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Abstract

Based on empirical Levy-type concentration functions a new graphi-
cal representation of the ML-density estimator under order restrictions is
given. This representation generalizes the well-known representation of
the Grenander estimator of a monotone density as the slope of the least
concave majorant of the empirical distribution function. From the given
representation it follows that a density estimator called silhouette which
arises naturally out of the excess mass approach is the ML-density esti-
mator under order restrictions. This fact brings in several new aspects
to ML-density estimation under order restrictions. Especially, it provides
new methods for deriving asymptotic results for ML-density estimators
under order restrictions based on empirical process theory.

1 Introduction
In the present paper we give the connection of what is called excess mass ap-
proach and of ML-density estimation under order restrictions. The link between
those two is established by means of certain empirical Levy-type concentration
functions. Based on these concentration functions we derive a graphical repre-
sentation of the ML-density estimator (MLE) under order restrictions. It turns
out that this graphical representation is the same as the one of the silhouette,
(and hence, that the silhouette is the MLE), where the silhouette is a density
estimator which arises naturally out of the excess mass approach (see Section
2). This fact brings in several new aspects to ML-density estimation under
order restrictions. A more philosophical aspect, for example, is given by the
fact that the original motivation of the excess mass approach is measuring mass
concentration which (at least at a first view) is not related to order restrictions
or ML-density estimation. Another aspect comes in through the construction of
the silhouette (see below). Their construction is completely different from the
classical construction of the MLE under order restrictions based on (generalized)
isotonic regression. One also obtains new methods to study the asymptotic be-
haviour of the MLE which are based on empirical process theory (see Section
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5).
Estimating a density f under order restrictions means estimating f under

the assumption that f is monotone with respect to an order on the underlying
measure space (X, A). Such order restrictions can be expressed via a class C of
measurable sets ([3, 28]): given a (quasi-)order (reflexive and transitive) there
exists a class of sets C = C-(< such that f is monotone with respect to iff f is
measurable with respect to C-<, this means, iff level sets F(A)= {f > A}, A > 0,
all are elements of C(<. Hence, order restrictions on f can be reformulated as
f e Fe" for appropriate classes C, where

Ye = {f : f f(x)dv(x) = 1, F(A) C C for all A > O}
and where M is some dominating measure on (X, A). MLEs under order re-
strictions based on n i.i.d. observations have been derived and studied, among
others, by Grenander [9], Robertson [27], Wegmann [31] and Sager [29]. It is
well-known (cf. [27, 29]), that the structure on X given through - induces a
structure on the corresponding class C: it has to be a c-lattice. C is called
a cr-lattice if it contains X and 0 and is closed under countable unions and
intersections. A simple example is given by C = Io = {[0, x], x > 0} which
corresponds to the class of decreasing (left continuous) densities in [0, oo) with
respect to the usual order on the real line. Another example for a a-lattice
which is not a (X-algebra is the class of intervals containing a given point, xo,
say. The corresponding class of densities is the class of unimodal densities with
mode xo. Discrete analogs are given by the classes {{1, 2,... ,k}, k > 1} and
{{-k, ....,-1,0,1, .. ., k}, k > 0}, respectively.

The model f E Fe for some class of measurable subsets C also underlies the
construction of the silhouette. However, there the classes C need not correspond
to any order. C can in principle be completely arbitrary. We call a model
assumption of the form f E Ye shape restriction given by C. A standard choice
for a shape restriction (which is not an order restriction) is the class of convex
sets in Rd. In this terminology the silhouette is a density estimator under
shape restrictions which, as shown in this paper, is the MLE in .T if the shape
restrictions actually are order restrictions.

