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Abstract

The bootstrap. like the jack-knife, is a technique for estimating standard

errors. The idea is to use Monte-Carlo simulation, based on a non-parametric

estimate of the underlying error distribution. The main object of this paper is

to presenit the bootstrap in the context of an econometric equation describing

the deinand for energy by industry. As it turns out, the conventional asymptotic

formtulae for estimating standard errors are too optimistic by factors of nearly

three, when applied to a particular finite-sample problem. In a simpler context,

this finding can be given a mathematical proof.
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1. Introduction

1. Introduction

This paper is mainly concerned with estimating standard errors for regression coefficients

obtained by constrained generalized least squares with an estimated covariance matrix. Existing

methods are largely asymptotic, and may not apply with finite samples. We use "the bootstrap," a

computer-based methodology, to check the accuracy of the asymptotics and make alternative estimates

of the standard errors which are more reliable. This paper is the first application of the bootstrap to

generalized least squares.

The bootstrap is a relatively new statistical technique, which permits the asscssmcnt of

variability in an estimate using just the data at hand; see Efron (1979). The idea is to resample the

original observations in a suitable way, to construct "pseudo-data" on which the estimator of interest

is exercised. More specifically, the theoretical distribution of a disturbance term is approximated by

the empirical distribution of a set of residuals. Measures of variability, confidence intervals, and even

estimates of bias may then be calculated.

In the regression case, the bootstrap is useful for investigations when mathematical analysis

can give only asymptotic results. Within the scope of the bootstrap are: non-normal errors, lag

structures, and generalized least squares with estimated covariance matrices. This paper comparcs the

performance of conventional asymptotic estimates of standard error to the performance of a bootstrap

procedure in thc setting of a single econometric equation. T'he main finding is that for generalized

least squares with estimated covariance matrices, the asymptotic formulac for standard errors can be

too optimistic, sometimes by quite large factors. 'The bootstrap procedure is appreciably better than

the conventional asymptotics, when applied to the finite-sample situation. For a partial explanation,

see Beran (1983) or Singh (1981).

This study is mainly empirical; however, in very simple contexts, a mathematical reason

for the findings is given (Section 5). As a simple illustration of those results, talkc for instance the

one-way analysis of variance model, with Gaussian errors, equal numbers of observations per cell,

but different variances. Constrain the theoretical cell means to equality. If the variances are known,

the generalized least squares estimator a&gla for the common dteoretical mean weights the sample

means by the reciprocals of the cell variances; var &'gL. is proportional to the harmonic mean of these

variances. If the variances are unknown, they can bc estimated by the samplc variances, leading to
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1. Introduction

the approximate gls estimator CXgLs the a in the subscript stands for "approximate." The variance

of &agj would be estimated as proportional to the harmonic mean of the sample variances. Call this

estimated variance var. Then var is systematically too small:

var &agia> var &gls > E(var).

An extension is made to the general multivariate linear model.

The balance of this paper is organized as follows. Section 2 gives a brief review of the

bootstrap idea, in the context of linear econometric models. Section 3 gives an even briefer review of

generalized least squares, and pinpoints the technical issue to be addressed by the bootstrap. Section

4 applies these ideas to an econometric model and presents a simulation experiment to assess the

validity of the bootstrap. Some mathematical results are presented in Section 5, while Section 6 reports

some computational details, and discusses estimates of the stability of the Monte-Carlo results. Finally,

Section 7 reports a bootstrap experiment on a formula of Srivastava and Dwivedi (1979).

The approach may be distinguished from the classical work of Brown (1954), or Goldberger,

Nagar, and Odeh (1961): the bootstrap uses simulation rather than asymptotics based on Taylor

series. The work of Fair (1979 and 1980) is closer in spirit to the bootstrap, but somewhat different

in detail: Fair assumes that the disturbance terms follow a multivariate normal distribution, and

that the parameter estimates follow their multivariatc normal limiting distribution. The bootstrap is

distribution-free, and develops the appropriate finite-sample behavior for the estimates. Of course, the

bootstrap has problems of its own, as will be seen below. The bootstrap can also be used to attach

standard errors to multi-period forecasts, and to choosc among competing forecasting equations; it can

also be applied to simultaneous equation models. These extensions will be discussed elsewhere. In

other models, not on the face of things too dissimilar from the one studied here, the conventional

asymptotics do rather well. We hope latcr to explore the reasons for such differcnces.

Thc generalized least squares procedure we study is often called the two-stage Aitken estimator

(2SAE). For a particular class of models - "seemingly unrelated regrcssion equations" - Zellner

(1962) shows that 2SAE is asymptotically valid. Maddala (1971) studies the asymptotics in a more

general setting. Some theoretical results for finite samples have been obtained for special cases. Zellner

(1963) analyzes two "'seemingly unrelated regrcssion equations" where the "independent variables" are
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1. Introduction

assumed to be orthogonal by equations, and obtains exact first and second moments for the 2SAE in

finite samples. Some of his work will be summarized in Section 5.

