represent

H(.|x) = (1-E(x))4(e) + s(x)M(-|x)

where M(.Jx) is an arbitrary probability distribution. The contamination

neighbourhoods Fco(t), FaCo(t) are completely specified by:

F C(t): sup £(x) < tn- /2
co x <

FoCt): fs(x)G0(dx)<tn12
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That is, for both neighbourhoods the type of contamination of y for

each x can be arbitrary. But under Fco the conditional probability

of contamination for each x is at most tn 1/2 while under Faco only

the marginal (or "average") probability of contamination is restricted.

These are the types of departures considered by Huber (1982), section 5.

Closely related are the metric neighbourhoods,

F o(t): supx d(H(-|x),0) < tn- 1/2

F d(t): Jd(H( |x),0)G (dx) < tn- 1/2

where d is a metric on the space of probability distributions on R.

Of particular interest are the variational and Kolmogorov metrics given

respectively by

v(P,Q) = sup{IP(A)-Q(A)I: A Borel}

k(P,Q) = supxIP(-.c,x] -Q(-Co,x]I

Recall that contamination neighbourhoods are contained in the

corresponding variational neighbourhoods which are contained in the

corresponding Kolmogorov neighbourhoods. The variational neighbourhoods

can be interpreted as contamination neighbourhoods where e can be a

function not only of x but also of u* and H is the conditional

distribution of u1 given xl and u*. The complements of Kolmogorov

neighbourhoods are identifiable in the sense of [B] at least if Go has

finite support.

Errors in variables models: We drop the requirement that G = G and
0

proceed naturally defining

Fcl (t) F = (l.-s)F0 + EM t
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where M is an arbitrary probability distribution on RP 1 E = tn 1/2

Fdl (t): d(F,F ) < tn 1/2

where d is a metric on the probability distributions on RP 1. Here v

extends naturally and is of particular interest.

We consider estimates Tn of e which are regression equivarient

and asymptotically linear and consistent under the normal model. That is,

for all Xnxp, y, blxp, Tn which is 1 xp satisfies:

(1.1) Tn(X,y+Xb ) = T (X,y) + b (Equivariance)

and there exists ip: RP1 ->RP square integrable under F0 such that

(1.2) f4i(x,v)¢(dv)G0(dx) = 0

(1.3) fPT(x v)xvD(dv)G0(dx) = I , the pxp identity,

and if u = .. .,u X =(xT ,.. xT)T,

(1.4) T~(X,u) = nlEnl (x u ) + o (n-f1/2 (Linearity and

under F0. Let T = {ip: ip square integrable function from R 1 to RP

satisfying (1.2) and (l.3)}.

All the usual consistent asymptotically normal estimates have this

structure. In particular, under regularity conditions, the general (M)

estimate Tn, solving

(1.5) I=l (xiy-xj = 0

with p E T satisfies (1.1) and (1.4). For members F of F leading

to models contiguous to that given by F0, (1.1)-(1.4) imply that



n1/2(Tn-6) is asymptotically normal with mean

(1.6) b(2,G,H) = nl/2frp(x,u)H(dulx)G(dx)

and variance-covariance matrix,

(1.7) V(W) = J'DT(xu)p(xu)c(du)G0(dx)

Note that b depends on n through G, H but for "regular" G, H

stabilizes as n -co.

In the univariate case, p=I, we argue in [B] that we can charac-

terize estimates which asymptotically minimize maximum (asymptotic) mean

square error over F by minimizing V(ip) +sup{b2(4p,G,H): FEF} over T.

More generally, the maximum risk of Tn as above, is for any reasonable

symmetric loss function determined by V(Yp) and sup{Jb(ip,G,H): FEFI.

In section 2 we study the univariate case as follows.

(1) We evaluate

(1.8) b(4) = limn sup{Ib(p,G,H)I: FEF}

for the F we have introduced. Subscripts on b indicate which F we

are considering.

(2) Solve the variational problem of minimizing V(w) subject to

b(qp) < m. This is just Hampel's variational problem or a variation

thereof.

The family of extremal {PM: m>O} correspond formally via (1.5) to

(M) estimates which are candidates for solutions to asymptotic min max

problems. Checking that the (M) estimate or 1-step approximation to it

actually is asymptotically minmax requires a uniformity argument such as

that of Theorem 5, p. 25 of [B] for. the putative solution. These arguments

6



7

are straightforward requiring standard appeals to Huber (1967) or Bickel

(1975) or Maronna and Yohai (1978). We therefore focus exclusively on

the variational problems. No new procedures are obtained in this section.