Let us briefly indicate the principle difference between the construction of
the silhouette and the classical construction of the MLE. First note, that a
MLE fn in Ye based on an i.i.d. sample of size n has to be of histogram type
(see Lemma 4.2), that is, there exists a partition {A1,... ,Ak} of Rd such that
fn(x) = #{observations e Ai}/n v(Ai), for all x E Ai. Now, constructing
the MLE using ideas of isotonic regression means constructing the sets Ai by
building them as unions of certain generating sets in C. In contrast to that
the silhouette is constructed by putting estimated level sets one on the top of
each other. The sets Ai then automatically pop up as symmetric differences of
successive level sets. Hence, in constructing the silhouette, one does not look
at the individual observations Xi and hence on the horizontal "axis", but one
builds the estimator in "moving up" the vertical axis.
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As mentioned earlier, the proof of the fact that the silhouette is the MLE
under order restrictions is based on a graphical representation of the MLE. This
graphical representation is based on least concave minorants of certain Levy-
type concentration functions. It generalizes the well-known representation of
the Grenander density estimator of a monotone density on the real line as the
slope of the concave majorant of the empirical distribution function (Grenan-
der [9]). The concentration functions under consideration are defined through
constrained maximization of certain functionals defined on C. The correspond-
ing maximizing sets (minimum volume sets and modal sets) serve as level set
estimators and are used to build the silhouette as described above. The given
graphical representation also immediately provides an algorithm for calculating
the MLE (see Section 4).

Note that the dominating measure v used in our here need not be Lebesgue or
counting measure. This for example enables us to do the following: Suppose one
wants to estimate the Lebesgue density of F under the additional information
that h = f/g satisfies some order restriction where 9 denotes Lebesgue density of
some known measure G. Then the MLE of f under this additional information
is given by f = g h where h is the MLE of h under the corresponding order
restriction with v = G. Hence, the results given in the present paper for h (as
for example asymptotic rates) immediately can be translated into results about
f also.

The present paper is organized as follows. In Section 2 we introduce the
silhouette and give some of their properties. Section 3 deals with concentra-
tion function and the corresponding maximizing sets. Some properties of these
objects are given. A characterization of the existence of the MLE under order
restrictions in terms of these concentration functions is given is Section 4 where
also the graphical representation of the MLE is presented. In Section 5 we de-
rive rates of convergence for the silhouette under metric entropy conditions on
C. All the proofs are in Section 6.

2 The silhouette
If restricted to the continuous case, this is, the dominating measure is Lebesgue
measure in Rd, the first part of this section more or less is a short cut of
Section 2 of Polonik [26]. Proofs of several facts given below can be found
there. Although they are given there for the continuous case, they apply to the
general case considered here also.

For any density f: X -+ R the following key equality holds:

f(x) = lr(A)(x) dA Vx E X, (1)

where lc denotes the indicator function of a set C. The idea for the construc-
tion of the silhouette is to plug in estimators for r(A) into equation (1). As
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estimators we use so-called empirical generalized A-clusters. They are defined
as follows: Let X1, X2,... denote i.i.d observations from a distribution F which
has a density f with respect to v. Let Fn denote the empirical measure based
on the first n observations, i.e. n Fn(C) = #{Xi E C, i = 1,... , n} and define
the signed measure

Hn,, = Fn - Av.

Definition 2.1 Any set rn,e(A) E C such that

Hn, x (1n7e (A)) = sup Hn, (C) (2)

Zs called an empirical generalized A-cluster in C.

The sets Fn, (A) are called generalized since they need not be connected, as
one would expect for clusters. Nevertheless, for briefity, we omit the word gen-
eral and call the sets rn<,C(A) empirical A-clusters or sometimes just A-clusters.
Hartigan [12] used the notion A-cluster for connected components of level sets.
Note that the notion A-cluster is in general used for the collection of all A-
clusters, that is, for the collection of A-clusters at all levels A > 0. Sometimes,
however, we consider a single level A. We hope it becomes sufficiently clear out
of the context.

