
MAXIMUM LIKELIHOOD ESTIMATION IN

A LATENT VARIABLE PROBLEM

BY

DAVID R. BRILLINGER1
HAIGANOUSH K. PREISLER2

TECHNICAL REPORT NO. 15
NOVEPlBER 1982

RESEARCH PARTIALLY SUPPORTED BY
'NATIONAL SCIENCE FOUNDATION GRANT CEE-7906142
2NATIONAL INSTITUTE OF HEALTH GRANT HL-20985

DEPARTMENT OF STATISTICS
UNIVERSITY OF CALIFORNIA

BERKELEY, CALIFORNIA



MAXIMUM LIKELIHOOD ESTIMATION IN
A LATENT VARIABLE PROBLEM

David R. BriZlZi.cer

Department of Statistics
The University of California

Berkeley, California

Haioanoush K. Preisler1,2

Northern California Sickle Cell Center
The University of California
San Francisco, California

I. INTRODUCTION

Latent variates are random variables which cannot be

measured directly, but which play essential roles in the des-

cription of observable quantities. They occur in a broad

range of statistical problems, a few of which will be surveyed

shortly. This paper is concerned particularly with one such

problem involving radioactive counting data. The emphasis of

the work is on developing estimates of parameters, and examin-

ing goodness of fit via "uniform residuals". In the problem

considered a plot of the "uniform residuals" versus replicate

number led to a change of model.

The random effects model of analysis of variance may be

written
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y = Xa + Zu + e (1.1)

with y, X, Z observed, a an unknown paramneter, e a

random disturbance and with u a vector of random effects

(that are of specific interest, but are not directly ob-

servable). Here u is an example of a latent variable. In-

terest often centers on the variances of its entries, the

variance components. A number of different 3rocedures, in-

cluding maximum likelihood, have been developed for estimating

the parameters of the model (1.1) and for estimating the rea-

lized value of the latent variate u. Recent references in-

clude Harville (1977), Henderson and Henderson (1979), and

Dempster et at. (1981). A closely related model is the random

coefficient regression model, surveyed in Spjotvoll (1977).

Another example of a latent variable model is that of con-

trolled regression, given by

= h(uila) + ei (1.2)

with the latent variables ui having known mean, Eui = xi'
with h(-) of known functional form except for the parameter

a and with the ei random disturbances. Least square pro-

cedures have been developed for estimating a. References

include Berkson (1950) and Fedorov (1974).

There are latent variable models that have been studied

especially often in particular substantive fields. For

example, the state space model has reached a high level of

development in engineering. It may be written

Yi = aui + ei (1.3)

U = 8u_1 + yxi + ei (1.4)

i = 1,2,... with ui a vector-valued latent variate, with
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Yi, x. observable and with ei, ei random disturbances. The

maximum likelihood estimation of the parameters of the model

(1.3), in the case of Gaussian ei, e;, is considered in

Gupta and Mehra (1974). Kailath (1980) is a general reference

to properties and uses of this model.

Engineers have been led to non-Gaussian models involving

latent variates in problems of optical signal estimation.

Suppose that ut denotes the value of a (random) signal of

interest at time t. In a variety of physical situations what

one observes are the times at which photons are absorbed for

an optical field of intensity ir + put. Here ut cannot be

observed directly. s is the average background noise level.

Theoretically and experimentally, assuming the process of

times to be conditional Poisson seems justified. References

include Macchi and Picinbono (1972) and Snyder (1975).

The field of economics has generated interesting models

involving latent variates. The MIMIC (Multiple Indicators

and MultIple Causes) model of Joreskog and Goldberger (1975)

may be written

y = au + e, u = 3x +-e' (1.5)

with u real-valued. The variables y and x are assumed

observable. Assuming replicates are available, estimates of

the parameters are developed and studied in Joreskog and

Golberger (1975) and in Chen (1981).

An economic model of a different sort is considered in

Amemiya and Nold (1975). They consider yi a binary variate

(= 0 or 1) such that

Prob{yi==lJui = exp{axi+ uiJ/(1+ exp{axci+ ui) (1.6)

with ui an unobservable variate having zero mean. Assuming
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independent observations on yi are available, estimates are

developed. See also Muthen (1979).

Latent variable models occur commonly in the fields of

psychology and education. The first latent variable model to

have been studied in real depth is the factor analysis model.

It may be written

y = au + e (1.7)

with y an observable vector, a a matrix of unknown factor

loadings, u the vector of unobservable common factors, and

e disturbance. Assuming that replicate observations are

available least squares and maximum likelihood (for Gaussian

variates) estimation procedures have been developed. Perti-

nent references include Lawley and Maxwell (1'/1) and Joreskog

(1973).

In the case that the dependent variate y is discrete,

latent.structure models play an important role, arising often

in connection with ability tests. Suppose the ability of

individual i is characterized by the number ui. Suppose

individuals attempt J test questions, the jth having

difficulty characterized by the number a .. If yij = 1 for

a correct response and = 0 otherwise, then the following model

might be considered:

Prob{yij = l|ui} = uia./(l + uiaj) * (1.8)

The problem of the estimation of the parameters of this and

similar models is considered in Sanathanan and Blumenthal

(1978), Anderson (1980) and Bock and Aitkin (1981) for example

In some cases the subject's ability can be eliminated by con-

ditioning on an appropriate statistic - this is not the case

in general however.
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Estimation and testing in the latent variable problems

described above have been carried out by (generalized) least

squares or by maximum likelihood having assumed normality.

There have been few, if any, attempts to examine the goodness

of fit of the overall model employed. Computing "uniform

residuals", as defined below, would appear to be an effective

general means to proceed in latent variable problems.