However Theorem 2.1 formally gives some optimality properties of the

Hampel and MIA:A estimates.

In section 3 we consider the general multiple regression model and

introduce WLS procedures and equivariance under change of basis in the

independent variable space.

We derive various procedures on the basis of the optimality criteria

we have advanced:

1) The Hampel-Krasker (nonequivariant) estimates

2) The natural nonequivariant extension of Huber's MIA:A estimates

(Theorem 3.1)

3) Nonequivariant procedures which are also not,WLS but are optimal

for estimating one parameter at a time under Faco
4) An equivariant estimate which minimizes the maximum M.S.E. of

prediction under F (Theorem 3.2)aco

5) The natural equivariant extension of Huber's MIA:A estimates

which minimizes the maximum M.S.E. of prediction under Fco"
Finally we show that the optimality of the Hampel-Krasker and of

the equivariant estimate minimizing the maximum M.S.E. of prediction

depends on the quadratic form used in the loss function. This casts some

doubt on a conjecture of Krasker and Welsch (1982). The doubt is confirmed

by a recent counterexample of D. Ruppert.
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2. Regression through the origin (p=l)

As we indicated, if b(p) is given by (1.8), we want, for each F,

to solve the variational problem:

(V) P2J (x,u)4(du)G0(dx) =min!

subject to (1.2), (1.3) and

b(*) < m

For each F we actually have a one parameter family of variational

problems as m varies and in principle each family could generate its

own family of solutions. Fortunately there are only two families of

solutions which we describe below.

It will be shown in Theorem 3.1 that for F which are of interest

to us only ip which are Huber functions for each fixed x need be

considered. That is, we can write p in the form:
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(2.1) p(x,u) = a(x)h c(x) > 0

= a(x) sgn u , c(x) = 0

for given functions a; c > 0 .satisfying (1.3) and h(u,c) =

max(-c,min(c,u)).

For such p condition (1.2) is always satisfied and (1.3) becomes

(2.2) Ja(x)xB(c(x))G (dx) = 1

where

(2.3) B(c) = (2U(c)-l)/c

with B(0) = 24(0)

The two basic solution families of p which we denote 'k9 {ikl
will be defined by corresponding {ak ck}, {ak,ck} as follows:

For 0 < k < o let

(2.4) ck(x) = TXI
ak(x) = sgn x/I(2U(ck(x))-l)x2GO(dx)

We add two limiting cases

(2.5) ip(x,u) = xu/fx2G (dx)

(2.6) IP (x,u) = sgn(xu)/2f(0)jIxIG(dx)

These are just the influence functions of the Hampel-Krasker-Welsch

family of estimates. The extremalT cases (2.5), (2.6) correspond to least

squares, Tn = Ixiyi/lx2 and Tn = median. - respectively.

For 0 < t < 2¢(0) let 0 < q(t) < be the unique solution of

2((2(q)-q( -q)) = t(2. 7)
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Let [2k4(Q)] be the (G0) ess sup of Ixi. For k < k < o

defi ne

(2.8) ck(x) = q(l/klxl)

ak(X) = x/Jx2(2(ck(x))-l)I(lxI >[2kp(0)Y1-)G0(dx)
if lxi > [2kc(0)]1

= 0 otherwise

The limiting cases are:

(2.9) Wp, (x,u) = CO(x,u)

~ kxu sgn u
pk(X,U) =

= Y

=0O

lxi = [2kc(O)]f1
otherwi se

if y = G {x: lxl = [2kq(0)7-1} > 0.

THEOREM 2.1. SoZutions to (V) are provided by

Ci) FailZy Pk: Faco' Favo' Fako, Fc1' Fvl, Fkl

(i i) FamniZy {i1 } FGo, Fv0, Fko

where we have substituted d = v, k as apropriate in our notation.

For given m, t the optimaZ k depends on m/t onZy cnd

(iii) The soZutions for Favo3 Fakol Fvl ' Fkl coincide.

(iv) The soZutions for FVo0 Fko coincide.

(v) The soZutions for FCo are soZutions for Fvo with m/t

repZaced by m/2t.

