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SUMMARY

We study the problem: Minimize max E (6(X)-e) subject to
2 ee6

E06 (X) < l-t, t > 0, when X X N(o,1). This problem arises in

robustness questions in parametric models (Bickel (1982)). We

(1) Partially characterize optimum procedures.

(2) Show the relation of the problem to Huber's (1964)

minimax robust estimation of location and its equivalence to a

problem of Mallows on robust smoothing.

(3) Give the behaviour of the optimum risk for t + 0, 1

and (4) Study some reasonable suboptimal solutions.
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P. J. Bickel

I. THE PROBLEM

Let X -. N(,c ) where we assume a is known and without loss

of generality equal to 1. Let 6 denote estimates of 0 (measur-

able functions of X), and

M(0,6) = E(6_0)2
M(6) = supe M(6,6)

For 0 < t < 1, let

V = {6: M(0,6) < 1-ti

and

p(t) = inf{M(6): 6sD 1.

By weak compactness an estimate achieving p(t) exists. Call it

Pt. of course, p(O) = 1 and

6* = X0

while p(l) = and

6* = 0.1

Our purpose in this paper is to study 6* and p and approxi-

mations to them, based on a relation between the problem of

characterizing p and 6* and Huber's classical (1964) minimax

problem.

The study of 6* and p can be viewed as a special case, when

the prior distribution is degenerate, of the class of restricted

Bayes problems studied by Hodges and Lehmann (1952) and the

subclass of normal estimation problems studied by Efron and

Morris (1971).

Our seemingly artificial problem is fundamental to the study

of the question: In the large.sample estimation of a parameter

n in the presence of a nuisance parameter 0, which we believe

to be 0, how can we do well when n = 0 at little expense if we

are wrong about n? This question is discussed in Bickel (1982).
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Minimax Estimation of the Mean

The paper is organized as follows. In section II we sketch

the nature of the optimal procedures, establish the connection

to robust estimation and introduce and discuss reasonable sub-

optimal procedures. In sections III and IV we give asymptotic

approximations to p(t) and 6* for t close to 0 and 1. Proofst
here are-sketched with technical details reserved for an

appendix labeled (A) which is available only in the technical

report version of this paper.

II. OPTIMAL AND SUBOPTIMAL PROCEDURES AND THE CONNECTION TO
ROBUST ESTIMATION OF LOCATION

For 0 < X < 1 let,

Mx(6) = (l-X)m(6) + XM(O,6)

p (X) = inf6 Mx(6)

and let 6 be the estimate which by weak compactness achieves

the inf. By standard arguments (see e.g. Neustadt (1976))

V 0 < t < 1 there exists 0 < X(t) < 1 such that

6* = 6(t) = p(X(t)). (2.1)

Given a prior distribution P on R define the Bayes risk of 6 by

M(P,6) = f M(6,6) P(de)

and its risk,

R(P) = inf, M(P,6).

By arguing as in Hodges and Lehmann (1952) Thms. 1, 2 and using

standard decision theoretic considerations,

p(X) = inf6 sup{M(P,6) P C P

= sup{R(P) : P £ P} (2.2)

where Px is the set of all prior distributions P on [-, co]
such that P = (1-X)K+XI where K is arbitrary and I is point mass
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at 0. In fact, there exists a proper least favorable distribution

P s Px against which 6 is necessarily Bayes. The distribution

P is unique and symmetric about 0. Unfortunately it concen-

trates on a denumerable set of isolated points. This fact as

well as the approximation theorems which represent the only

analytic information we have so far on p(t), 6* are related

to the "robustness connection" which we now describe.

If * denotes functions from R to R, P, F, K probability

distributions on [-o, x] and * convolution let

Fx = {F: F P*,P P

- IF F = (1-X)K*I + Xc?, K arbitrary)

I(F) = [if(x) dx

if F has an absolutely continuous density f with derivative f'.

co otherwise.