The research reported in this paper was stimulated by a

problem (which will be described in detail in the next sec-

tion) from nuclear medicine. In statistical essence, one had

counts Yijkl k = l,...,K, j = i J, i= 1,...,I that

conditional on the valtes of latent variates u.. could be
1j

modelled as independent Poissons with mean n + p ixijkui theikij
xijk being known. It was of interest to estimate the para-

meters i, pi and to examine the (common) distribution of

the uij. The approach taken to the determination of estima-

tes is that of maximum likelihood. Because no simplifications

are apparent, numerical quadrature seems necessary to deter-

mine the estimates. (Earlier workers on similar problems seem

to have come to the same conclusion. We mention Bock and

Lieberman (1970), Andersen and Madsen (1977), Sanathanan and

Blumenthal (1978), Bock and Aitkin (1981), Reid (1981), and

Hinde (1982).) Since the data set analyzed is common to

radioactive tracer experiments, and since so many such ex-

periments are carried out in practice, it seems important to

provide an analysis by means of widely available statistical

programs. Building on the programs of Hinde (1982), we pro-

vide a listing of a GLIM session. (GLIM is described in Baker

and Nelder (1978).)
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The detailed expressions and results are developed for

something less than the most general case, namely, for the

situation where the yi conditional on (ul,...,u1) are

independent with probability mass function f(yilui,a) while

the ui are independent with probability density function

f(uiSa). Generalizations are apparent, the results are not

presented with needless detail. This then is the case of

contagious distributions. (A review of traditional estima-

tion procedures for contagious distributions is provided by

Douglas (1980).) The parameter of interest e = (a,6) is

seen to separate, for the case considered, into a component

appearing only in the conditional distribution of the latent

variate and into a component appearing only in the distribu-

tion of the observed variable conditional on the latent variate.

Since the latent variate u may be viewed as a variate

whose values are missing, it is clear that various of the

results developed by the Missing Information Principle

(Orchard and Woodbury (1972) and the EM method (Dempster et

aZ. (1977)) may be of use. Likewise because u sits as an

argument in f(y|u,c), yet is actually random,various

Bayesian results may be of use.

The approach taken in this paper is the brute force com-

putation of maximum likelihood estimates. The goodness of fit

of the model is examined through estimates of the c.d.f.

values F(yija,8) and of the values 4l (F(yi|a,a)). These

will have approximate uniform and Gaussian distributions, re-

spectively, when the model holds. The technioue has broad

applicability.
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It is remarkable to note how many problems concerning

statistical inference for latent variates have concerned

T. W. Anderson. Anderson (1969a,b;1973) are concerned with

variance components. Anderson (1955) is concerned with con-

trolled variates. Anderson and Hsiao (1981) makes use of the

state space model. Anderson and Rubin (1956) is concerned

with factor analysis. Anderson (1954,1968) are concerned with

estimation in latent structure and class analysis. Latent

variable problems appear to pervade virtually all of his re-

search work. His contributions to the solutions of those

problems are substantial.

The remainder of the paper is structured as follows: First

there is a description of the particular scientific problem

that stimulated the research. Then a general means of con-

structing estimates for a broad class of latent variable prob-

lems is presented. This is followed by some detailed ex-

pressions for the case at hand, the results obtained for that

case and discussion. The paper concludes with appendices

listing the data, providing some details of the computations

and listing a GLIM program.

II. THE PARTICULAR PROBLEM

This section describes the experiment from nuclear medi-

cine that motivated the research of this paper. The objective

of the experiment (referred to as a red blood cell survival

experiment) was to estimate the mean life span of circulating

red cells.

Normally, red cells of healthy individuals live an average

of 120 days after which they are removed from circulation,
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mainly through the reticuloendothelial system. Hemolytic dis-

orders, whether they are intracorpuscular, extracorpuscular,

or combined are characterized by a shortened red cell life

span. To determine the effectiveness of treatments claiming

to lengthen the life span of defective red cells (in the pre-

sent case of individuals with sickle cell disease), it is

important to have good estimates of mean life span of cells

and of sampling fluctuations.

To get estimates of the mean life span one needs to follow

a sample of red cells in circulation (the time plot of the

number surviving is the red cell survival curve) over a period

of time and to observe how many have survived from those pre-

sent initially. This, of course, is not possible. One is

forced to observe these quantities of interest indirectly, as

will be explained below.

A typical red cell survival experiment consists of taking

a sample of blood from a patient, labeling the cells via a

radioactive tracer, and reinjecting them into the patient.

Samples of venous blood are then drawn at specified times,

after the initial injection of labeled blood, and measured.

(For more details on survival studies see International Com-

mittee (1972).)

The data given in Appendix I represents the number of

gamma photons, for a unit time period (10 minutes) recorded by

a gamma scintilation counter. At each time point a sample of

blood is drawn from the patient. Then three replicates are

pipetted from that sample and put in separate vials. After

the last sample is drawn, all the vials are put in the scinti-

lation counter and their level of radioactivity recorded. The
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whole group of vials is run through the counter four times,

thus getting four readings (the cycles in Appendix I) for

each vial. (It may be worth remarking that these cycles, or

columns, are not identical replicates due to radioactive de-

cay of the label, 5 Cr, that occurs between their successive

meavurement.) In Figure 11.1 the logarithms of the counts are

graphed versus time, using box plots (see Tukey (1977)) to

represent the observations at each time point. (There are 12

in each case but the last, which are measurements of back-

ground radioactivity, then there are eight.) The figure shows
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a more or less steady fall off of counts with increasing time,

and a background level substantially below that of the last

sample drawn (at 46 days).

.th~~~ ~ ~ ~ ~ ~ ~~tLet yijk denote the count value for the kt cycle of

the jt replicate pipetted from the sample drawn at time ti.

Because of the everpresent background radioactivity, y ijk is

the sum of two random variables,

Yijk Zijk bijk (2.1)

where z. is the count due to radioactivity disintegrationsijk
of elements in the ij blood sample and b. is the countijk
due to background radiation.