The key to-Theorem 2.1 is evaluation of b(p) for the different

neighbourhoods. The proof of a typical subset of the following assertions

is given in the appendix.

(2.10)
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If b is defined by (1.6), (1.8) then

(2.11). bco() = tfess supu1(x,u)IG0(dx)

(2.12) b0 (p) = tJ[ess supu p(x,u) -ess info p(x,u)]G (dx)

(2.13) bko(p) = tfIi(x.-)11GO(dx)

where "ess" refers to Lebesgue measure and N-D is the variational norm

of p(x,.) viewed as a distribution function.

On the other hand,

(2.14) bcl(0) = t ess supx u 14(x,u)l

(2.15) bvj(p) = t[ess supX uP(x,u)-ess infx u p(x,u)]

(2.16) bklGp) = t ess supx pip(x, )D

The "average" models behave like "errors in variables".

(2.17) b0 (4') = b 1(()

If 4p is antisymmetric in u

(2.18) bvi(41) = 2b1(c ) , i = O,l

If, in addition, ' is monotone in u, then

(2.19) bki(9) = bv(i) i =O,l

PROOF OF THEOREM: From (2.1l)-(2.19) it is clear the solutions of (V)

depend on m, t through m/t only and we can take t = 1. We claim

it is enough to show (i) for Fcl, (ii) for Fco* Since all members

of both families {s} and {'PS} are antisymmetric and monotone in u,
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we can apply (2.18), (2.19) and the inclusion relations between the

neighbourhoods to derive (iii)-(iv). From (iii)-(iv), (i) and

(ii) follow for all neighbourhoods and (v) is immediate.

Problem (V) for Fcl is just Hampel's variational problem. Exis-

tence of a solution follows from standard weak compactness arguments.

For these and the derivation of the family of solutions by a standard

Lagrange multiplier argument, see, for example, [B].

Problem (V) for Fco is a little less standard. Huber (1982)

essentially derives the solution indirectly from his finite minimax

robust testing theory.

We will give another proof which relies on a "conditional on x"

Lagrange multiplier argument for the p-variate case. See the proof of

Theorem 3.1 and note (2) following it. 0

DISCUSSION

(1) Unknown Go In practice G0 is unknown. Strictly speaking

it is not required for the calculation of any particular estimate of the

families {W'k}' bPk}. However, in order to pick out a member on

optimality grounds, say, minimizing maximum M.S.E., and to estimate

maximum M.S.E., G is required. Estimating Go by the empirical

distribution of the xi gives the same asymptotic results.

(2) Unknown scale: In practice the scale a2 of the u* is
1

unknown. As we indicate in [B] under mild conditions, the estimate Tn

solving

(2.20) zn= p(xi Yi-xin) = 0

where s is a consistent estimate of a (over F) and ' is antisym-

metric in u for fixed x will have influence function cV(x,-). It
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follows that the optimal p functions derived under the assumption a

known can be modified as in (2.20) to yield estimates optimal whatever

be a. There are serious questions of computation and existence of solu-

tions when scale is estimated simultaneously. See Maronna (1976) and

Krasker and Welsch (1982).

(3) The agreement between the errors in variables and average c

or v models is interesting though, in retrospect, not surprising. As

Huber (1982) reveals for the average c model, Nature can be thought of

as using most of her allocated £ of contamination to create very skew

conditional given

can certainly als

(4) The qual

as noted by Huber

are cut out by th

bounded. (Howeve

d.f. of the xi,
Nature is require

chances and use

tive if they are

x distributions of u for the largest x and this

o be done for errors in variables.

itative behaviour for Fco (and Fvo) is surprising

(1982). Small x's which are relatively uninformative

ie p estimates and, on the other hand the W are not

!r if Go is estimated as it must be by the empirical

sup Iip(x ,u)I < for each n.) In this case since
i ,lJ

d to spread her contamination evenly it pays to take

c large at the large values of x which are informa-

not contaminated and it does not pay to take any chances

at the small and uninformative values of x.

(5) Interestingly enough the same behaviour is exhibited by the

Hellinger metric neighbourhoods Fho where h2(P,Q) = j(4i u)2du.

Here it may be shown

bho(*) = 2tr( f2(x,u),(du))l/2G(dx)

and the resulting optimal i are of the form

I*(x,u) = a(x)u
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where a(x) =O , Ixi < k

= pi(x-ksgnx) , lxl > k

where i is determined by (1.3).