If I(F) < let

V(F,*) = f (* (x) f(x) + 2+(x) f'(x))dx (2.3)

if
2

1 (x) F (dx) < co

= X otherwise.

By integration by parts if ' is absolutely continuous and

fb'(x)IF(dx) < X
V(F,J) = j* (x)F(dx) - 2 f p'(x)F(dx). (2.4)

Given 6 define

+(x) = x - 6(x). (2.5)

Then, it is easy to show by direct computation

M(P,6) = 1 + V(P*0, *) (2.6)

a formula due to Stein (Hudson (1978)) if P is a point mass.
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Minimax Estimation of the Mean

By minimizing (2.6) we get

R(P) = 1 - I(P*4) (2.7)

achieved when

_f= -f,

where f is the density of P4, a special case of an identity of

Brown (1971).

Standard minimax arguments yield that if F is any convex

weakly closed set of distributions on [ ] with finite Fisher

information then

V(F0 0 Sup V(F, )= inf
0V(F0I(F)

where F minimizes I(F) over F and
0

-f,
00 = f (2.8)o if
0

and f is the density of F . Specializing to FX we obtain

p(X) - 1 = -I(FXo
(2.9)

(x) x + f (x)
Ao

where F is the least favorable distribution in F and fXo Xo Xo
is its density. The characterization of Px we mentioned follows

immediately from (2.9) and theorem 2 of Bickel and Collins (1982).

For F as above, Huber (1964) essentially considered the game

(with "Nature" as player I) and payoff (to I),

-W(F,* = f 2(x) f(x)2dxl(f(x) f I (x)dxJ

Here * is the score function of an (M) estimate and W its

asymptotic variance under F. (Huber restricted 4, for instance

to continuously differentiable functions with compact support,

redefining the denominator of W to be f ,'(x) F(dx) and permitt-

ing I(F) = o. But this seems inessential.) Here again the game

has a value,
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W(Fo W(F,O) = inf W(F,i) = I 1(F)

where F0, *0 are the same strategies as for the payoff V.

F arose in the context of Huber's game in connection with

robust smoothing, Mallows (1978), (1980). He posed the problem

of minimizing I(F) for F c F and conjectured that K correspond-
Xo x

ing to the optimal Px concentrates on {kh: k = ±1,±2,...), for

some h > 0, and assigns mass

K {kh} = 2-X(1-X) Ikl k.X 2

As of this writing it appears that this conjecture is false

although a modification of D. Donoho in which the support is

of the form {±(a+kh): a,h > 0, k = 0,1,...) may be true.

The Efron-Morris Estimates

Let

Fxi = {F: F = XB + (1-X)G, G arbitrary). (2.10)

Fxi is Huber's (1964) contamination model. As Huber showed, the

optimal FX1 has - of the form

(x) = x , x| < m
m - (2.11)

= m sgn x, |xi > m.

The estimate corresponding to 'p in the sense of (2.5) is given bym

6M(x) = 0 , x < m
(2.12)

= x - m sgn x, lxi > m.

This is a special case of the limited translation estimates

proposed by Efron and Morris (1971) as reasonable compromises

between Bayes and minimax estimates in the problem of estimating

e when e has a normal prior distribution. We will call 6 the
m

E-M estimate. Since 6 is not analytic it cannot be optimal.
m

Nevertheless it has some attractive features.
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The M.S.E. of 6 is given bym

2 o2 +z2M(-,6) 1 + m + (e -(l+n )) ((m+O)+(m-O)-l)
m

- ((m-O)'(m+e) + (m+8)4(m-O)).

Since -2+' +
2 is an increasing function of lxi we remark, as

m m
did Efron and Morris, that M(e,6 ) is an increasing function

m
of lel with

2
M(6 ) = M(CO,6 ) - 1 + m

m m

For fixed X the m(X) which minimizes Mx(6) is the unique solution

of the equation

2¢(m) - 1 + - (2.13)
m

This is also the value of m which corresponds to FA We deduce

the following weak optimality property: Let 4 correspond to 6 by

(2.5) in the following.