Phillips (1977) develops Edgeworth expansions for the distribution of the two-stage estimator

in the "seemingly unrelated regressions" model with many equations. Taylor (1977) derives a second-

order approximation to the covariance matrix of the two-stage estimator in finite samples. These

investigations do not focus on the validity of the approximate standard error formulae in finite samples,

or the sensitivity of the theoretical results to departures from assumptions.

The bias in the SEs is demonstrated in this paper by a simulation experiment, where the

parameters are fixed at estimates from a real data-set, and the error distribution is chosen to be the

empirical distribution of the residuals. These choices are by no means critical, and normal errors could

be used. Fiebig and Theil (1983), for example, have results similar to ours, for demand equations

with normal errors. Theil, Finke, and Rosalsky (1983) also have such results, for maximum likelihood

estimates, the asymptotic standard errors being computed from the information matrix in the usual

way. These two papers have useful reviews of previous work. Mikhail (1975) also reports bias in

standard errors, but only in the range from 5 percent to 30 percent. For additional details on the

material in the prcsent paper, and other related results, see Peters (1983b).
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2. The bootstrap

2. The bootstrap

The bootstrap is described by Efron (1979, 1982). Related papers are by Bickel and Freedman

(1981, 1983) and Freedman (1981, 1982). The bootstrap is a procedure for estimating standard errors

by re-sampling the data in a suitable way. This idea can be applied to econometric models, where the

technical difficulties include simultaneity, correlated errors, heteroscedasticity, and dynamics. First, an

informal overview of the idea. In brief, the model has been fitted to data, by some statistical procedure;

and there are residuals, namely the difference between observed and fitted values. Some stochastic

structure was imposed on the stochastic disturbance terms, explicitly or implicitly, in the fitting. The

key idea is to resample the residuals, preserving this stochastic structure, so the standard errors are

generated using the model's own assumptions. Assuming the model and the estimated parameters to

be right, the resampling generates "pseudo-data." Now the model can be re-fitted to the pseudo-data.

In this artificial world, the errors in the parameter estimates are directly observable. The Monte-Carlo

distribution of such errors can be used to approximate the distribution of the unobservable errors in

the real parameter estimates. This approximation is the bootstrap: it gives a measure of the statistical

uncertainty in the parameter estimates.

A more cxplicit, but still informal, description is as follows. Consider a dynamic linear model,

of the fonn

Yt =Yt-I B + Xt C + et (1)
lXq lXq qXq lXp pXq 1Xq

In this equation, B and C are coefficient matrices of unknown parameters, to be estimated from the

data, subject to identifying restrictions; Yt is the vector of "endogenous' variables at time t; Xt is

the vector of "exogenous" variables at time t; and ct is the vector of disturbances at time t. The

endogenous variables are determined within the model, the exogenous variables by some external

process: technically, endogenous variables may be correlated with C, exogenous variables are not

correlated with c. Tlhc following standard condition is imposed on the error distribution: given the

X's, the C's are independent and identically distributed with mean 0. Linearity is assumed to simplify

the exposition; the method is easily adapted to cover nonlinear models, although the computational

costs may be prohibitive. The form (1) is general enough to cover the case of "seemingly unrelated

regressions;" see Zellner (1962).

Data are available for t = 1, ... , n and Yo is available too. The coefficient matrices are
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2. The bootstrap

estimated as B and C by some well-defined statistical procedure, like generalized least squares (Sections

3 and 4). When B and C are computed, residuals are defined:

Et =Yt -Yt-IB-XtC (2)

These are estimates for the true disturbances Et in the model (1). Let p be the empirical distribution

of the residuals, assigning mass 1/n to each of i, . ..,,?. To avoid trivial complications, assume the

equations have intercepts. See Freedman (1981, pp. 1220 and 1224) on centering.

Some inflation of the residuals may prove desirable, to compensate for the deflation of

the residuals in fitting. However, there is no generally valid rule, except in the case of a standard

regression model with homoscedastic errors where the factor f/nj(n7-jip) is appropriate. The residuals

are linearly dependent, again due to the fitting. It may be appropriate to transform the residuals as in

Theil's (1971, pp. 205-206) BLUS procedure. This is not done here.

Consider next a model like (1), but where all the ingredients are known:

* Set the coefficients at B and C respectively.

* Make the distuirbance terms independent, with common distribution /s.
The exogenous X's are kept as before, as is Yo. Using this simulation model, pseudo-data can be

generated. These will be denoted by stars: Y,. ,
- - I
Y The construction is iterative: YO = Yo, and

forallt =1,..., n,

Y t-Yt B+XtC + E*

the cO's being independent with the common distribution it.

Now pretend the pscudo-data Y*,..., Y* come from a model like (1), with unknown

coefficient matrices. Using the previous estimation procedures, cstimate these coefficients from the

pseudo-data; denote the estimates by B* and C*. The distribution of the pseudo-errors B* - B,
C -C can bc computed, and used to approximatc the distribution of the real errors B-B, C-C. This

approximation is the bootstrap. It is emphasized that the calculation assumes the validity of the model

(1). The distribution of the pseudo-errors can be computed, e.g., by Monte Carlo, simply repeating

the procedure some number of times and seeing what happens. This paper will give experimental

evidence to show the approximation is good; for other experimental evidence, see Efron (1979, 1982).