These solutions do not agree with the unique solution *p(x,u)
(essentially least squares), appropriate for Faho' Fhl.

3. The general case

For p > 1 we face the usual problem of choosing adequate scalar

summaries (measures of loss) of the vector b(p,F) and the matrix V(p)

on which to optimize.

Again p's which are Huber functions for each x play a special role,

(3.1) ((x,u) - 43(u,c(x))

where a is now a vector, c > 0. For such t, (1.2) is satisfied,

(1.3) becomes

(3.2) jxTa(x)B(c(x))G0(dx) = I

and

(3.3) V(4p) = faTa(x)A(c(x))G (dx)

where

(3.4) A(c) 2(c)-1 -2c4(c) + 2U(..c )

A(O) = 1

Also natural are p corresponding to weighted least squares esti-

mates (WLS) definable in the multivariate case by
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T = In ..I T
Tn = 1jnli i X; (I =lWi iXT

with wn = w(x ,y -x Tn)

scalars defined up to a proportionality constant. Note that p corres-

ponds to a WLS estimate the direction of i is that of a linear

transformation of x, i.e.,

(3.5) V(x,u) = w(x,u)uxR

with R x1xTxw(x,u)u24(du)G (dx)J ~~~~0
We classify solutions to the p-variate problem according as they do or

do not possess equivariance under changes of basis in the X-space. An

estimate Tn is equivariant under change of basis if and only if

TlIT (XB,y) = T (X,y)[B ]n

(a) Nonequivariant solutions

(i) The Hampel-Krasker solution: Perhaps the most natural choice

of objective function is the total M.S.E. of the components,

tr V(W) +bbT(ip,F). If we let | *denote the Euclidean norm, this

leads to the following p-variate version of (V),

(V) f pI2(x,u)4(du)G0(dx) = min!

for Tp'Y and supF bI(P,F) < m. Holmes (1982) has shown that for

Faco ' Fcl'
supFlbl(iP,F) = t ess supx ulP(x,u)l

so that (V) is just the problem of Krasker, Hampel (1978) whose solution
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is of the form, for X<o<

p(x,u,X) = xQh(u,X/jxQl)

where Q is symmetric positive definite and by (3.2)

Q 1 = {xTx(2b(X/ IxQ I) - l ) Go(dx) .
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X = ess sup JMp(x,u,)j

0 < X0 = inf{sup JipW(x,u)j: ipET}

The solution to (V) has X = mt. Krasker and Hampel (see also [B]) show

that whenever there exists ip with ess supX,up(x,u)I = X > AO, then

4p( le,X) exists and is unique.

Note that 4(.,) is of the form (3.1) and also WLS with

a(x) =

c(x) =

w(x,u) G

xQ

A/ IXQ I

h(u,c(x))/u .

NOTES

(1) Calculations along the lines of Matonna (1976) show that

A- ,QX jis decreasing (in the order on positive definite symmetric

matrices).

(2) It may be shown that SO > p/24(O) JxIGo(dx).

(ii) A generalization of Huber's approach:

For Fco it seems difficult to evaluate supFlbl(41,F) exactly.

However, it is easy to show that (see appendix)

sup{IbI(ip,F): FEF-} < tfsupujp(x,u)IGo(dx)

As in the l-dimensional case fsupuj(x,u)IGo(dx) can be interpreted

as an average sensitivity. The solution of the resulting problem,

J1I(x,u)I24(du)G (dx) = min!

subject to (1.2), (1.3) and

Here

and

(V')



fsuPuI (x,u)IG0 (dx) < X

for X = m/t, yields what should be a reasonable approximation to (V).

THEOREM 3.1. For every X > X there exists a unique pair (S(X),Q(X))

such that

iW(.,x) = P(.,Q(X),s(X))

is an influence function and

(3.6) fsupuI1(x,u,X)IG (dx) = x

and i(-,X) soZves (V').

The solutions to (V') are describable as follows: Define, for

s > 0, Q symmetric positive definite, q as in (2.7),

p(x,Q,s) = xQh(u,q([sIxQ[')) , IxQl > [2s(O)]Y1
= 0 otherwise.

Let

A = inf{fsuP bP(x,u)IG (dx): WE }

NOTES

(1) l(.,x)
functions defi ned

can be written in the form (3.1) with corresponding

for s = s(X), Q = Q(A) by

C(x,X) = q(lsxQ -1)
a(x,X) = XQC(X,X)

= 0

for IxQI > [2s4(O)Y-1
otherwise.