Dx = {6: Eel 6 (x) I < , ; im Ix
2 (x)-2+t(x)]

= sup [2 (x)-2p C(x) ]}

D is a subclass of estimates which achieve their maximum risk
00

at ±+.

Theorem 2.1. If m(X) is given by (2.13) then 6 is
m (X)

optimal in V , i.e.

MX(6m() = min{M,(6): 6 e 9X},

Proof. By (2.6) and (2.4) if E016'(X)I < -, ,

MI(6) - 1 = sup{V(F,4 : F C F; I < sup{V(F,iP):

F e F I sup {* (x) - 2+'(x)}.

These inequalities become equalities for 6 e V
c

by letting

1el + X in M(O,6). The result follows from the optimality

property of FXi'
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The Pretesting Estimates

There is a natural class of procedures which are not in VX
and are natural competitors to the E-M estimates. A typical
member of this class is given by

m (x) = 0, lxi < m

= x, |x| > m.

Implicitly, in using 6 we test H: e=o at level 2(1-D(m)). If we

accept we estimate 0, otherwise we use the minmax estimate of X.

We call these pretesting estimates. The * function corresponding

to b is of the type known as "hard rejection" in the robustnessm
literature.

Comparison of E-M and Pretesting Estimates

Hard rejection does not work very well--nor do pretesting

estimates. Both the E-M and pretesting procedures have members

which are approximately optimal for X close to 1 or what amounts

to the same, t close to 1. However, the pretesting procedures

behave poorly for X (or t) close to 0. This is discussed further

in sections III and IV. The following table gives the maximum

M.S.E. of 6 and 6 which have M.S.E. equal to l-t at 0 as a

function of t. The E-M rules always do better for the values

tabled, spetacularly better in the ranges of interest. This is

consistent with results of Morris et al. (1972) who show that

Stein type rules render pretesting type rules inadmissible in

dimension 3 or higher.

Notes:

(1) The connection between restricted minmax and more

generally restricted Bayes and robust estimation was independently

discovered by A. Marazzi (1980).
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(2) Related results also appear in Berger (1982). His

approach seems related to that of Hampel in the same way as ours

is to that of Huber.

TABLE I. Maximum M.S.E. and Change Point m a a

Function of M.S.E. at 0 for 6 and 6
m m

M(0,6) m_M(6)m_|
E-M Pretest E-M Pretest

.1 2.393 3.626 1.180 2.500

.2 1.756 2.839 .869 2.154

.3 1.452 2.383 .672 1.914

.4 1.275 2.058 .525 1.716

.5 1.164 1.805 .405 1.538

.6 1.092 1.597 .303 1.367

.7 1.046 1.418 .215 1.193

.8 1.018 1.262 .137 1.002

.9 1.004 1.124 .065 .728

1.0 1.000 1.000 .000 .000

519



P. J. Bickel

III. THE BEHAVIOUR OF P(t) FOR SMALL t

Let

A(t) = (t) - 1

Theorem 3.1. As t + 0

AM = o(t2 (3.1)

but

(2+c) ~~~~~~~~~~~~~(3.2)t ( A(t) +X(3.2)

for every C + 0.

Notes:

(1) The E-M rule 6 with M(O,6 ) = l-t has M(6 ) =

-1+ 2 t + o(t). However our proof of (3.2) suggests that the

asymptotic improvement over this rule is attainable only by

very close mimicking of the optimal rule. This does not seem

worthwhile because of the oscillatory nature of the optimal rule.

(2) The pretesting rule with M(O, ) = l-t has

M(6 ) = 1 + Q(t). This unsatisfactory behaviour is reflectedm
in Table I.

We need

Lemma 3.1. Let X(t) be as in (2.1). Then X is continuous.

Proof. By the unicity of 6 and weak compactness, M(0,6x)
is continuous and strictly decreasing in X on [o,1]. The lemma

follows.