For asymptotic results, see Freedman (1981, 1982).
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3. Generalized least squares

3. Generalized least squares

Consider the model

Y=X3 +c, E(e) =O, cov(E) = (3)

With E known, the generalized least squares (gls) estimate is

I3gL = (XTr71X)-1XTE-ly

As usual,

E(j1gJ) = (5)

cov(&91g,) = (XTSlX)l (6)

When E is unknown, statisticians routinely use (4) and (6) with E replaced by some

estimate E. Iterative procedures are often used, as follows. Let P(O) be some initial estimate for ,

typically from a preliminary ordinary least squares (ols) fit There are residuals e(O) - Y - XpA(o).
Suppose the procedure has been dcfined through stage k, with residuals

ek) =y-X,{k)

Let be an estimator for , based on e(k): an example will be given below assuming a block

diagonal structure for E. Then

k+) = (AT^ IX) lxT^-ly (7)

This procedure can be continued for a fixed number of steps, or until P.L. settles down. Indeed, a

convexity argument shows that 4<l converges to the maximum likelihood estimate for j, assuming e

is independent ofX and multivariate Gaussian with mcan 0.

The covariancc matrix for P.,, is usually estimated from (7), with Ek put in for E:

C^(k+l) = (XTiX)- (8)

A~~~~~~~~~~~~~Tghis may be legitimatc, asymptotically. In finite-sample situations, all depends on whether (k iS a

good estimate for E or not. If, Sk iS a poor estimate for E, te standard errors estimated from (8) may
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3. Generalized least squares

prove to be unduly optimistic: an example is given below. Unfortunately, approximate gls estimators

are often used when there is too little data to offer any hope of estimating E with reasonable accuracy.

In such circumstances, the bootstrap is a useful diagnostic, and in cases like the present one it gives a

more realistic estimate of the standard errors.

To ease nctation, /'k) will be refered to as the (gls.k)-estimator. Tis paper only considers

the (gls,l) estimator, which in many situations has full asymptotic efficiency; see Cox and Hinkley

(1974, p. 308). In our example, further iteration seems to make the coefficient estimates better, but also

exaggerates the optimism of the standard error estimates. In other cases, the approximate gls coefficient

estimators may prove to be worse than ols estimators, due to the variability of Ek: so iteration can

hurt.
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4. Bootstrapping RDFOR

4. Bootstrapping RDFOR

The object of this section is to illustrate the bootstrap procedure for determining the variability

of parameter estimates in a real example. The main experimental finding is that the conventional

asymptotics can be off by factors of nearly three. The example is the Regional Demand Forecasting

Model (RDFOR). This is a system of econometric equations designed to forecast demand for energy

through 1995. It is a component of the Midterm Energy Forecasting System (MEFS). MEFS was the

principal energy model used by the Department of Energy to make midterm forecasts for its Annual

Report to Congress, through 1981. MEFS was a development of PIES, the Project Independence

Evaluation System. RDFOR forecasts what demand would be in a future year for various fuel types

by consumption sector and geographical region, as a function of prices and other exogenous variables.

The focus here is on that part of the model concerned with the industrial sector demand for fuel.

For more detailed discussions of RDFOR, see Freedman, Rothenberg, and Sutch (1983) or Kuh el al

(1982).

The Department of Energy (DOE) distinguishes ten geographical regions, indexed here by r.

The equation for total demand by the industrial sector in geographical region r 1, ... 10 and year

t 1961, .. ., 1978 is taken as

qrt =a. + b crt + c hrt + d Prt + e qr,t-1 + f Vrt + Ert (9)

where in region r and year t: qrt is the log of an index of fuel consumption, c,t is the log of cooling

degree days, h,t is the log of heating degree days, Prt is the log of a fuel price index, v,t is the

log of value added in manufacturing, C,.t is a stochastic disturbance term, and ar, b, c, d, e, f are

parameters to be estimated. This particular equation is the one reported by Kuh el al (1982). The

equation is dynamic in the sense that the lagged endogenous variable q,,t-l appears on the right hand

sidc. Notice that the coefficicnts b, c, d, e, f are constant across regions; however, the intercepts a,

are region-specific. 'The constraint that b, c, d, e, f be constant across regions is a significant technical

complication, not usually encountered in treatments of Zellner's method.

The assumptions on the stochastic disturbance terms Ert are as follows:

E(rt) = 0 for all r and t. (lOa)

The E,t are stochastically indepcndent of the C,t, h,t, Prt, and vrt. (lOb)
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4. Bootstrapping RDFOR

The vectors et = (Ei,t, . . . IE1O,t) are independent and identically (IOC)

distributed in time.

This model is outside the framework of standard regression theory because of the dynamics: q,t
is correlated with cr,t-l It is outside the framework of standard multivariate theory because the

coefficients are constrained to equality across regions. However, equation (9) does fit into the framework

(1) with q = 10 and p = 5 X 10 + 1 = 51; the matrices are subject to numerous constraints.