There is substantial theory and evidence to the effect

that the bijk may be modelled as independent Poissons. (See

for example Evans (1955).) We will denote their mean by w/K

( K denoting the number of cycles). The distribution of the

zijk cannot be characterized so easily. Variation of the

zijk results from: a decay in cells alive with time, fluc-

tuations associated with the randomness of radioactivity dis-

integrations and the error (due to pipetting inaccuracy) in

the volume of blood used for the various replicates.

For a given volume, u, of blood pipetted from the sample

drawn at time ti physical theory suggests assuming that the

z. 's are independent Poissons with E{z JkIul = Pixku, xkijk iku
being a known value reflecting the decay of the radioactive

tracer between the cycles of counting. Here Pi is the ex-

pected number of atoms decaying in a unit time period from a

unit volume of blood, and hence is proportional to the number

of surviving red cells in circulation at time ti out of the

original group of labelled cells. Hence i is the parameter
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of greatest interest. As a function of time t. it is the

survival curve of the treated red cells. The difficulty is

that p1 cannot be observed directly. What is observable

is yij. whose mean is p ixk + r/K, and whose distribution

is affected by the variation of the Zijk and the volume

actually pipetted. This volume is a latent variate.

Under this model the row totals, yi;, for a given volume

u are also independent Poissons, with E{y.ju} =
1J

piu(x1+... +xK) + v. If we assume that the parameters are

standardized so that xl+ ..+ xk = 1 and that the volume

has probability density function f(uIa), then the probabi-

lity of observing the yi is given by

' | j (piu+ 71) exp{ -(piu+7r)}f(uIa)du . (2.2)

In the following sections we base estimates of the pi, u, S

on (2.2) and further use it to derive estimates of sampling

variability.

In most survival studies, of the type described above,

the procedure is to substitute for pi a monotonically de-

creasing function of time and several parameters. (See for

example, M. Pollycove (1975) and Berlin (1959).) Doing this

substantially reduces the number of parameters to be esti-

mated. In the present paper no assumptions are made concern-

ing the functional form of pi. (Although the estimation

techniques employed can be used for that case as well.) The

main interest of the present paper is in investigating the

properties of the latent variable, u, and in verifying the

distributional assumption set down. Giving pi a specific

functional form is yet another assumption to be dealt with.
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It is anticipated that once estimates (and corresponding

standard error estimates) are determined and plotted against

time, then reasonable parametric forms for Pi will suggest

themselves. We are seeking to operate with one less level of

assumptions than has usually been the case.

III. A GENERAL APPROACH

A variety of problems involving latent variables were

described in Section I. A particular latent variable problem

requiring solution was described in Section II. This section

presents an approximate maximum likelihood solution to a broad

class of such problems. In order not to obscure essential

details, the most general case is not presented.

Let U be a latent variate with density function f(ula)
depending on the parameter a. Let Y be an observable vari-

ate with probability mass (or density) function, given U = u,

f(ylu,a) depending on the parameter a. Then the marginal

probability mass function of Y is given by

f(yla,8) = |f(yu,ca)f(uja)du. (3.1)

The parameters a and a are assumed distinct, and the pro-

bability function is assumed to separate in the manner of

(3.1). (This separation occurs for the tracer data described

in the previous section.)

Suppose that a sample of observations y1,...,y1 is

available for the distribution given by (3.1). With 6=(a,a)

and

a log f(y1le) (3.2)

ae
the maximum likelihood equation for estimating e is given by
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I p(y jO) = 0. (3.3)

Various conditions leading to the consistency and asymptotic

normality of e have been set down. For example, 0 is con-

sistent under conditions (B-1) to (B-4), (involving i), of

Huber (1967) as I - . Further, if 6O denotes the true

parameter value, then /r(e-00) is asymptotically normal with

mean 0 and covariance matrix i(e0) , under conditions (N-1)

to (N-4) of that paper, supposing that E{i(Yje)} is differ-

entiable at 0 = 6O and that

i(e) = E{j(YI0)p(Y0)T} . (3.4)

Either by direct argument, or by the Missing Information

Principle of Orchard and Woodbury (1972), one sees that for

a p.m.f. of the form (3.1) the equations (3.3) correspond to

setting the following to 0,

I

I|(iju,a)f(yiju,a)f(u1S)du / f(yi|a.a) (3-5)
i=1

I
X fp(uj8)f(yiju,a)f(uIS)du/ f(yi1a,O) * (3.6)

i=1

In a variety of circumstances it is not possible to carry

out the integrations of (3.5) and (3.6). (This seems to be

the case for the problem of Section II.) In consequenre some

approximation is required. Numerical quadrature is one way to

proceed. Suppose that the probability element f(uj|)du is

approximated as follows

M
f(uIS)du = I pr6{u- um (3.7)

m=1

6(u} denoting a unit mass at u = 0. The nodes, um, and
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weights, Pml will generally depend on S. Then one is led

to the following approximate maximum likelihood equations

I M
i m (Yi(um,cL)wm(yila,a) = 0 (3.8)

I M
mI I ((umI)wM(yiIla) = o (3.9)

i=l m=1

where the wm are weight functions given by

M
wM(y1a,) = f(yIumca)pm// f(yjun c)pn (3.10)