The motivation for defining ]n (A) as above is given by the following equal-
ity. Let HA = F - Av then it is easy to see that

Hx (r(A)) = sup{HA(C)) C C A}. (3)

This equation gives a justification for regarding the sets 1ne (A) as estimators
for the level sets F(A) if they lie in C. Note that if v is a continuous measure
then the supremum of Hn,A over all measureable sets equals one. Hence, besides
the fact that the class C is used to introduce shape restrictions it makes sense
in general to restrict the supremum to certain subclasses C.

As a fuinctioni of A the milaximiial value in (3), i.e. E(A) = EF(A) = H (r(A)),
is called excess mass function. Note that E(A) is used in majorisation orderings.
There two distributions F and G with Lebesgue densities f and g, respectively,
are ordered by comparing their excess mass functions. If EF(A) < EG(A)VA > 0
then G is said to majorize F ([15]; see [16] for a brief overview). Actually all
this is formulated in terms of densities. The representation (3) however, gives a
way to express this in terms of distributions, without using densities explicitely.

The maximal value in (2), i.e.

En,(A) = Hn,e(rn,X(A))
is called empirical excess mass at level A. Hartigan [13] and Muller and Sawitzki
[19] independently introduced the excess mass approach which is based on the
idea (motivated by equation (3)) that maximizing the signed measure Hn,
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gives information about mass concentration of the underlying distribution. The
notion excess mass has first been used by Muller and Sawitzki. For further
work on the excess mass and on empirical A-clusters see Nolan [21], Muller and
Sawitzki [20], and Polonik [23, 25].

In all of what follows it is assumed that C is such that

(Al) 0 EC

(A2) for any A > 0 there exists an empirical A-cluster

(A3) almost surely there exists a set S E C with v(S) < oo and Fn(S) = 1

Empirical A-clusters of course exist for finite X with A = 'Px and v the counting
measure. In the continuous case, i.e. if v is Lebesgue measure and A the
Borel a-algebra, empirical A-clusters exist for standard classes C like Id, Bd,
gd, and Cd which denote the classes of all closed intervals, balls, ellipsoids and
convex sets in Rd, respectively. A general sufficient condition for the existence
of empirical A-clusters is that C is closed under intersections. Of course this
condition is not necessary. The assumption 0 E C assures that the empirical
excess mass is nonnegative (as it should be). (A3) means that a.s. there exist
empirical-A clusters with non-degenerate Lebesgue measure and it follows from
(A3) together with the fact that the v-measures of the empirical A-clusters are
decreasing in A that all empirical A-clusters have finite v-measure.

The sets n,e<e(A) need not be uniquely determined. It even may happen that
there exist empirical A-clusters for the same A which carry different empirical
mass and hence have also different Lebesgue measure. However, the sets In, C(A)
can be chosen such that the following property (P) holds:

(P) there exist levels 0 = Ao < A1 < .... < Akn,7 kn < n such that v(Fn,e(Akn,)) =
0 and that the function A -÷ Fn,(A), A > 0, is constant at the intervals
(Aj-1, Aj], j = 1, .. ., kn and has different values on different such intervals.

Property (P) actually is not necessary for proving asymptotic results for the
silhouette. Without (P), however, the silhouette may look quite erratic (this
does not happen for a-lattices C, cf. Lemma 2.1 below). Any choice of empirical
A-clusters satisfying (P) automatically have the property that for any fixed
,u > 0 the v-measure of rnFe(,i) is maximal among all empirical ,u-clusters. A
way to find the values Ai of (P) is given by means of the graphical representation
of the silhouette (cf. end of Section 3).

For every choice of sets rn,e(A) satisfying (P) we define (a version of) the
silhouette as

fn,C(X) = rn,I,e(\) (x) dA Vx E X. (4)

The definition of the silhouette depends on the special choice of sets Frn,e(A).
This gives different versions of the silhouette. These versions might differ on
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sets with positive v-measure. However, all the results given below hold for any
of these versions. We do not mention this further and only speak of "the"
silhouette.