Lemma 3.2. As X + 0

-2
X (l-p(X)) -* -. (3.3)

Lemma 3.3. As X + 0

X (l-p(X)) + 0 (3.4)

for every C > 0.
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Proof of Theorem 3.1 from Lemmas 3.1-3.3

Claim 3.1. For any sequence tk + 0 let X = X(t ) so that,

1 - P(Xk) Xktk - (1lXk)A(tk) (3.5)

Then, by lemma 3.1, X + 0 and

X(-2 (X) 2 -2(txk (l-p (x)) < Xk max {XXx (1-x) x}
k k k kxlXk) k

tk (3.6)

=O(t2/A(t).
2

tk
By (3.3), and (3.1) follows.

A(tk
Claim 3.2. Note that

1 - p(X) > maxIt[Xt - (1-X)A(t)] (3.7)

If A(tk) < C tk for some C < 2 s > O, tk + 0 put Xk tk

to get

1- 1~2+ -i-c1 P (k) > tkk (l+o(1)) > k 1+c (1 + o(1))

a contradiction to (3.4).

Proof of Lemmas 3.1-3.3

The proof proceeds via several sublemmas.

Lemma 3.4. Let {v } be a sequence of Bayes prior distribu-

tions on R and let 6 be the corresponding Bayes estimates.

Suppose that, as n +

M(6 ) + 1. (3.8)

Then

6 (x) + x a.e. (3.9)
n

+1(Il) (3.10)
o n 2)

for any pair of intervals Il' 12 of equal length.
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Proof. By Sacks' (1963) theorem, there exists a subsequence

{nk} such that {6n } converge regularly to 6 and
k

n
(x) + 6(x) a.e.

where 6 is generalized Bayes with respect to v (a finite) such

that for some sequence {ak

v /v (-a ,a J + v (3.11)
nk nk k

weakly. But, by (3.8) and regular convergence M(6) < 1 and

hence 6 is minmax. Therefore, 6(x) = x a.e. and (3.9) follows

by Sacks' theorem. Since 6 is generalized Bayes with respect

to V, v must be proportional to Lebesgue measure and (3.10)

follows from (3.11).

Lemma 3.5. If X + 0, and P = (1-X)K + xi

f
r (e)K (de) + X.

Proof. Since M(') + 1

{PA} satisfies (3.10) as X + 0.

Therefore for all a > 0

P [0,a)
+ 1.

P (O,a)

Hence,

X = o(K (0,a)). (3.12)

By the same argument

K(O,a)

Kx(0l) + a. a < 1

and hence

[Kx(O,1)] f01 (e)K (de) + So(e)d. (3.13)

The lemma follows from (3.12) and (3.13).
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Proof of Lemma 3.2. We compute the Bayes risk of a reason-

able E-M estimate, viz. 6 We claim that

-2
X (M(PX,6x) - 1) + - (3.14)

Since p(X) = M(Px) < M(PXI ) the lemma will follow. To prove

(3.14) apply Stein's formula to get

_~~~c - 2
M(P,6>,- 1 =fI E (6 (X)-X) P2 (dO)

+ 2f X E (6x (X) - 1)Px(dO).
The expression in (3.15) is bounded by

X- 2 [(X-) -(-X-)P (d)
co

2
< \ - 2(1-X)f [¢(X-e) - (-X-e)]K (de).

Since O(X-O) - 4(-X-8) > X4(e) for X < /2 log 2 we can apply
Lemma 3.5 to conclude that

X2 f [O(X-e) - ¢(-X-e)]K (d)-+co

and claim (3.14) and the lemma follow.

We sketch the proof of Lemma 3.3. Details are available

in (A).

Proof of Lemma 3.3. It suffices for each c > 0 to exhibit

a sequence of prior distributions P such that

(1 - R(P)) . (3.16)

By Brown's identity, claim (3.16) is equivalent to

[ft]2
X o({X2-c (3.17)
f

for fA the density of Px * 0. Here is the definition of PA.