Providing the approximation of (3.7) is good enough, solu-

tions a,6 of the equations (3.8) and (3.9) will be consis-

tent and have the same asymptotic distribution as e above,

for Huber (1967) actually shows that the result holds with

(3.3) replaced by

i- '(Y I6) = op(VT) (3.11)

as I - . It is apparent now that, generally, M must tend

to X with I and that if the cumulative error of the

quadrature approximations is op(VT), then ( ,6) will be

asymptotically normal with mean (ao,,S) and, following (3.4),

with covariance matrix that may be approximated by the inverse

ofT
M I 0W(Yiluma)l r(Yiium,a)l^

m-l i=lL W(u |I) j L W(u wm( a (3.12)m( ~ (um )
(Actually, it follows from Huber's general results, that in

broad circumstances the estimate will be asymptotically normal

with covariance matrix estimable by a modified form of (3.12)

even when the model is untrue.
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The problems now arise of how to determine the approximat-

ing discrete measure of (3.7) and how to solve the equations

(3.8) and (3.9). Consider (3.7) first, and suppose that 6 is

known. One might take Pm = l/M and

um = F_ ( M la ) (3.13)

where F(ulS) denotes the c.d.f. of U. This is the usual dis-

crete approximation to an integral. Expressions for the error

of approximation may be derived directly from the results of

Niederreiter (1978). Alternatively, suppose that U, given

S, may be approximated by some function of a normal variate,

(as in a Cornish-Fisher expansion), then the integral may be

approximated by a Gauss-Hermite formula. Sources for the nodes

and weights are given in Davis and Rabinowitz (1975). They

further quote (p.174) the error of using an M point formula

as a multiple of the 2Mth derivative of the integrand. An

approximation of quite another sort comes from noting that

expression (3.5) is actually

I
I E{f(yIU,cz)t Y = y.}. (3.14)

i=1

The individual terms have the form E{h(V)} for V a random

variable with the distribution of U given Y = y. Since the

time of Gauss people have been approximating such expected

values by either making Taylor series expansions of h(.) and

using the moments of V or by evaluating h(.) at selected

points in the neighborhood of V = E{V}. If a = var V,

then the simplest of these approximations are

h(l ), h(pv) + a2h"(v), [h(V °+ V) +h(l V V.
(3.15)

45



DAVID R. BRILLINGER AND HAIGANOUSH K. PREISLER

One reference is Evans (1972). Monte Carlo is yet another

approximation procedure.

One possible procedure for determining estimates a, B may

now be described. Have the equations (3.8), (3.9) in mind.

Suppose that a computer program, such as CLIM, is available

for determining (fixed) weight maximum likelihood estimates

for the p.m.f. f(y|u,a) and, separately, for the p.d.f.

f(ula). Given estimates a*,
"'

at an iterative step deter-

mine improved estimates using the programs to determine solu-

tions to (3.8), (3.9) with the weights replaced by

wm(yi|a*,B*). If this procedure converges, it will converge

to estimates a, S satisfying equations (3.8), (3.9). (For

examples and theorems relating to the convergence of such a

procedure, see Boyles (1980,1982) and Wu (1983).) In the case

of f(y|u,a) the program will be run for data involving M

copies of each yi, specifically for the data, Yi, um with

weight wm(yjIa*p,*), m = 1,... ,M and i = 1,...,I. Hinde

(1982) does this.

In summary, the estimation procedure proposed is an

approximation to maximum likelihood. This has the advantage

over other estimation procedures (such as: method of moments,

minimum chi-squared, weighted least squares, transformation to

normality) that by making the approximation in (3.7) arbi-

trarily good, one may come arbitrarily close to m.l. estimates.

Estimation procedures that might prove useful in some circum-

stances are the Fourier method (Feuerverger and McDunnough,

1981),the empirical prob. gen. func. (Turner, 1982), and the

approximation of the likelihood by a saddle-point procedure

(Barndorff-Nielson and Cox, 1979). However, none of
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these two proved helpful to us in the case of the problem

described in Section II.

The approach suggested, being a form of weighted estima-

tion, has the further advantage that a robust/resistant ver-

sion may be implemented directly. Such implementations are

discussed in Green (1982).

Once the estimates a, B are in hand a number of interest-

ing questions may be addressed and further things computed.

For example, one may ask: Is the distribution of U con-

centrated at a point? Are the distributions f(ylu,c),

f(ula) validated by the data?

In the next section it will be indicated how the first

question may be addressed by the,deviance statistic proceduced

by GLIM. Turning to the broad question of examining overall

goodness of fit, one knows that if a random variate Y has

c.d.f. F(y), then the variate F(Y) has the uniform dis-

tribution. In the present setup, the c.d.f. is given by

F(yla,$) = f F(yju,a)f(uja)du (3.16)

with F(y|u,a) the conditional c.d.f. of Y given U = u.

Expression (3.16) may be approximated by

N
F(yla,) = I F(yIuma)PM* (3.17)

m=1

"Uniform residuals" may now be computed as F(yia&,) once

the estimates a, B are at hand. These may be plotted on

uniform probability paper, graphed against possible explana-

tory variables and the like as is done with the traditional

regression residuals. Examples of this are presented later in

the paper. The distribution of these residuals is complicated.
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Loynes (1980) derives the asymptotic distribution in a

related situation.

The approach of this paper allows estimates of the value

of U corresponding to a given value of Y to be constructed.

Specifically, one can compute

I M

ui X umwm(yiIa, ) (3.18)
11=1 m=l

as an estimate of E{UY= Yi}. These values may be used to

examine the properties of U.

Other types of general residuals are discussed in Pregibon

(1981,1982) and Green (1982); however, the above "uniform

residuals" and their Gaussian transform seem apt for our

purposes.

IV. SONE DETAILS

For the data set of concern in this paper, the following

seems a plausible model: Y is conditionally Poisson with

f(y|u,a) = y! (lu)y exp{-I U (4.1)

where pU = E + pU, a = (r,p), and U is a random variable

with mean 1 and density f(uja). In particular the cases of

U normal, lognormal and gamma will be considered. For obser-

vations corresponding to background (Poisson) noise U is

identically 0. For other observations U represents the

volume of solution pipetted (standardized to have mean 1).
2Supposing var U = a2 (a hence is the coefficient of

variation of U ), for the above model:

EY = r + p (4.2)

var Y = 1 + p + p a. (4.3)

If pa is small, then Y will be approximately Poisson. In
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general, however, its distribution will be complicated. (In

the case that U is normal, the distribution of Y will be

Poisson normal (or Hermite), see Steyn (1976).) For the given

data it is of interest to: see if Y is approximately

Poisson, to estimate the coefficient of variation of the

pipetting error, and to examine the goodness of fit of various

assumed densities for U, among other things.