Under (P) the silhouette can be written as

kn-1

fn,e(x) = E (Aj1- Aj)lFrn,e(Aj) (X). (5)
j=O

Hence, if in addition the sets ]Fn,c (Aj) , j = 1, ... , kn are monotonically decreas-
ing for inclusion, i.e. £n,e(Aj+i) C rn,C(Aj), then fn,e can be visualized as
putting the slices FPn,e(Aj) x (Aj, Aj+1] one on top of the other. The empirical
A-clusters can be chosen to be monotone if C is a a-lattice (see Lemma 2.1).
Unfortunately, however, the monotonicity of the empirical A-clusters does not
necessarily hold for non- c-lattices C like T1 or Cd. This means that for non-u-
lattices C the silhouette does not necessarily lie in the model class .Fe.

Lemma 2.1 If CZis a a-lattice then

]fn,(A)E C VA>0.
Moreover,

v(rn,e(Aj+ )\rn,e(Aj)) = 0, Vj = 0, ... , kn-1,

and the empirical A-clusters can be chosen such that

rn,e(Aj+i) C rn,e(Ai), Vj = O0 ... .,kn 1.

Note that the first assertion of Lemma 2.1 does not say that fn,e E Fe which in
addition requires f fn,e = 1. In fact it might happen that f fn,e < 1 and even
f fn,e = 0. This is closely connected to the existence of an MLE in Te (see
Theorem [?] below). Note that fn,e E Te of course is a necessary condition for
fn,e to be a miiaxiimum likelihood estiiimator in Te.
A density f E Fe is called MLE in Fe iff

n n

H f (Xi) = sup IIg(Xi) < C).
i=1 sE-le j=1

Now we state one of the main theorems.

Theorem 2.1 Let C be a a-lattice. If a MLE in Te exists, then

n

fn,e E argmaxfEFe I f (Xi)
i=l
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Remarks: (i) It is well known that the MLE in Fe exists a.s. for C = 10 and,
more generally, for each class of intervals containing a given point x0 (the mode)
where iv is Lebesgue measure. The MLE in 10 is the Grenander estimator of a
monotone density. Hence, Theorem 2.1 says that the silhouette corresponding
to I- is the Grenander estimator. This fact has already been shown in Polonik
[26].
(ii) Theorem 2.1 also says that the silhouette equals the (multivariate) uni-
modal MLEs considered in Sager [29] (which exist a.s. (see Theorem 4.2)). For
modeling unimodality Sager actually used two different classes of sets both of
which are a-lattices. One of these classes is given by the class of ellipsoids with
known or estimated location and scale parameters and the other is a a-lattice
S defined through the following property: S E S iff x e S implies [0, x] e S,
where [0, x] denotes the d-dimensional interval [0, x1] x [0, x2] ... x [0, Xd], and
x = (x1,... xd). This class S corresponds to unimodal densities in higher di-
mensions with mode 0.
(iii) In the discrete case there of course also exist well-known MLEs under
order restrictions. Consider for example a multinomial distribution on X =
{x1,... , Xk}, xi E R with corresponding probabilies pi = P{xi} i = 1,... k.
The MLE under the restriction that the pi's are monotone can for example
be found in [3]. Without loss of generality let the xi be ordered, and let
C = {{xl,...,xj},j = 1,..., k}. The corresponding silhouette is the MLE.
This follows from Theorem 2.1.

