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1. Introduction

Breiman and Freedman (1982) consider the problem of determining the

optimal number of explanatory variables in a multiple regression equation,

in order to minimize prediction error; that paper has a review of the litera-

ture. Using similar techniques, Freedman and Moses (1982) determine the

optimal number of covariates in a clinical trial to measure a treatment

effect. The model considered there is

Yi = ct. +
3r.

+ Ej
y X +

.
(1) 1 1 1 j=l~~ ~1 1

where

Y. is the response of the ith subject
1

is 1 for all subjects

Ci is 1 for subjects in treatment, and 0 for subjects in control

Xi. is covariate j measured on subject i

In this equation, a and yj are nuisance parameters; the object is to

minimize the variance of the regression estimate of 3. The covariates are

considered as observed values of random variables. In principle, there are

infinitely many covariates that could be entered into the equation, and a

decision must be made as to when to stop. The order for entering the

covariates is pre-determined. Thus, 6 will be estimated from the regres-

sion of Yi on aEi+ Ci+ Xj=l yjXij, for i =l,...,n. The problem is to

choose p.

This paper will consider a slightly more general model, namely

(2) y. = j=l c + X.=lxjyj + e. for i =l,...,n1l = ijji jl ij I

Here, ci. is deterministic, and i has rank k < n; the X.. are
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nonsingular multivariate gaussian, with mean 0; the infinite vectors

{Xi: j=1,2,...} are independent and identically distributed in i; the e's

are independent of the X's, having mean 0 and variance c2. The assumptions

on X may be relaxed to orthogonal invariance of the joint distribution of

the rows, but we do not pursue this.

Let c be a fixed k-vector. The object is to estimate the contrast

c'S, in a regression of Y. on

Xjk 1 Gijj + Y,P 1 Xijyj

Let 0 denote this estimator of c'I. How is p to be chosen tonpc
minimize var npc? To determine the answer, let

c2p =-var{j=p+l Xijyj Xil'.,Xip}

By our assumption, ap is deterministic and does not depend on i. The

main result of this paper can now be stated; the proof is given in the next

section.

Theorem. Let Vnpc = var{enpclXii for l <i <n and l <j<p}. Then Vnpc

is distributed as

CT2+Y2WWO- c[i+1X22/x2

the chi-squared variables being independent.

In particular, the optimal p minimizes

(a +a )(1 + pn-p-k-1)

The quantity a2+2 may be estimated from the data. For more details, see
p

Breiman and Freedman (1982).
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2. Proof of theorem

We begin with a special case of an identity due to Woodbury (1950).

Let C be an arbitrary kx p matrix. Notice that C'C and CC' are non-

negative definite. Let Ik and Ip be the kx k and px p identity matrices.

Lemma. (Ik+CC') 1 = Ik C(Ip+C'C) 1C'

Proof. This is almost a computation:

Ip = (I p+C'C) (Ip+C'C)
1 -l~~~~~

= (I +C'C) + (I +C'C) C'C
p p

= (I +C'C)1 + CC(I +C'C)1p p

Multiply on the left by C and on the right by C' and juggle:

(Ik+CC')[Ik- C(Ip+C'C) C'] = Ik * 0

Turn now to the theorem. We may assume without loss of generality that

the Xij are all independent N(0,1) variables, as argued in Breiman and

Freedman (1982). By redefining E and a2, we may also assume that yj=Q
for j > p. Thus, we may restrict attention to the model

(3) Y = + X y + e
nxl nxk kxl nxp pxl nxl

where the Xij are independent N(O,1) variables; the components of e

are independent of X, with mean 0 and variance a2 As usual, introduce

the matrix H = X(X'X) X', which is the projection into the column space

of X.
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Lemma. In the model (3), the least squares estimate S of 6 is given by

the formula

= (W'W)1W'Y
W = (I-H)c

Proof. As usual, 6 may be obtained by the regression of Y on C, where

Y is the part of Y orthogonal to the columns of X, and likewise for C.
Formally, this is the regression of (I-H)Y or even Y itself on (I-H)C,
since HY is orthogonal to (I-H)i.

In particular, since I-H is idempotent,

(4) Cov{^JX} = a2(W'W)C1=- ('-lH)-

Using for example the Gram-Schmidt process, write r = pN where p

is n x k and I= 1k' while N is kxk and nonsingular. Now extend

to a full nx n orthonormal matrix; that is, create an nx (n-k) matrix o

such that the concatenation M = [i,4] is orthonormal. Let

U = p'X and V = O'X

Then U is a k xp matrix, V is an (n-k)x p matrix; the entries of U and

V are all independent N(Q,1) variables.

Proposition. covOjX = C2[(4' 1+ NN FN .1] where

F = U(V'V) U'

Proof. We pick up the argument from (4). Put C = 4N and recall that

N'N = ' to see

d1=( 1+N1 T+ N 1
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where

T = (Ik - 'H9) - Ik

Recall that the concatenation M = [ip,4] is orthonormal, so (X'X) =

(MX)'(MX) = U'U+V'V. Of course, p'Hp = (W'X)(X'X)Y1(Xi). Thus

T = [Ik- U(U'U+V'V)1U'y1 - Ik

Let S = V'V and C = US 12. Then

T = [Ik- C(C'C+Ip) lc'f1 - Ik
= cc' = U(V'V)1u

by the Lemma. 0

Remark. The proof shows that cov{SIX} = cAN 1(Ik+F)N'1. The random

matrix F has a matrix F-distribution -- see Dawid (1981) for a

discussion and properties of such distributions.

Proof of the Theorem for the model (3). Plainly, var{c'SjX} is

(5) a2[c'(WdYlc+R] where R = c'N1 .FN1 c

Since the law of F = U(V'V) -iUl is invariant under rotations of U, the

distribution of R in (5) depends only on the squared length of N' 1c

which is

d2 = c'N-1N'-c c'(N'N) ic = c' ( cIC

Moreover, the distribution of R/d2 coincides with that of U U9

where U1 is the first row of U. This is Hotelling's T -statistic. 0



7

References

L. Breiman and D. Freedman (1982). How many variables should be entered in
a regression equation? Technical report no. 1, Department of Statistics,
University of California, Berkeley.

Dawid, A.P. (1981). Some matrix-variate distribution theory: Notational
considerations and a Bayesian application. Biometrika, 68, 265-274.

D. Freedman and L. Moses (1982). Adjusting for covariates in clinical
trials. Technical report, in preparation, Department of Statistics,
Stanford University.

M. Woodbury (1950). Princeton Technical Report No. 42.