The computations to be described were carried out by means

of the statistical program GLIM-3. This program is now widely

available. It uses iteratively reweighted least squares to

fit generalized linear models with EY. = h(xia) and Y

from a one parameter exponential family. It is convenient to

use for fitting the p.m.f. (4.1). GLIM also contains a high-

level syntax for handling variables with factorial structure,

vectors and non-full rank models. Its powerful directives

shortened the length of the program considerably (they act

like subroutine calls), and allowed simple simulation of the

whole situation for checking programs and logic. In the

development of the analysis and in carrying out alternative

analyses it was most helpful to be able to use GLIM's feature

allowing the "dumping" of the analysis at the stage reached,

followed by "restoring" at a later time. One disadvantage is

that there is no directly accessible matrix inversion routine;

however, by setting up an artificial regression problem the

inverse of the matrix (3.12) could be determined. (The

specifics may be seen in the program listing in Appendix III.)

GLIM produces maximum likelihood estimates in standard

cases. It measures the degree of fit via a deviance function
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I

D(ely1,...,y1) d(eIy ) (4.4)

where

d(Oly.) = -2[1(y.lO) - sup l(y,IOe)]
with 1(yi16) = log f( Yi1). Minimizing the deviance is

equivalent to maximizing the likelihood. As noted by Pregibon

(1981,1982) following the usual approximation to the null

distribution of the likelihood ratio statistic, the distribu-

tion of the drop in deviance resulting from introducing un-

2necessary parameters may be approximated by Xf, f being

the number of unnecessary parameters introduced.

For the data set analysed in this paper, some of the

observations (the background measurements) correspond to un-

conditional Poisson variates. For these observations, the

expected value (3.4) was evaluated directly and inserted into

expression (3.12). This appeared to give substantially im-

proved estimates for the variances.

V. RESULTS

The data employed in the analysis are listed in Appendix

I. The basic variate modelled is the row total, Yi, with

i = 1,.. .,19 running over the 18 time values (0,1,. ..,46 days)

and the background measurements and with j running over

replicates. (There-are three replicates except in the back-

ground case when there are only two.) There are 56 observa-

tions all told.

The first model to be fit was one of y.j, conditional

on the "volumes", being Poisson with mean ir + piuij, and
2

with the u..j independent normals of mean l and variance a
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(Because of the double subscript this isn't quite the model

discussed in the previous sections, however, the extension of

that discussion is direct.) The analysis was cariried out by

GLIM. (A program listing is provided in Appendix III.)

Numerical integration was carried out by Gaussian quadrature

with M = 12 nodes. The analysis was also carried out for

M = 3,4,...,11 and the results found not to change much for

M > 8.)

In the approach adopted, as in Hinde (1982), a simple

Poisson model (corresponding to M= 1) is first fit. This has

the advantages of allowing one to see how near Poisson the

data is and of producing initial values for the recursive

fitting procedure to follow. The deviance statistic for the

simple Poisson fit was 276.59. It fell to 132.49 with the

full model, a substantial reduction. As mentioned earlier,

the fall in deviance may be modelled as X36 in the null case,

for sufficiently large sample size and appropriate regularity

conditions. It was found that the estimates of the parameters

l and the pi did not change much at all; however, the esti-

mates of the standard errors of the p. became larger. (These

values are reported later in the paper.)

The goodness of fit of the model was examined by means of

the "uniform residuals" Fi(yijIa,B) computed via formula

(3.17). Table 5.1 provides a stem and leaf display of these

values. Were the model correct, their distribution would be

(approximately) uniform on the interval (0,1). The stem and

leaf display suggests that there is some departure from uni-

formity. (In order to assess the likely extent of sampling

fluctuations in this display, five simulations of the
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postulated model using the estimated values a, S as the

population values were carried out. The stem and leaves were

much nearer to uniformity.) The first graph in Appendix III

(labeled Uniform Probability Plot) is a plot of the "uniform

residuals" versus rank. Were the assumptions made satisfied,

the relationship would be near linear. Again, there is evi-

dence of lack of fit. As well as these uniform displays,

corresponding "normal residuals" were computed by applying

the inverse normal cumulative to the "uniform residuals".

The logic was that one is more used to examining departures

from normality than uniformity. Table 5.1 and Appendix III

give the corresponding displays. Once again there is sub-

stantial evidence of lack of fit. Further, an outlier turns

up in the normal displays.

Two attempts to find an improved model by changing the

postulated distribution of U were made. Namely, U was

assumed to be lognormal and gamma (with mean 1 and variance

a2 ), respectively. There was virtually no change in the values

of the estimates or of the deviance. This may well be due to

the small value of the coefficient of variation a in the

Table V.1

"Uniform residuals" "Normal residuaZl"

0 : 04458 Low -3.49
1 : 23679 -1 876
2 77889 -1 42100
3 5679 -0 966665
4 346779 -0 4433221110
5 234779 0 01122234444444
6 1444555789 0 55566667889
7 02344689 1 0012
8 25558 1
9: 8 2: 1
10: 0 2: 6
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present context. It would appear that these different dis-

tributions for U, normal, lognormal and gamma, cannot be

readily distinguished in this situation.

The situation was further examined by a form of residual

plot, namely a plot of the points (j,Fi(yij.a.J), i.e., a

plot of the "uniform residuals" versus the replicate number.

If the lab technician was treating the replicates in different

fashions, this plot might make that apparent. The plot ob-

tained is the last one in Appendix III. This figure does

suggest that there is a difference between replicates- the vol-

ume pipetted is tending to be smaller for the third replicate.

A modified model was therefore examined, namely one in-

volving EUij = yj, with E y; = J, and with the coefficient

of variation of Uij remaining a. The distribution of Uij
was taken to be normal. With the modified model the deviance

dropped to 123.16, a drop of 9.33 from the previous deviance,

with the addition of two parameters. Large sample theory

suggests that the distribution of the drop in the null case

might be approximated by X2. The degree of fit was examined

by computing "uniform" and "normal" residuals as above. Table

V.2 provides the stem and leaf displays. While evidence of

lack of fit remains, it is less strong. The probability plots

lead to the same conclusion.