(2) Preliminary calculations along the lines of Maronna (1976) and

Maronna-Yohai (1981). indicate that at least if Go does not place mass on
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hyperplanes, then Q is uniquely determined by s through (3.2), i.e.

(3.7) Q = J( x(2(q(sxQ )-l)G(dx)

where S(s,Q) = {x: |sxQI >2p(0)} and then s is determined by X

through (3.6)

(3.8) 1x(s Q)xQq(|sxQI 1)G (dx) = X

Moreover if we write QS for the solution of (3.7), s-QS is

nondecreasing and hence X-+s(X) is also. So we can reparametrize

iW(.,x) by s for s > inf{s(X): X>X } If, for p = 1, we take

k = sQ5, then we obtain the family Wk of Theorem 2.1. Since k is

an increasing function of X we obtain the conclusions of Theorem 2.1.

PROOF. In the appendix we show by standard optimization theory arguments

that a solution to (V') exists and is also the solution to a Lagrangian

problem

f{I112(x,u)- 2fup(x,u)QxT+ 21 =(x,u)}b(du)G (dx) min!

for Q , s > O-pxp,
If 90 is the solution we can minimize

JmI[2(x,u)4(du) - 2fup(x,u)QxTD(du)

subject to supul(x,u)l < supu4o(x,u) and conclude that Wp is of the

form (3.1) with the corresponding vector ao(x) and co(x) minimizing

J{lal2(x)A(c(x))-2xQaT(x)B(c(x)) +s lla(x)}G (dx)

Minimizing pointwise we obtain as necessary conditions for ao, c0
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(3.9) a A(c0) = xQB(c )+s 1 a0 = a0 °

(3.10) laol2 < xQaTc0

xQaTc0 if c > 0

From (3.10), a O ° * c0>0. Then by (3.9)

aO= laol IxQ
= c0xQ

by (3.10). Again by (3.9)

c0A(c0) B(c )+ =0 0 ~ 0 +sIxQl

which implies |xQl , [2sq(0)] , c0 = q([slxQl] )- Conversely, if

lxl > [2sq(0)] 1, a(x,A), c(x,x) yield

2 T1
lalAA-2xQa B(c) +s- lal < 0

and hence 0 a = a by our previous reasoning. Since i must satisfy

(1.2), Q must satisfy (3.9) and be positive definite symmetric. The

theorem is proved. E

(iii) One at a time optimality: Another nonequivariant solution of

interest is obtained by minimizing the maximum M.S.E. of each component

of 0 separately. That is, we seek p* = (tp*,...,ip) E T which

simuZtaneousZy minimizes

Ip[*]2(x,u)D(du)G (dx)

for ip = (I .p E T and

sup{Ib.(p,F)I: FEF} < m.
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where b(p,F) = (b1(p,F),...,bp (i)). For neighbourhoods of the "average"

or errors in variables types, the solutions l*, indexed by the vector

m = (m1,...,mp), are not of the WLS form. They are given by

T T(3.11) ip*(x,u;m) = uxa.h(u,m./jxaj) , j

where (1.2) and (1.3) hold. Existence of 4*(.,m0) and their form as

solutions of a Lagrange problem are guaranteed for mO an interior

point of {m: t sup, huP.(x,u)l <mi, ji=l,...,p}. The limiting case

corresponding to the median is, for x = (x ,...,xp)9

(3.12) Ip*(x,u) = c. sgn[(x. - X bkxk)u]
3 ~ i k~jJ

where c = [(2)112fIxj -X bkJxkIGO(dx)]1

where B = lb ij11 is determined by

(3.13) IsJsgn(xj bkjxk)x GO(dx) = 0 , i fj

If (xi ,x p9yi) i=l,...,p are the observations, pl'**0 are

=yp~~~~~~~~~~~~~~the estimates,, =
" -lj=l xiiei are the residuals, then p

are characterized by the property that

median. £./(x,. - k bk.x.k)
1 1 13ki kjxik1

for j = 1,...,p. In view of (3.13) the bk' can be interpreted as the

coefficients of a least absolute residuals fit of y bkxk to x., i.e.,

(3.14) JIx. - I bkJxkIGO(dx) = min fIxj - bkxklGo(dx)

This characterization guarantees the existence of this influence function

at least if Go is absolutely continuous. Of course, there may be

difficulties for a sample where we replace G0 by the empirical d.f.

of the X .
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At first glance this solution appears to render the Hampel Krasker

solution inadmissible. This is, however, not the case. p* here

minimizes (for suitable mi ) ,

R(i) = EJY Ji(x'u)i(du)GO(dx) + I b=l2i(,F)

while the Hampel Krasker solution minimizes

S(i)=m =
r

jP 2(x,u)b(du)G (dx) + maxF b (t,F)

Of course, S < R but the optimal solutions are not related.