3 Concentration functions
Besides the (empirical) excess mass function which has been used in the previous
section to define the silhouette we now consider two more concentration func-
tions, qn and Fn. They will be used to formulate the graphical representation
and an existence theorem of the MLE. They are defined as:

q, (a) = inf{I(C) : Fn (C) > a> I a E [0, 1] (6)
CEC

and
Fn(l) = supf{Fn(C) v(C) < 1}, 1 > 0. (7)

cee
qn is a generalized quantile function in the sense of Einmahl and Mason [8]
(see Polonik [24] for weak Bahadur-Kiefer approximations of the normalized qn
and for tests of multimodality based on qn). The function Fn is an empirical
Levy-type concentration function (see [14]). It has recently been used in [2] for
constructing test for multimodality. Any set Cn((a) e C such that

qn(a) = v(Cn(a))
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is called an (empirical) minimum volume (MV) set in C at level a with respect
to v. Any set Mn(l) E C such that

FW(l) = Fn(Mn(l))

is called (empirical) modal set in C at level 1 with respect to v. Given obser-
vations X,. .. , Xn the set of all MV-sets at level a is denoted by MVn (a),
and MVn = UQE[o,l]MVn(a) denotes the set of all MV-sets. Analogously, let
M(9n(l) and MOn denote the sets of modal sets at level 1 and the set of all
modal sets, respectively.

The notion minimum volume set of course is motivated by the case v = Leb,
where Leb denotes Lebesgue measure (in Rd). A special case of a MV-set is the
well-known shorth which is the MV-set in the class of 1-dim. intervals at the
level 1/2. For this class of 1-dim. intervals qn has been considered by Gruebel
[11]. Chernoff [4] used the midpoint of modal intervals, i.e. modal sets in the
class of 1-dim. intervals, as estimators of the mode. Note that in the literature
the notion modal set is also used in a more broader sense, such that for example
MV-sets are sometimes called modal sets also (see, for example, Lientz [17]).

We assume that C is such that

(A 4) almost surely there exist MV-sets and modal sets with finite v-measure
for every a E [0,1] and 1 > 0, respectively.

(A4) can for example be assured if in addition to the assumptions given above
C is closed under intersections. This closedness of course is not a necessary
condition for (A4) to hold, as can be seen from the case C ='E2.

If (A4) holds, then we have qn(a) < I X FP(l) > a. However, for given
observations, the class of all MV-sets does not coincide with the class of all
modal sets, in general. Consider for example the case X = [0, 1], v = Lebesgue
measure and let C = {0, [0,1/2), [1/2,1], X}. Let a1 = Fn([O0 1/2)), and a2 =

Fn([1/2, 1]). If a,1 5 a2 then either [0,1/2) or [1/2, 1] is not a modal set,
depending on whether a1 < a2 or a1 > a2. But in any case all sets in C are
MV-sets. In general we have:

Lemma 3.1 Given observations X1,... Xn the following are equivalent:

(i) 3r E MVnnMOn with v(r) = 1,Fn(F) = a

(ii) Fn* is discontinuous at 1 and Fn* (1) = a

(iii) qn is discontinuous at a and qn(a) = 1.

Note that by definition

rn,C(A) e -AVn(Fn(Fn.e(A), n M(n(v(rn,e(A)). (8)
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Therefore, it follows from Theorem 2.1 that for c-lattices C every level set of
the MLE in Te is both, (empirical) MV-set and modal set. However, not every
set which is both, MV-set and modal set is an empirical A-cluster (see below).
In general the set of all empirical A-clusters is much smaller than MVn n MOE.
It also follows from (8) that assumption (A4) implies (A2) and (A3).

Theoretical MV-sets and modal sets can be defined analogously to the sets
Cn (a) and Mn (1) as maximizers of corresponding theoretical concentration func-
tions. These theoretical concentration functions are defined through replacing
the empirical measure by the true measure F in the definitions (6) and (7),
respectively. The level sets of the underlying density f are both, (theoretical)
MV-sets and modal sets, provided all level sets lie in C. MV-sets as estimators
of level sets are studied in Polonik [24].