Figure V.1 is a graph of log Pi+ 2 s.d. versus time ti
based on the model involving replicate effects. This picture

is the one of interest to the scientists. It may be usefully

compared to Figure II.1 based on the basic data alone. The

estimates and their estimated standard errors are given in

Table V.3.
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TabZe V.2

"Uniform residuals" "NormaZ residuaZs"

0 : 02479 Low -3.11
1 : 0288 -2 2
2 : 4455 -1 : 85
3 : 244447 -1 : 332
4: 6788899 -0 9977775
5 : 0225799 -0 444431111000
6 : 023455778 0 011122233334444
7 : 567788 0 577788899
8 : 23348 1 002
9: 489 1 5

2: 0
2: 6

The estimate of the standard error of p8 is noticeably

larger than the rest. This phenomenon occurred in some of the

simulations as well (and not always for the same i ) and no

doubt represents the fact that one has only three replicates

at each time point and is estimating a separate pi at each

time point. One would be wise to form a pooled estimate of

standard error.

It was indicated in Section III of the paper, that having

obtained estimates of the values of the unknown parameters,

a, the conditional expected values E{U ly. } could be

estimated via formula (3.18). Table V.4 gives the stem and

leaf display of these estimated values, having removed the

replicate effects. The distribution has a Gaussian shape.

There is one outlier and a suggestion of skewness to the left.
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TabZe V.3

Estimate
3304
0. 1699e-01
1. 005
1.007
0. 1 741e+05
0. 1785e+05
0.169Oe+05
0. 1724e+05
0. 1577e+05
0. 1415e+05
0. 1437e+05
0.1367e+05
0. 1264e+05
0. 1309e+05
0.1123e+05
0.1137e+05
0.1058e+05
8809
8878
8628
7531
6527
zero

S. E.

40. 65
0.2029e-02
0. 5837e-02
0. 5102e-02
187.1
217.0
270.1
107.2
135.9
306.6
262.5
2129.
490. 0
255.3
106.2
386. 8
112.5
148.5
313.1
181.5
287. 6
108.4
aZiased

Table V.4

Stem and Leaf of Corrected VoZumes

Low : .952
96 :7
97 :578
98 :1569
99 :00013444459999

100 :00012233455556677
101 :00011123448
102 :38
103 :9

Parameter

pi
sig
gaml
gam2
rho(l)
rho(2)
rho(3)
rho(4)
rho(5)
rho(6)
rho(7)
rho(8)
rho(9)
rho(10)
rho(ll)
rho(12)
rho(13)
rho(14)
rho(15)
rho(16)
rho(17)
rho(18)
rho(19)
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log survival curve + 2.s.d.
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FIGURE V.1

VI. DISCUSSION AND CONCLUDING REMARKS

It has been suggested that when one is studying counts of

sampled radioactivity data, and specifically when blood is

alloquoted to be placed in a counter, it is reasonable to

expect the variance of the error in such cases to be propor-

tional to the squares of the corresponding mean counts (see

for example, Preisler (1977) and Jennrich and Ralston (1979)).

The present set of data, described in Section II, allow this

suggestion to be verified at a basic level. The replicate

counts at each time point and the methodology adopted allowed

the estimation of the distribution of the unobserved volumes

sampled - the variation of the volumes may be viewed as leading
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to inflation over Poisson variation. A quantity of specific

interest in this connection is the coefficient of variation

of the pipetting error. For the data analyzed, the estimate

is 1.7% (±.2%), see Table V.3. Substituting this value in

the formula, (4.3), for the variance of the counts and taking

note of the estimated values of the pi (Table V.3), one sees

2 2that the term dominating the variance is p aC. That is, the

variance of the counts is approximately proportional to the

square of the corresponding counts.

The computations of the paper were unable to distinguish

the actual distribution of the volumes sampled, beyond finding

it to be approximately normal for the apparent parameter

values. (For these values the normal, lognormal and gamma

could not really be expected to be distinguishable unless a

great deal-of data was available in any case.)

"Uniform residuals" proved very useful in checking other

aspects of the model however. Specifically goodness of fit

was examined by plotting these residuals versus various ex-

planatory variables. For example, the plot versus replicate

number suggested that what had been treated as identical might

better be treated as different. As to why this difference be-

tween replicates exists, we will have to leave to the experi-

menters.

The work of the paper shows that maximum likelihood esti-

mation is in fact a viable approach to a broad class of latent

variable problems and that goodness of fit may be examined in

such a fashion that improved models suggest themselves. GLIM

proved an effective tool for carrying out the needed computa-

tations. Standard error estimation and simulations proved

feasible within its structure.
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APPENDIX I

TN-Treated
Counts in 10 minute intervals

CyclT : 1 2 3 4
Times (days)

0
0
0

2
2
2
3
3
3
4
4
4
7
7
7
9
9
9
11
11
11
14
14
14
16
16
16
18
18
18
21
21
21
24
24
24
29
29
29
32
32
32
35
35
35
38
38
38
46
46
46
back
back

5352
5149
5328
5472
5435
5331
5109
5358
5231
5230
5462
5035
4951
4755
5035
4502
4457
4386
4559
4538
4540
4323
4378
4319
4120
4189
4076
4181
4195
4158
3799
3743
3608
3849
3855
3763
3434
3569
3591
3027
3045
3011
3055
3091
3094
3038
3064
3022
2697
2729
2781
2516
2477
2509
829
846

5092
5121
5156
5417
5263
4974
4956
4930
4929
5128
5266
4686
4759
4521
4665
4537
4434
4278
4348
4590
4372
4289
4290
4331
4053
4005
4012
4211
4123
4187
3856
3659
3568
3739
3785
3623
3451
3538
3475
3062
3159
3064
3065
2946
2866
2869
2956
2820
2638
2643
2642
2424
2500
2462
853
831