(b) Equivariant solutions

When translated to influence functions this equivariance becomes

(3.15.) i(x,u,G0) =p(xB,u,G B1)BT

where p(x,u,G) is the influence curve if X G.

(i) Equivariant best MSE of prediction: Suppose that X1 is error
r2

free so that G =G and that Jlxi G0(dx) < *. The most natural way

of obtaining invariant p with local optimality properties is to use

as objective function the expected mean square error of prediction

f{xV(4)xTG(dx) +xbT(p)b(p)xT}G0(dx)

We can rewrite this as

{l*T(x,u)O(du)G (dx) +b(p,F)EbT(4,,F)

where

(3.16) z = fxTxG0(dx)
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As in the noninvariant case we can deal easily with Faoc since
T T~~~~~~~~~~o

(3.17) sup{b(i,F)ZbT(p,F): FeFacOI = ess sup T(x,u) -

Minimizing the maximum of our objective function over F is easy
oncewe have solaoc

once we have solved
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(VI) i T(x,u)D(du)G (dx) = min!

for E T such that

ess supx u4'T(x,u) < X

x3,u
Let xI inf ess{supX u ENT(x u): EiT

d2(x,) = x£xT

For X > XIO let

(3.18) Wp(x,u,2) = xQh(u,X/d(xQE))

where Q is positive definite symmetric,

(3.19) Jx x(2(d(xQ -T) -l)GO(dx) = Q x

THEOREM 3.2. If X > XRO 4(*,*,A) uniqueZy solves (VI).

PROOF. Again by standard arguments we can establish existence of a

minimizing ipo which solves an equivalent Lagrangian problem

T{,E 2(x,u)f-2uxQEPT(x,u)}4(du)Go(dx) = min!

subject to lipETI < A. A direct minimization of E*T -2uxQE*T under

the side condition yields (3.18) and (3.2) implies (3.19). 0

Note that the uniqueness of and (3.19) imply the equivariance

property (3.15).
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(ii) An equivariant Huber solution: As in the nonequivariant case we can

bound the maximum expected squared bias of the predictor

sup{ xbTb(W,F)xTG0(dx): FEEFF

above by

tf{sup 4(x,u)ZPT(x,u)}G0(dx)
u

The resulting variational problem

J 4 (x,u)D(du)G (dx) = min!

subject to

(3.20)

has solutions of the

(3.21)

where

if

Usup p(x,u)9T(x,u)G (dx) < X

form

'i(x,u,s)

CI (x,x)
aI(x,s)

d(xQ,E)

a (x,s)
= hucI (x,S))

= q(l/sd(xQ,E))
= XQc(x,s)

> [2s¢(0)]1

= 0 otherwise

and Q, s are determined by the requirement that is an influence

function satisfying equality in (3.20).

Reparametrizations are possible for the procedures of this section

as for the Hampel-Krasker and Huber solutions.
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(iii) The Krasker-Welsch (1982) solution: Based on sensitivity

considerations Krasker and Welsch proposed estimates given by

(3.22) W(x,u,X) = xQh(x,X/d(xQ,V )) , X >

where xUx(24(X/d(xQ,Vl)) -l)G0(dx) = Q1

and

(3.23) vx = >T4(x,uX)>(du)G (dx)

Equivalently if A- = QV '1Q, (3.23) becomes

A = JxTx[20(X/d(x,A -))- -2Xd (x,A1)4(Xcd1(x,A' ))]G (dx)

and Q may be obtained directly from (3.22). Existence of the K-W

solution for X > p is guaranteed by results of Maronna (1976). The

K-W solution is also equivariant. It evidently has the property by

arguing as for Theorem 3.2) of uniquely minimizing fV l(pKW),PT subject
-l T 2to sup pV'(KWKW)W < X . Krasker and Welsch conjecture a strong

optimality property (see below).