Now we give the connection of the excess mass functional and FP. To that
end define

Fn = least concave majorant of Fn,

where the least concave majorant of a function g is defined to be the smallest
concave function lying above g. Note that Fn is a piecewise constant, increasing
function bounded by one with at most n + 1 different values. Hence, Fn is a
convex function which is piecewise linear, increasing, bounded by one with at
most n changes of slope. Therefore, for every given A > 0 there exists a tangent
(from above) to FPn which has slope A. The connection of Fn and the empirical
excess mass function is given through this tangent:

Lemma 3.2 For each fixed A > 0 the empirical excess mass En,C(A) equals the
intercept of the tangent (from above) with slope A to F,

Closely related to that fact is the graphical representation of the silhouette
given in Polonik [26]: the at most n different positive values A1, ..., Akn of (P)
(see(5)) are given by the different slopes (left-hand derivatives) of Fn*. The
corresponding modal sets (which also are MV-sets) at the levels where the slope
changes are the empirical A-clusters rne(A),i = 1,...,ic . For a-lattices C
the values Ai and the corresponding sets rn,e(Ai) are the different values and
level sets of the silhouette. The same graphical representation holds for the
MLE in Fe, provided C is a cr-lattice (see Theorem 4.1). This fact then proves
Thorem 2.1.

4 A graphical representation of the MLE
We start this section with two properties of the MLE in 1Fe. Both will be used
to prove the graphical representation of the MLE given below (Theorem 4.1).
However, they also have some interest for their own.
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Lemma 4.1 If f,n is a MLE in .e then

n S f,~(X+) < v(C) (9)
{i:XiEC}If*(i

for all C E C such that (fn* + e1c)/(l + ev(C)) E Te for e > 0 small enough. If
C is a a-lattice, then (9) holds for all C E C.

It is well-known, that a MLE in Fe does not exist if there exist sets C E C
with Fn(C) > 0 and arbitrary small v-measure. This can also been seen from
Lemma 4.1. Moreover, Lemma 4.1 also gives a quantification of this fact. It is
an easy consequence of (9) that maxx fn*(x) > 1/(ne), if C is a a-lattice with
inf{v(C): C C C} < 6.

Another property of the MLE in Je is the following. Let for a subset 7r C
{1,... ,n} denote XX = {Xi: i E 7r}. Then we have:

Lemma 4.2 Suppose that C is closed under intersections. Given X1,... ,Xn
let En = {L E C: L= n{C EC XT c C} for some subset 7r C 1, . . . ,n}}.
For any function f E YFe with fHln f(Xn) > 0 there exists a function f * EC
with Hl=n f*(X,) > Hln=1 f(Xi). Hence, if a MLE fn* in eF? exists, then we
have

fn(x) E { F(\B): ABeEn,B c A}.
v(A\B)

Note that the class Ln is finite (for a given realization X1,i. . , Xn) and that it
contains all MV-sets in C with non-zero v-measure. We shall see later (Corol-
lary 4.1), that for a-lattices C the assertion of Lemma 4.2 holds with the class
Ln replaced by the class of all MV-sets (or of all modal sets) which in general is
much smaller. Lemma 4.2 not only says, that the MLE in Fe is piecewise con-
stant with at most (n+1) distinct levels and that it is of histogram type (which
is well-known). It also gives a finite number of levels among which the levels of
the MLE can be found and it gives the corresponding class of sets among which
the sets can be found where the MLE is constant.

Now we formulate the graphical representation of the MLE which is based on
F*. It has already been mentioned in Section 3 that Fn* is a piecewise linear,
increasing function with at most n changes of slope. These changes of slope
occure at levels 1 where Fn(l) = F-n*(l). Let 11, ...lkn, kn < n denote those
levels in decreasing order and denote by si the left-hand derivatives of Fn* at
i , i = 1) .. kn (see Figure 1, below). Note that si < si+1) i = 1, ... kn -1.
Further denote ai = Fn(li), i = 1, ... , kn, such that li is the v-measure of the
MV-set at the level ai.
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a, = FN(4(l)) = I
slope= s 2

02=F,(M,,(l0/n))= 10/n
a3 =F,(M(9/n))= 9/n

slope = s 3

slope = 4

3/n ie; '
a4= Fn(Mn(21n))= Vn- /

4=Leb In(2/n)) 13 Leb(Mn(9/n)) \ Leb(M,,(l))
12= Leb(L(IO/n))

Fig. 1: The notation introduced above and used in Theorem 4.1 is illustrated with
v = Lebesgue measure, denoted by Leb. A possible realization of Fn and FPn for n = 12
is shown. Fig. 2 below gives a corresponding ML-density estimate (or silhouette).