5381
5113
5244
5516
5447
5177
4797
4957
4969
5136
5282
4712
4793
4630
4769
4381
4381
4189
4295
4476
4246
4238
4265
4166
3971
3892
3852
4155
4050
4161
3718
3531
3458
3526
3547
3499
3319
3461
3447
2870
2935
2955
3105
3046
3039
3116
3029
2997
2788
2730
2721
2312
2382
2437
839
803

5123
4960
5150
5147
5262
5001
5135
5182
5070
5238
5496
4896
4798
4632
4873
4301
4187
4308
4359
4387
4325
4178
4176
3984
3932
3846
3903
3904
3942
3909
3670
3520
3472
3654
3645
3540
3355
3560
3456
3033
3030
3151
3086
3085
3074
2945
3087
2860
2682
2797
2663
2441
2552
2482
787
819

I

iL
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APPENDIX II. SOME DETAILS OF THE CONIPUTATIONS

A variety of minor issues arose in the course of writing

the computer programs. For example, in the computation of ex-

pression (4.1) it was found appropriate to divide it by

yY exp{-y}/y! in order to have numerical stability. This

did not necessitate changes in the estimating equations.

Because of the large magnitudes of the observations being

analyzed, normal approximations were made to the Poisson c.d.f.,

F(yIum,), of (3.17) and to f(uja) when U was modelled as

gamma. (The Wilson-Hilferty approximation was used in the

latter case.)

The convergence criterion that GLIM employs in the fitting

of system models is, apparently, stop when the deviance changes
-4by less than 10 . This approach was adhered to in fitting

the latent variable model, although a criterion based on how

near the right-hand sides of the estimating equations have got

to 0 would undoubtedly be better. In trials involving many

iterations (up to 100) it was found that things did not change

much after 15 iterations.

Not all the GLIM macros are listed in Appendix III; how-

ever, the structure of the work should be apparent. Other

subfiles were created for alternate numbers of integration

nodes, m, for the replicate effect, lognormal and gamma

cases. Virtually all of the work was done within GLIM. One

disadvantage of GLIM-3 is its not containing an explicit ma-

trix inversion algorithm. One was needed in computing esti-

mates of the standard errors via (3.12) - this was done by

setting up an artificial regression problem. The boxplots of

Figure II.1 were done within "S".
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The work was carried out on the Berkeley Statistics

Department's VAX 11/750 running UNIX.

APPENDIX III

cat fort3

Sc Gauss-Hermite integration - 12 nodes and weights
smac nodes Scalc %m = 12 Svar Xm z p $data z p Sread
5.5009 .0000002 4.27183 .000048 3.22371 .00220338
2.25946 .0291167 1.34038 .146967 .444403 .321664
-5.5009 .0000002 -4.27183 .000048 -3.22371 .00220338
-2.25946 .0291167 -1.34038 .146967 -.444403 .321664
Sendm $return

Ssubfile newmodel
*c General macros for fitting a mixed Poisson
$mac expand ! Makes Xi copies of the data and associated variates
Scalc %o = Xn*X :1DZ1 p Need to save Xip

u = Xlt(rho,Z%i) ! Initial values of volumes pipetted
$unit Zo Scalc j - Xgl(Xn 1) : k = %gl (Zm,,n) !
s ey = y(j): erho 2 rho(C) :p = p (k) : mu - lp(j) Send.

Smac model ! Sets up Poisson model.
$var Zn f ! f is the marginal p.m.f.
*err p Slink i Syvar ey Scalc Z1p - mu : Zfv - Zip *recy *wei ew Sends

Smac setup $use nodes $use expand $use model Sends
Smac weight ! Computes the weights and marginal p.m.f.
*calc mu - Zp :ew - Xlog(ep) - mu * ey + ey*%log(ou/ey) : ew - 7exp(ew)
sf - 0 s f(j) M f(j) + sw : ws - f(j) : ew -w/ws Sendm

$sac test ! Tests for convergence by change in deviance and no. iterates
$use weight Scalc Xc - .001 : .e M -2*ZcuiXlog(f))
s %t M Xge(Zd-Ze,c)+Zge(Xe-Zd rc) : Zd Xe : Xs-Zif(Zle(Zt,O),O,Zs-1)
Sprint 'current deviance - ' * Ze xs - '*2 Xs $enda
*macro fitting ! Carries out the overall fitting.
$use weight Sue test $use estb Sf it erho.eu *enda
$sac uresid ! Computes the 'uniform residuals" ur
!Makes normal approximation to Poisson cumulative
Svar Zo eur Scalc eur = Y,np ( (ey-mu) /sqrt(mu))
s ur M 0 : ur(j) - urCj) + cur ep $ends

Smac ufitted Computes the fitted volums uf
*calc uf - 0: uf (j) = uf (j)+eu*ew $enda
$return

Ssubf i I e normal rr
Sc Assuming normal distribution for volume, estimates sig - Xb
$mac estb Scalc eu - u(j)*(1+Xb*z(k)) : 7u =cuCu)
: Xz - Zcu(ew*u(j)*(eu-l)*22) : Zb - Xsqrt(%z/Xu)
: mu -u(j)*(1+7.b*z(k))
Sprint ' estimate of sig is ' *7 7b Send.
Smac errb Compute valUS required for information matrix.
Scalc rl (zut(k)*W2-1v)/Zbu sendm
$sac serror ! Computes s.e. 's, prints estimates and s.e. s
$extract Xpe Sue errb !
Scalc sI - (ey/Zlp-1)*w : s2 -slseu : rl = rl*ew
Scalc ZY - Xlp(Zn) *unit Zn !
Scalc p = 0 : r - 0 : sig O0
s pi(i) - pi(J)+sl : r(J) M r(j)+s2 : sig(j) - sig(j)+rl
: pi - u*pi+(l-u)/Zsqrt(Zy) : sig - sig*u
Sa ias Swei $err n $scale 1 *yvar py
Scalc py - piS*Zpe(1) + r*Zpe(rho+I) + si3g*b$fit pi.Zgm + rho.r + sig - Zgm Sd e $endm