(iv) More general optimality properties: Whatever be p, least

squares estimates do not minimize only trace V(W) but the matrix itself

or equivalently, JM9PT for all M positive definite, symmetric. it

is fairly easy to see (see also Stahel (1981)) that once we bound the

vector influence curve as we have in this section no such conclusion is

possible. Thus *MIpT(x,u)-2up(x,u)QMxT is minimized subject to

JT| < X by ip = uxQ if lul <./IXQI, but, unless M = I, by a

boundary value other than X ifxu| > X/IXQIif
XI/xI
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Krasker and Welsch seek to remedy this failing by restricting p to

the WLS form, i.e., forcing the direction of W to coincide with a linear

transformation of x. They conjecture that their solution minimizes

V(W) among all WLS estimates with sup PV- (p)9p < n. Our methods do not

readily give a counterexample to their conjecture but we show below that

neither the Hampel-Krasker estimate nor the equivariant estimate of

section (i) possess the analogous optimality property, thus casting some

doubt on the conjecture. (David Ruppert has recently discovered a

counterexample to the conjecture.) Suppose G0 is spherically symmetric,

its support is bounded, has a nonempty interior, and does not contain 0.

Then, by symmetry, the Hampel-Krasker, section (i) and Krasker-Welsch

solutions are of the same form. For suitable X,

1PO(x,u) = rxh(u,X/rlxl)

where r = [fxi2(2r(7 -l)G (dx)]11

If *O were a universally optimal solution for the Hampel-Krasker or MSE

of prediction problems among WLS estimates, it would solve, for aZZ S,

(V5) *pSWT(x,u)>(du)G (dx) = min!

subject to I'PI < X, p E T' and ip WLS as in (3.5).

By conditioning as in the proof of Theorem 3.1 and restricting to

w(x,u) = X h(u,c(x)) we see that R= rI, c (x) = x/rIxlc(x) u xRI c0x
minimizes

2d (R,S A(c(x))G (dx)
jxRj2

among all c > 0, R symmetric positive definite such that
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JX IxR B(c(x) )G0(dx) = I .

If we let c range over the Banach space of continuous functions

vanishing at o with supremum norm, it can be shown that if p > 3



25

the map (c,R) -*frS B(c(x))G (dx) has a nonsingular differential at

c = co, R = R0where r is given in the definition of, Wp. Therefore

by Luenberger (1969) p. 143 there exists a Lagrange multiplier matrix

WsS such that Rol c0 minimize

2 tr(W SRxTx
(3.24) fd(xR,S) A(c(x))G (dx) - 2f B(c(x))G (dx)

among all R symmetric positive definite, c > 0, c's vanishing at c.

But minimization over c leads as in Theorem 3.1 to

tr(RSRxTx)(3.25) c = T
tr(W SRx x)IxRI

If we set c = co, R = Rol we deduce that W = R0/. If we now

substitute (3.25) back into (3.24), find the differential of the resulting

map from the set of symmetric matrices to the real line and set it equal

to 0 at R = Rol we obtain the equation

(3.26) a(cO(x))((SRO+ROS) -25(x,S)R )xTxG (dx) = 0

where a(c) = 2(c4(-c) -f(c))

d2(xRo,S)
S(X,S) =2

IxR0I
Simplifying we get

r X T X xsxT TSJa()rixi xxG0(dx) = Jc-,)- x xG0(dx)

for all positive definite symmetric S. Passing to the limit the

relationship must hold for nonnegative definite S as well. Put
1 0 *- 03

S = l 0 to obtain a contradiction- since by symmetry of Go
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>(rI~<I)xTxGo(dx) is a multiple of I and G has a nonempty interior.

NOTES

(1) For p > 1 as in the univariate case we would typically need

to estimate G and a in order to implement adequate scale equivariant

estimates. No new theoretical issues arise from optimality considerations.

However the computational solution and existence of problems which arise

with simultaneous estimation of scale become more serious.