Given an MLE fn in Fe let 0 = fo < fi <... < fk*, kn < n denote the distinct
levels of fn* and let 1P*,C(fi) be their corresponding (distinct) level sets at the
levels fi.

Theorem 4.1 Suppose that (Al) and (A4) hold and that a MLE in YFe exists.
If e is a a-lattice, then we have for any MLE fn* with the above notation that
kn = kn and

(i) fi=s4Vi =l .-Ikn

(ii) P (fi) e MVn (ai) n M9On (li) Vi = 1,... I kn.

Theorem 4.1 (i) says that the different values of the MLE are given by the slopes
of the least concave majorant of F,n and (ii) says that the corresponding level
sets are the modal sets at these levels. Since the silhouette has the same graph-
ical representation (which, however, not only holds for a-lattices, see comments
after Lemma 3.2) this proves Theorem 2.1.

An algorithm: Theorem 4.1 immediately provides an algorithm to calculate the
MLE: First calulate all the modal sets or, alternatively, all minimum volume
sets Cn(i/n),i = 0,...,n. Then the concave majorant corresponding to the
points (Fn(Cn(i/n)), v(Cn(i/n))), i = O,.. ., n, gives the different levels and the
corresponding level sets of the MLE as indicated in Theorem 4.1.
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S4 -. .

S5 -.

Fig. 2: The construction of an MLE (corresponding to Figure 1) as given in
Theorem 4.1 is illustrated. The class e is chosen to be the class of all intervals
with midpoint zero which is a v-lattice. The four different level sets are the sets
Mn(2/n), Mn(9/n), Mn (10/n), and Mn(1), respectively, corresponding to Fig.1.

The following corollary is an easy consequence of Lemma 4.2 and Theorem 4.1:

Corollary 4.1 Suppose that the assumptions of Theorem 4.1 hold. Let

VMVn =A{ ) A,7B E MVnIBC A}v(A\B)

and

VMo)n = (A\ ) A,B E MOn,B c A}.v(A\B)
Then we have

fn(X) E VMVn n VMon Vx C x.

The concentration functions Fn and qn can also be used to characterise the
existence of a MLE in Fe which is an assumption in Theorem 4.1.

Theorem 4.2 Under (Al) and (A4) we have the following: Suppose that e is
closed under intersection, then the following are equivalent:

(i) a MLE in Te exists

(ii) lima,o qn(ca) > 0

(iii) liMfne(n(l) = 1
(iv) fJ fn e (X) dx =1

12
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We want to stress here that the silhouette might nevertheless be a reasonable
density estimator even if a MLE does not exist, as for example in the class .cd.

The well known fact, that there exists a.s. a MLE in the class of monotone
decreasing densities on [0, ox) follows from Theorem 4.2, since the smallest MV-
set in 1o which is [0, X(1)] has a.s. positive Lebesgue measure. Here X(i)
denotes the first order statistic. Theorem 4.2 also says, that for C = V1, or
more general, for the classes C = Cd the MLE in TFe does not exist. However, if
one for example removes all sets from Cd with Lebesgue measure bigger than a
fixed positive e (with the exception of the empty set), then the MLE exists (see
[31] or [28]). Of course there exist other ways to modify the class C in order to
ensure the existence of a MLE. For example, a datadependent approach is given
by measuring the significance of a given set through the (empirical) excess mass
it carries. More precisely, only consider sets C C C with Hn,A (C) > e. Since
the value Hn,,(C) has some interpretation (cf. [19, 20, 25]), it should be easier
to choose an e in the latter case. A similar approach, also based on the excess
mass, has been used by Muller and Sawitzki [20] in the context of the silhouette.
The just mentioned approaches also reduce the well-known problem of spiking
of the MLE (and of the silhouette) (cf. [31]).