Let

e (x) =-(l+ (-) ) 1T 7TT T
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Write 4 , (¢ ) for the normal (0,a ) density (d.f.). Given

k > 1, let h be a (C) function from R to R such that

Ih(x)I < c (1 + IxIr)l for all r > 0, x, some c . (3.18)

00

fooh(x)dx = 1

CO xih(x)dx = 0, 1 < j < 2k-1.

An example of h satisfying these conditions is

1 00 2h (x) = ifT exp{-itx-t2k}dt.

Let

hh (x) =-h (x).a a ar

Set, for ck in (3.18),

a = 2 Tr Xmck, (3.19)

and

M = (2k+2)/(2k+3). (3.20)

If Px= (1-X) LX + XI define PX by the density of LV
Q9 = (e -Xh J (1_)-A m a

for X < 1 and a < 1. By construction L is a probability measure

(see (A)).

Let

g =e*e

qa = 0 - h
a

Then, []2 [ j2 j 2

+g2Af +X
ql

f = f f f f

It is shown in (A) that,
[,]2
g_= O (

-2f- O(m) (3.21)f
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gq -1' (3.22)
fx

[q'] 2 2k (3.23)
fx

We combine (3.21) - (3.23) to get
2 -1

f = 2(m +Xm
-1+MX2 2k

= (X2-2(k+3) )

Since k is arbitrary we have proved (3.17) and the lemma.

The theorem is proved.

IV. THE BEHAVIOUR OF p (t) FOR t CLOSE TO 1

We sketch the proof of,

Theorem 4.1. As t + 1

(t) = 21log(1-t)I (1+o(1). (4.1)

If St c Vt and

* (x) = 0, Ixi < g(t)

sup{lSt(x)-xl: jxI>g(t)} = o(g(t)) (4.2)

g(t) = 221log(1-t)I(l + o(l)).

then

M(6t) - i(t)(l + o(l)). (4.3)

Note. It is easy to see that both E-M and pretest estimates

which are members of Dt satisfy (4.2) and are optimal in this

sense. The approximation (4.1) is thus crude and not practically

useful.

Lemma 4.1. As X + 1

p (X) = 2 (1-X) I log (1-X) (l+o)(1)) .
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Moreover if {6X} is any sequence of estimates such that

6X(x) = o lxi < c(X)
|6 (X)-xj < b(X), jx| > c(X)

where

c(X) = [21log(1-X)J]l/2(1+Q(1))
(4.6)

b(X) = o(c(X))

then

M(Osx) =2 (1-X) Ilog(l-X) 11/2(10(1)) (4.8)

M(6x) = 2 log(l-X)I(1+o(l)) (4.9)

and hence

Mx(6x) = p(X)(l+o(l)).

Proof. We establish the lemma by

(i) For every y > 0 exhibiting Px such that

R (Px) > 2 (1-X) Ilog (l-X)J (l-y) (l+o(l)).

(ii) Showing that x given in (4.5) satisfy (4.8) and

M(6XJ < 2 Ilog(l-X) (l+o(l)).

Since, by (4.8),

M(0,6x) = o((l-X)Ilog(l-X)|)
and

R(Px) < p(X) < (1-X)M(6c) + XM(O06X)
the lemma will follow. Here is PA. Let,x.

£e= 1 - X (4.10)

a = a(£) = V12 log cI (l-yJ) y > 0

Let PX put mass - at ±a, and X at 0. The calculations establish-ing(iad(i)ri()2
ing (i) and (ii) are in (A).
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Proof of Theorem 4.1. Putting X = t we must have,

p (tJ < (l-t)(1P(t) +t) .

Therefore, by Lemmas 3.1 and 4.1, as t -* 1,

p (t) > 12 log (1-t) I(1+o(l)) .

By (4.8) and (4.9) we can find members of Vt with maximum risk

12 log(l-t)j(l+o(l)) and the theorem follows.
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