*f i ni sh
X
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Sc A 6LIM SESSION TO FIT A NORMAL 'VOLUME
.Scalc In :56: li-19 Ic SETS UP SAMPLE SIZE AND NUMBER OF RHO'S
.$units In $factor rho Xi
.Sdata y Sdinput 8 Sdata rho Sdinput 8 *c BRINGS IN COUNT DATA AND 'i'
:.rr,p flink ik ovar y Sc SETS UP SIMPLE POISSON (CONSTANT VOLUME)
.$ Ii s $fit rho Sd ri

Scaled
Cycle Deviance DF

3 276.6 37

Estimate S.E. Parameter
1 3304. 40.64 Igs
2 0.1742e+05 92.52 rho(l)
3 0.1784e+05 93.28 rho(2)
4 0.1690e+05 91.58 rho(3)
5 0.1722e+05 92.15 rho(4)
6 0.1576e+05 B9.47 rho(S)
7 0.1414e+05 B6.41 rho(6)
B 0.1437e+05 B6.86 rho(7)
9 0.1368e+05 85.51 rho(S)

10 0.1265e+05 83.48 rho(9)
11 0.1309e+05 84.35 rho(10)
12 0.1123e+05 80.60 rhoill)
13 0.1137e+05 80.89 rho(12)
14 0.105e+0S 79.25 rho(13)
15 8811. 75.43 rho(14)
16 8881. 75.SB rho(l5)
17 8631. 75.03 rho(16)
18 7533. 72.55 rho(l7)
19 6528. 70.21 rho(l8)
20 Zero Aliased rho(19)
Scale Paraseter taken as 1.0000

.Sinput 3 nol2 newiodel normalerr Sc MACROS FOR FITTING

.Scalc lb z .02: Is = 15 kc INITIAL VALUE FOR S16 AND MAXIMUM NUMBER OF ITERATIONS

.$use setup $Sh Is fitting
- Current model abolished

current deviance a 276.61716 Is * 14.
estimate of sig is 0.0199987

Scaled
Cycle Deviance DF

2 492.4 653
- Current display inhibited

current deviance 2 132.48734 Is = 0.
estimate of sig is 0.0189142

.5
Scaled

Cycle Deviance DF
2 51.54 611

.Suse serror Sc DISPLAY ESTIMATES AND STANDARD ERRORS
----- Current model abolished

Scaled
Cycle Deviance DF

I 0.1826e-09 36

Estimate S.E. Parameter
1 3304. 40.64 pi
2 0.1891e-01 0.1766e-02 sig
3 0.1744e+05 318.2 rho(l).r
4 0.1781e+05 156.8 rho(2).r
5 0.1690e.05 323.9 rho(3).r
6 0.1727e+05 94.05 rho(4).r
7 0.1577e+05 157.5 rho(5).r
8 0.1414e+05 222.6 rho(6).r
9 0.1437e+05 241.4 rho(7).r

10 0.1366e+05 363.9 rho(8).r
11 0.1265e+05 463.1 rho(9Y.r
12 0.1308e+05 996.7 rhotlO).r
13 0.1123e+05 97.33 rho(11).r
14 0.1137e+05 201.7 rho(12).r
15 0.IOS8e+05 138.2 rho(13).r
16 8807. 270.6 rho(14).r
17 8878. 240.3 rho(15).r
18 8630. 130.9 rho(161.r
19 7531. 412.7 rho(17).r
20 6526. 153.S rho(18.r
21 Zero Aliased rho(19).r
Scale Parameter taken as 1.0000
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.Suse uresid Sc COMPUTE 'UNIFORM RESIDUALS'

.Scalc n:ZqIl(n,) *sort us ur *plot us n Sc UNIFORM PROBABILITY PLOT
1.08 1
1.02 S u

0.960 1 u
0.900 S u
0.840 t uu2
0.780 1 uuu
0.720 S 2u2u
0.660 1 2u22u
0.600 1 2u
0.540 I uu2
0.480 5 2uu
0.420 1 u2
0.360 1 u2
0.300 1 22
0.240 1 u
0.180 I u2
0.120 1 2
0.600e-01 luu2

0. Su
......... t.........I..... .. t.. . . . I . . . . t.... ... I

0. 16.0 32.0 48.0 64.0 80.0
.Scalc nr=znd(us) n=lnd(IZgl(Zn,l)-.5)/(Zn+l)) Sc NORMAL PROBABILITY PLOT
.Splot nr nS

3.20 1
2.80 I n
2.40 1
2.00 I n
1.60 1
1.20 S nnnn
0.800 I 22n2
0.400 I n32322n

0. 5 3232
-0.400 1 322
-0.800 I nn2
-1.20 I nnn
-1.60 I n nnn
-2.00 1
-2.40 1
-2.80 5
-3.20 5
-3.60 n
-4.00 J

.I. .............1..1
-2.40 -1.20 0. 1.20 2.40 3.60

.Scalc n z ql(3 1) Sc SET UP REPLICATE VARIATE FOR 'RESIDUSAL PLOT'

.Splot ur n Sc 'INIFORM RESIDUALS' VERSUS REPLICATE
1.08
1.02 1 u

0.960 u
0.900 u
0.840 i 3
0.780 u u u
0.720 2 4
0.660 3 u 4
0.600 2 u
0.540 2 u u
0.480 5 3 u
0.420 u u u
0.360 u u u
0.300 2 2
0.240 1 u
0.180 u 2
0.120 1 u u
0.600-Ol u u 2

0. I u
......... 1.... I.. I

1.000 1.50 2.00 2.50 3.00 3.50
.3stop-z
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