Historical data for estimating this regression relation were taken from the SEDS (State Energy

Data System) data base. SEDS was previously called FEDS. This data base is reviewed in Freedman,

Rothenberg, and Sutch (1983). This data base contains the annual data required for the period 1960

through 1978. The fitting period, however, runs from 1961 to 1978: a year of data is lost due to the

lag term.

Consider the one-step gls estimator, /9j) in the notation above, starting from the ols estimator
= AoL.. The first column in Table 1 below displays this (gls,1) fit to the model. The standard

errors (SEs) are obtained from the conventional formula (8) using EO; these arc shown in the second

column of Table 1, and will be called the "nominal" SEs. The computation of EXo may be described as

follows. For the model (9-10) the distribution of Et = (Ei,t ... , E1O,t) has an unknown inter-regional

covariance matrix K; this 10-by-lO matrix is assumed constant over time. The covariance matrix E for

all the disturbances is a 180-by-180 block diagonal matrix with K repeated on the diagonal. Let et

denote the 10-vector ((k ,t. .I, t) of residuals at the kth stage of gls iteration; k =0 corresponds

to ols. Let Kk be the sample covariance matrix of these cighteen 10-vectors, with r, s entry given by

1978
1 Z ~.(k)_(k) (1

18 E drt'CatEE.t
t=1961

IThen the estimate Ek is the 180-by-180 block-diagonal matrix with Kk repeated on the diagonal.

The validity of the nominal standard errors shown in Table 1 is open to serious question,

because Eo is not an accurate estimate of E. Trhis is because there are only 18 years of data and 10

regions, from which must be estimated 10 intercepts, 5 coefficients, and the lO-by-lO variance-covariance

matrix K. The bootstrap gives an alternative method for approximating the standard errors, and a

program for assessing the validity of the nominal standard errors.
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4. Bootstrapping REIFOR

a,
a2
a3
a4
a5
a6
a7
a8
a9
alo
b
c

d
e
f

Table 1. Bootstrap experiment for equation (9). Estimation is
by one-step gls. There are 100 bootstrap replications.

GLS Bootstrap

(1) (2) (3) (4) (5) (6)
Estimate Nominal SE Mean SD RMS Nominal SE RMS Boot SE

-.95 .31 -.94 .54 .19 .43
-1.00 .31 -.99 .55 .19 .43
-.97 .31 -.95 .55 .19 .43
-.92 .30 -.90 .53 .18 .41
-.98 .32 -.96 .55 .19 .44
-.88 .30 -.87 .53 .18 .41
-.95 .32 -.94 .55 .19 .44
-.97 .32 -.96 .55 .19 .44
-.89 .29 -.87 .51 .18 .40
-.96 .31 -.94 .54 .19 .42
.022 .013 .021 .025 .0084 .020
.10 .031 .099 .052 .019 .043

-.056 .019 -.050 .028 .011 .022
.684 .025 .647 .042 .017 .034
.281 ;021 .310 .039 .014 .029

To get started on the bootstrap, let a,, ', c, dZ, e, and
A

be the (gls,l)-parameter estimates

reported in Table 1. Consider the residuals

qrt -a
-

- dPrt-e q,,t-I fvrt

Let Et be the 10-vector (6l1t, ... . (O,t) of residuals for year t. Let be the empirical distribution of

{Et : t = 1961,..., 1978}. Note that O has mean 0, because (9) has region-specific intercepts. Now

simulate the equation (9), where all the ingredients are known:

> qr,1960 and the exogenous variables are held fixed.

* The parameters are set at their estimated values ar, g, c, d, e, and f.

* The disturbance terms are independent with common distribution Js.

More specifically, let {Et : t = 1961, ..., 1978} be the results of 18 draws madc at random with

replacement from the set of eightcen 10-vectors {^t: t = 1961, ..., 1978}. ThIus c1961 may be drawn

- 11 -
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4. Bootstrapping RDFOR

twice, but p1962 not at all. On the other hand, the regional pattern of the disturbances docs not change.

Thus, the simulation preserves the key stochastic assumptions: the disturbances are indepcndent and

identically distributed in time but show a geographic pattern.

The pseudo-data can now be built up iteratively year-by-year: q*1960 qr,1960 and for

t= 1961,..., 1978,

=t-ad + tCrf +
Ct
+ hrt + rPt + eq + Vt + cEt (12)

Here E* denotes the rth component of the 10-vector E*. The bootstrap parameter estimates

ar, *, ..., fp can now be obtained from the (gls,1) regression of q*t on c,t, hrt7, Prt, qr,t-1,
and v,t.

This procedure was repeated 100 times. On each repetition, a new set of starred disturbances

was generated, hence a new set of pseudo-data, and therefore a new set of starred parameter estimates.

Columns 3 and 4 in Table 1 show for each parameter the sample mean and sample standard deviation

(SD) for these 100 starred estimates. These SDs are the bootstrap estimates of variability in the

parameter estimates. They are appreciably larger than the nominal SEs.