(2) Our discussion in this section is essentially limited to the

contamination neighbourhood since the maximum bias (as measured by

different norms) in the p-variate case can only be easily calculated for

these. However these solutions are also adequate for variational and

Kolmogorov neighbourhoods provided t is taken as double its value for

contamination. Thus, for Faov, Fly

(3.28) sup Ib(i,F)I < 2t supx jui(x,u)

while for Fov

(3.29)- sup Ib(ip,F)I < 2tfsupul1(x,u)IGo(dx)

and for Faok' Flk

(3-30) supF Ib(ip,F)l < t supxIIP(x,-)IIl
1k

where Hl(x,.)ll = (lip, (x,.)l,...,9ip (x,.)N) and Dip1(x,*)l is the

variational norm of ipi(x,.).
(3) The invariant estimates based on minimizing MSE of prediction

are appealing and seem reasonable for the error free x models. They

are seriously compromised for errors in variables however since the matrix
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fxTxG0(dx) is not robustly estimated by replacing Go by the empirical

distribution. A fairly artificial way out is to down weight extreme values

of x. That is, let u2 satisfy conditions of Maronna (1976) and E(G )

be the robust covariance determined by that u2.

(3.31) fu2(d(x,Z1)) xTxG0(dx) = E

Then we can easily see that the estimate which minimizes the down-

weighted MSE of prediction

supF{fu2(d(x, 1)){xV(0) xT + xbT(p)b(p)xT}G0(dx)}

is given by (3.19) with E given by (3.31) for both F and Faco nd l"1
The estimate is clearly equivariant. This is essentially equivalent to

a proposal of Maronna, Bustos, and Yohai (1979).

Appendix

PROOF OF (2.1l)-(2.19). For the errors in variables models these claims

are proved in [B]. For the other neighbourhoods the arguments are

similar. As an example here is the proof of (2.11).

Since G = G0, by (1.2),

(A.1) b(',G3,H) = tfrfi(x,u)M(du|x)G0(dx)
Since M is arbitrary (2.11) follows. As a second example we prove

(2.17) for F.V. Write

(A.2) b(*,G,H) = ffp(x,u)[H(duIx) - D(du)]G (dx)

= ffc(x,u) [M (du|x) -MN(duIx)]]a(x)G%(dx,)

where a(x) is the common total mass of the positive and negative parts

of the measure H(.Ix)-¢(.) and M , Mt are the probability measures
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obtained by normalizing these positive and negative parts. F E Favi
means Jc(x)G (dx) < tn 1/2 Since M , M are arbitrary (2.17)
follows. O

PROOF OF (3.7). By definition

(A.3) IbI(4),F) = t{r.1(JJv (x,u)M(duIx)G (dx))2}l/2

<t pj= ( iw (x,u)M(du lx)))21/2G (dx)
by Jensen's inequality applied to the random vector

(Il (Xl,u)M(duIXI),..lp(X,lu)M(duIX1)
Existence of solutions in Theorem 3.1

Sketch of argument: Consider * as elements of L2(F0;RP), square.

integrable p-variate functions. Define the following maps from L to2~~~~~~~~~~~~~~~~~~~
R or RP

a0: ip -W fI2(x,u)(du)G0(dx)

a1: p - fsupuljp(x,u)IGo(dx)
a2: - fuxT (x,u)D(du)G0(dx)

a3: iP - sup Ul(X,U)I
Then ao, a1 are convex, a2 is linear. Let X1M = inf{X: EYT,

alW) <X, a3(p) <M}. It is easy to see that XlM±+l if M .-+x.
Suppose X > XiM Then by problem 7, p. 236 of Luenberger (1969) there

exists QM' SM such that

(A.4) inf{a0(p): a1W) <X, a2(1p)=I, a3(0p<m}
= inf{a(4) -2 tr Q[a2(W)- I] + $ao() - X]}
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Moreover since {p: a3(p) <M} is weakly compact and a is lower

semicontinuous, the infima in (A.4) are assumed by say EE T. By

arguing as in the proof of the theorem

qp*(x,u) = p(x,u,sM$QM) if IP(X,u,SM,QM)I < M

It readily follows by considering sM and QM/tr(QM) that we can

extract a subsequence {M } such that WM converges pointwise to ar mr
limit W* as Mr c Since by the optimality of 'M the sequence

r
aO(pM ) is uniformly bounded we can conclude that a2(ip )--a2(. ),

i.e. eEP ' and al(tp ) *al(6 ). By lower semicontinuity of ao,
is the solution to (V'). Applying (A.5) with M = co we obtain

(s(X),Q(X)) such that p(x,u,Q(X),s(X)) = 4 . Unicity of (Q,s) follows

from the strict convexity of aO. 0
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