It will now be shown that the nominal SEs are substantially too small. To do the bootstrap,

we havc set up a fully-dcfined simulation model, where the parameters and the distribution of the

disturbances are all known. In this world, the variability of the (gls,j) estimates was determined

empirically, as reported in the "SD" column of Table 1. In the same world, how good are the nominal

stanidard errors? The answer is, they are much too small, as shown in column 5 of 'able 1. This

column may be explained as follows. At each of the 100 repetitions, the nominal SE for each (gls,l)
estimate is computed using (8) on the starred data set. The root mean square of these SEs is shown in

the table.

Take, for example, the coefficient d of the price term. In the simulation world of this

experiment, the "real" variability of the (gls,1) estimate for this parameter is .028, from column 4. But

the apparent variability, from the conventional asymptotics, is in a typical run only .011, from column

5: this is
100

1 ESE?
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4. Bootstrapping RDFOR

where SE, is the nominal SE for the price coefficient computed from formula (8) applied to the ilh

starred data-set. Typically, the conventional formula is off by a factor of nearly three. The other entries

in column 5 may be interpreted in a similar way. Ihis finding cannot be explained by "specification

error." The specification is built into the simulation procedure. The explanation was noted before:

There are not enough data to estimate the parameters and the covariance matrix with any reasonable

accuracy. Thus, an asymptotic formula has been misused in a finite-sample situation. (In Table 1, we

do not recommend comparing columns 2 and 5; the underlying models have different parameters, and

different error structures. We believe the comparison between columns 4 and 5 shows that column 2

is too small; this is an inductive step.)

The shapes of the bootstrap distributions may be of some interest. The coefficient estimates

like P are close to normally distributed, as may be anticipated. A bit more surprising: the nominal

SEs are close to normal too, and not especially variable. Take value-added, for example. Let SE1
be the nominal SE from the ilh starred data-set. A histogram for these 100 numbers is close to the

normal curve, with mean .014 and an SD of .004.

A sidelight is the bias in the gls coefficient estimates. For a simple auto-regression it is

well known that the Icast squares coefficient estimates are biased; see Hurwicz (1950). The estimates

in the more complicated dynamic model considered here also exhibit significant bias, for a similar

reason. Compare columns 1 and 3 in Table 1. For instance, the coefficient f for value-added was

set to the estimated value .281 in the construction of the pseudo-data. However, the 100 coefficients

P had a sample average of .310. The discrepancy is .029. A standard error for the discrepancy can

be calculated from the standard deviation of the f^* divided by the square root of the number of

replications, .039/v"ii0 = .0039. The i-value is .029/.0039 = 7.4 on 99 degrees of freedom, so the

bias is significant. The coefficient for the lag tenn is also significantly biased; the remaining coefficients,
Icss so. When the lag is removed from the model (1), the bias in the gls coefficient estimates subsides.

The usual argument to show (gls,k) estimates are unbiased depends on the assumption that E has a

symmetric distribution given the design matrix. When the lag term is dropped, this is approximately

so.

More interesting for present purposes: when the lag term is dropped, the conventional

estimates of standard errors are still too optimistic, by factors like those in Table 1. Thus the bias in
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4. Bootstrapping RDFOR

the conventional asymptotics is not due to the autoregressive structure. Likewise, Table 1 can be re-run

using a multivariate Gaussian distribution for the errors, with mean 0 and covariance matrix equal to
A

the empirical covariance matrix K1 of the residuals. This covariance matrix is displayed in Table 2.

Again, the results do not change much. Thus, the bias in the conventional asymptotics is not due to

the discreteness of the error distribution.

Table 2. K1, the inter-regional covariance matrix estimated from
the one-step gls residuals in equation (9). Entries have
been scaled up by 103. T'he 10 X 10 matrix is symmetric;
only the upper half is reported.

2.031 1.186 1.087 1.008 .942 1.064 1.359 .881 .565 .695
2.989 .993 1.118 .569 1.161 .937 .297 .355 .208

1.184 .831 .643 .650 .905 .392 .490 .337
1.064 .630 .594 .672 .420 .491 .367

.580 .394 .805 .554 .363 .311
1.302 .433 .0243 .144 .227

1.906 .824 .717 .257
1.567 .367 -.125

1.049 -.0079
1.086

We also redid the simulation experiments, using Gaussian crrors, eliminating the lag, and

selectively removing the weather and price variables; we had 3, 6, and 10 regions; we had i.i.d. errors,

as well as errors with covariance. The results werc somewhat surprising:

* The condition number of the design matrix does not indicate the probable magnitude of

the bias in the conventional standard errors.

* Decreasing the number of regions sometimes increased the bias.

* So did the change from correlated to i.i.d. errors.

The quality of the bootstrap estimates of standard error will now be checked by a simulation

experiment. It will be shown that these estimates are much better than the conventional ones, but are

still biased downwards. rhe details may be a bit complicated, but the main idea is straightforward. We
will check the bootstrap by trying it out in a simulation world where we know the answers. Going back
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4. Bootstrapping RDFOR

to Table 1, the "SD" column shows the "real" variability in the (gls,I) estimates, in the simulation world

of the bootstrap. The "RMS Nominal SE" column shows the variability indicated by the conventional

formulae. The last column in the table (developed from the procedure described below) shows the

variability indicated by the bootstrap.

The experi.nent involves a nested iteration: at the "Souter loop" starred data sets are built up

one after another, and presented to the "inner loop" bootstrap for an estimate of the standard errors.

Here are the details. The outer loop is just the bootstrap procedure described above: E*, rts a*, etc.

are as previously defined. Let ,*t be the residuals:

=t -a- Crt
-

b
tPhrt- -pt ,t- - fvrt

Let Vt be the 10-vector (t* , .. . O, of residuals for year t. Let u* be the empirical distribution

of {t: t = 1961, ..., 1978}. So o will change on each pass through the outer loop.

On each pass through the inner loop generate c** for t = 1961, ... 1978 as eighteen

independent draws from u*. Let r** denote the rth component of Et*. Construct a doubly-starred

data set: q 1*=q7,1960 and for t = 1961, ..., 1978

q =t=a + Pc,t + 8*hrt + t Prt + e qq t1 + f V7t + rt*

Obtain the doubly-starred parameter estimates ^a ** ... P by the (gls,1) regression of q** on

crt, htt, Prt' qr,t- and v,t.

The "outer loop" may be repeated to develop the distribution of these bootstrap standard

errors. Column 6 of Table 1 summarizes an experiment with 100 passes through the outer loop, and at

each pass there were 100 passes through the inner loop. Column 6 gives the root mean square of the

100 bootstrap estimates for the standard error, each such estimate being itself the standard deviation

of 100 doubly-starred estimates. Consider, for example, the coefficient d of the price term. Let i index

the outer loop, and j index the inner loop. On pass i through the outer loop and pass j through the

inner loop, a doubly-starred parameter estimate 9 * is computed; call this value 4ij. On pass i, the

bootstrap standard error is the standard deviation of the 100 numbers {Ji'j i = 1,..., 100}: call this

SDi. Then the last column of Table 1 reports

100 Z 1 SDc .022
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4. Bootstrapping RDFOR

This is the typical standard error for d estimated by the bootstrap method, in the simulation world.

The "real" (gls,l) parameter variability is displayed in column 4 and is .028. Column 6 is uniformly

smaller than column 4, indicating the bias in the bootstrap procedure. But the bootstrap is closer to

the mark than the conventional asymptotics, shown in column 5. Indeed, the bootstrap is off by 20 to

30 percent; the conventional asymptotics, by factors ranging from 1.5 to 3.

One problem, both for the bootstrap and for the conventional asymptotics, is that the residuals

e tend to be smaller than the disturbance term E, due to the effect of fitting. In some designs, e.g. the

standard regression model, there is an easy fix, namely scaling up the residuals by V/j(n-p). This

fix is not appropriate here. Due to the inter-regional constraints, the bias in E turns out to depend in a

complicated way on the design matrix and E. However, the bootstrap can be used as a bias-correction

device for , and this reduces the bias in the bootstrap SEs to below 10 percent.

- 16 -



5. Some mathematics

5. Some mathematics

Why are the nominal SEs so badly biased in RDFOR? The main reason is that the true gls

estimator depends on E; the approximate gls cstimators replace E by an estimate E, and this source

of error is ignored by the conventional asymptotics. More particularly:

* The conventional formula (XTE>1X)1 is a concave function of X, and this creates a

downwards bias, which is severe when E is quite variable - even if E were an unbiased

estimate of E.

* In fact, the conventional estimate E for E is biased downward in RDFOR, due to the

constraints.

The object of this section is to give a mathematical treatment of the concavity issue, in settings much

simpler than RDFOR. The bias in E will not be discussed here.

Consider first the one-way analysis of variance model

Yrt -a + rt, E(Ert) =0, varrt =a2

where a is an unknown location parameter to be estimated; the Ert are independent for r = 1, ... , R

and t = 1,... , T; for each r, they are identically distributed, but this distribution may depend on r.

Suppose R > 2 and T > 2. When a2,2 .., a7 are known, the gls estimate for a is

agla -= ._, (13)

where Yr = ET I Yrt. Of course,

var agiLa = iZ1 U1 T/OI] (14)

If the a2 are unknown, consider (13) and (14) with a2 replaced by the unbiased estimate

A2 T11(r T t== rt_-Yr)2

Namely,

aagLs = R (15)
r_?=1 1/6rr
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and

var 1/[ T/6']J (16)

This &agLs is a (gls,l) estimate. And var is a variability estimate analogous to the conventional formula

(8) considered previously. The next theorem shows that the random variable var tends to be too small.

This is a finite-sample result: asymptotically, gls and agls are equivalent

Theorem 1. If the Ert are normally distributed, then

var agla > var agla > E(var) (17)

That is, provided the errors are nornal, the true variability of &Ggls mnust exceed the variability of &gL.,
and this in turn exceeds the expected value of var.

Proof: To verify the first inequality, notice that when ihe Ert are normally distributed, Y, and 62
are independent random variables. Condition on &2,..., 2

. Clearly,

E(Y7I6'a,...,IUR)=a and var(Y7tI,...,I),=c /T

Then the conditional minimum variance unbiased linear estimator for a is still the a.,, defined by

(13). So with probability one,

var(kagls 1&2'...'^2 ) > var(&glaI5,. ,52) = vara

But

var5agl. = E{var(&2,gaI6,..., R)} + var{E(&agl, I * )}

The first term on the right is greater than var &gls. The second term is zero, since E(&agisIa ...I ) =
a. This establishes the first inequality in (17). For the second inequality, 62 is an unbiased estimate

of a2, and these variables are independent; also, 1/ ERU1 T/li is strictly concave in each of its

arguments: now use Jensen's inequality. I

When the normality assumption is not satisfied, (17) may fail to hold. For example, set

a = 0, R = 2, T = 2, and let the Ett be independent and identically distributed with a common

distribution it. Take it as a mixture of two normal distributions

= (1 -t7)4o,l + 774>O,02
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where 4O,,2 is the normal distribution with mean 0 and variance a2. Thus, u is symmetric and

unimodal. ILet q be small and a2 large so n7a2 is moderately large. Then

A ~ ~ ~var ahagla < var &gl.
In effect, &ag.,, is a trimmed mean. With this example, however, E(vAr) < var We do not

know what happens in general.

The next result is a fairly straightforward extension of Theorem 1 to the general multivariate

model. To state the result, consider the model

Yi =Xi C +Ei for i 1,...,n
lXq lXppXq lXq

where Xi is nonrandom, and the coefficient matrix C will be constrained to fall in the linear space

A. Linear constraints of this sort are common in econometric work; for example, components of C

may be constrained to vanish. The Gaussian disturbances Ei have mean zero; they are independent

and identically distributed in i, but have an arbitrary positive definite covariance matrix cov(Ei) = K.

Suppose q > 2, n > p + q, and S = E3> XTXi is nonsingular.

In this circumstance, unconstrained ols and gls estimators for C coincide, see Schmidt (1976,

p. 78), or Theil (1971. p. 309); call them CO. Stack the q columns of Co to form a pq X 1 vector

denoted vec[C&]. The covariance matrix of vec[Co] is K 0 S-1, and

-klls k12S ...kq

(K 0S-')' K-K S= k21S k22S ... k2S

Lkq'S kq2S ...kqS

where ktj is the ii entry of K-'. For a discussion, see Anderson (1958, Section 8.2.2).

Let ^Q = Yi- XiCO. Let K be the empirical covariance matrix of the E'i, scaled by n/n - p

to be an unbiased estimate of K. Let C.1, be the true gis estimator of C constrained to fall in A, with

K known. Let Cagia be the approximate gls cstimator of C constrained to fall in A, with K unknown

but estimated by K. As usual, C.,. is obtained by projecting Co into A relative to K-' 0 S, while

A.~~Cagl, is obtained by projecting CO into A relative to K-' (& S. The covariance matrix for C.,. is

a function of K, obtained as in Section 3; and the estimated covariance matrix cov is obtained by

substituting K for K. Supposc ols and gls differ, when the constraints arc imposed.

- 19 -



5. Some mathematics

A A ~A

Theorem 2. cov Cagia > cov Cgi. > E(cov), where M > N means M - N is nonnegalive definite

and M 76 N.

This theorem is proved much like Theorem 1, because K and Co are independent; K
is distributed like the empirical covariance matrix of n - p independent draws from a multivariate

Gaussian distribution, with mean 0 and covariance matrix K. In general, M - N need not be strictly

positive definite. This is because for some contrasts ols and gls may coincide, even though they differ

on other contrasts. The following inequality is used in proving lTeorem 2; Ylvisaker (1964).

Theorem 3. Let X be an n X p matarix and E a p X p positive definite matrix. Then (XTF-lX)-l
is a weakly concave function of E.

Arnold Zellner (private communication) has considered the "seemingly unrelated" regression

problem for two "regions:"

[Y2] = [ X2][X2] +[Q2]

where Y, is T X 1, X7 is T X k, nonrandom of full rank,/, is k, X I and c, is T X I. He

assumes XTX2 = 0, E(E7) = 0, E(cE,j) = Cr'7IT. with r = {a,} positive definite, and the e's

multivariate Gaussian. In this model, Zellner can compute the finite-sample covariance matrix for the

approximate gis estimator; the asvmptotic covariance matrix is biased downward, by (k1 + k2 + 2)/T.

Srivastava and Dwivedi (1979) survey other suclh devclopments in the estimation of seemingly unrelated

regressions. The inter-regional constraints in models like RDFOR seem to make this sort of calculation

difficult: but see Section 7. In the one-way analysis of variance model with two regions and r2 = 2

we can compute the exact bias: it is I/T. For three regions, or unequLal regional variances, or unequal

numbers of observations per region, our computation fails.
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6. Computational details

This section gives additional details about data, algorithms, and the stability of the Monte-

Carlo experiments. All of the computer work reported here was performed using the TROLL

econometric modeling system running on an IBM 370/168 at M.I.T. The cost for the simple bootstrap

experiments reported in this section was $10. Validating the bootstrap was more expensive, about $120,

but this procedure would not be routinely used in practice. The SEDS data base is installed in the

TROLL file-system as a collection of single-precision data series. Listings of the relevant data-series

and of the TROLL functions used to construct the divisia index and to aggregate to the ten DOE

regions are available on request.

The bootstrap experiments were conducted within the BOOTMOD subsystem of TROLL;

see Peters (1983a). In this program, numerical linear algebra used for ols and gls fitting relies on

the LINPACK library, described in Dongarra el al (1981); double-precision is maintained for all

the fitting. Uniformly distributed pseudo-random numbers are obtained from the McGill University

random number package "Super-Duper," described in Marsaglia el al (1976). This random number

generator combines a congruential sequence with a shift register procedure and has very high quality.

The uniform variates are used to select at random with replacement from the eighteen 10-vectors of

residuals. The secds (1073,12345) were used for the experiments reported here. The results of Table 1

were replicated in an unreported experiment using the seeds (31415,14121).

Turn now to the stability of the Monte-Carlo experiments. Tle bootstrap SEs obtained from

the simulation experiments are random variables subject to sampling error. To get a rough idea of their

stability, an approximation to the variance of the bootstrap SEs was calculated. The approximation is

developed as follows. Let X1, . .. , X,, be independent and identically distributed random variables

with mean it and variance au2. Let a0 denote the sample variance of the X's,

A2 (X1 2
or= t=
=n-iL.VtJ

A2The object is to approximate var a . To first order,

^212var a -var{(XI -,)2}
n

--[E(Xi- - ]
n
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This last expression may be estimated from the sample by

A2 i[ X,4 4var(6u) =4-[-L(X - -&46 (18)

Of course,

SE(U2)=

Finally, an approximate standard error for 6a is

SE(fl =2 6R (19)

because

A/ff+ E(f2) ^2[ S/t)E(& 1 SE(a2 @ 1 SE(2)

For the bootstrap, identify X, with the ith replicate of a starred parameter estimate, e.g. , in the

ilh starred data set. Then an estimate for the approximate variability of the bootstrap SE is easily

calculated from (18-19), by accumulating fourth moments.

Table 3 shows the bootstrap SEs from column 4 of Table 1. Alongside stand the values

calculated from (19). These are in the natural units for comparison: column 2 gives a rough standard

error for column 1. For example, the bootstrap estimate for the SE of I is .039 from column 4 of

Table 1. This estimate is based on a sample of size 100, namely, the bootstrap replications. How

much does sampling error affect this estimate? The answer is given by the estimated approximate

standard error of .0019, shown in the second column of Table 3; this is computed from (18-19). The

entries in the second column are between 5 and 10 percent as large as those in the first column. The

uncertainties are not large enough to change any conclusions that have been drawn. An approximation

for the variability of the RMS Nominal SE (column 5 of Table 1) can be developed along similar lines,

with similar results.
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Table 3. Stability assessment for the bootstrap SEs. Estimation is
by one-step gls. There are 100 bootstrap replications.

Bootstrap SE
(from Table 1)

.54

.55

.55

.53

.55

.53

.55

.55

.51

.54

.025

.052

.028

.042

.039

Approximate SE
for Bootstrap SE

.046

.046

.046

.046

.047

.046

.048

.046

.044

.046

.0023

.0038

.0026

.0024

.0019
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7. On a formula of Srivastava and Dwivedi

7. On a formula of Srivastava and Dwivedi

To dcmonstrate the bias in the nominal SEs very clearly, consider a model like (9) with no

lag term, normal errors, and region-specific parameters. This is precisely in the form of a "scemingly

unrelated regression problem;" it is not a standard multivariate regression problem, because, e.g., the

fuel price in region r does not appear in the equation for region s: as is usually said, "not all variables

appear in all equations." Srivastava and Dwivedi (1979, p. 18) give an asymptotic expansion for the

SEs, whose first term is the conventional "large sample" formula, and whose second termn is a "finite

sample" correction. Table 4 below show the results of a bootstrap experiment in this context; for

simplicity of presentation, the table gives the root mean square of the indicated ratios across all 10

regions. As can be seen, the large-sample fornula is off by as much as a factor of about two, and the

Srivastava-Dwivedi formula is only somewhat better.

Table 4. Bootstrap results for a "seemingly unrelated regression-"
y. .s. a&emaed across 10 regions. There are 100 bootstrap

replications.

RMS Nominal SE RMS Sriv.-Dwiv. SE
Bootstrap SD Bootstrap SD

constant a .577 .714
c.d.d. b .515 .639
h.d.d. c .625 .772
price d .831 .980
v.a. f .677 .796
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