5 Rates of convergence
In this section we give rates of convergence of the silhouette (and hence for
MLEs under order restrictions). We use L1 (v)-distance, denoted by 111. We
give rates of the silhouette under the only assumption on f that f E Ye, this
means, that the model is correct.

The given rates depend on the richness of the underlying model, that is,
the richness of C. This richness is measured by bracketing covering numbers,
or the metric entropy (with inclusion, or bracketing) which are the log-covering
numbers. The bracketing covering numbers are defined as

NB (E, e, F) = inf {m E N: 3C1, . . ., Cm measurable, such that for every C e C
i,j e {1, .. .,m} with Cj cC c C3 and F(Cj \ Ci) <,E}

The rates of convergence given below also depend on the tail behaviour of f
and the behaviour around the mode(s). These behaviours are measured here
by the behaviour of E(A) = 1 - E(A) as A -+ 0 and E(A) as A -÷ oo, respec-
tively. Geometrically E(A) equals the "area" under min{f, A}, i.e. E(A) =
fx min(f (x), A) dv(x). By using Fubini's theorem this can also be written as

E(A) = j v(1F())dp.

Theorem 5.1 Suppose that C is closed under intersection and satisfies q (1) >
0 and Fn(0) = O(n-1) a.s. If f E Ye then we have the following:
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(a) Let 1 < Mn < n. Suppose there exists constants 11, A1 > 0 such that

NB(E, C, F) < A1 E-71 Ve > O,

then
n -1/3

(b) Suppose there exist constants 72, A2 > 0 such that

log NB (E, C, F) < A2 e<2 VE > 0.

(i) Case 1Y2 < 1: Let M_ = Q(n'/4). Then

n Y2+3
I fn,- f Ill = Op( E YMn-l2) ) V E(Mn)).

(ii) Case y2 > 1:

11 fn,e - f Ill = Op(E(n-2(22+1) V E(n(2-Y2- )/2(Y2+ )

If f is bounded, then the assumption that C is closed under intersection is not
necessary.

Remarks: (i) If supxf (x) < M, then we have E(Mn) = 0 for Mn > M. Hence,
the above rates reduce to the rates given in Polonik [26], with the exception of
case 1Y2 = 1 in part (b). Here we are able to remove an unpleasant log-term
which appears in [26].
(ii) Part (a) applies to the Grenander estimator of a monotone density on [0, oo),
say, because the corresponding class C is the class Io = {[0, x], x > 0} which is a
so-called Vapnik-Cervonenkis class (or a class with polynomial discrimination),
and hence satisfies the condition on the covering numbers of part (a) for all F
(cf. Pollard [22]). Clearly E(A) < v(S) A, as A -+ 0 if f has bounded support
S. Hence, in that case the above theorem gives for bounded f an upper bound
for the rates of convergence of the Grenander estimator of (n/ log n)-1/3 under
no smoothness assumption on the underlying density and without using the
monotonicity at all. Only the fact that IO is a Vapnik-Cervonenkis class enters
the proof. Note that n-1/3 is known to be the exact L1-rate of the Grenander
estimator if f has bounded second derivative and compact support. This has
been shown by Groeneboom [10].
(iii) Another example is given by the class Cd, which is no a-lattice. For this
class we have for d > 2 that 1y2 = (d - 1)/2. Hence, if f is bounded and has
bounded support, such that E(A) = O(A) then part (b) of the above theorem
gives the rates Op(n-2/7) for d = 2 and Op(n-l/(d+l)) for d > 3. This has
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already been mentioned in Polonik [26] (up to an additional log-term for d = 3).
(iv) The assumptions made in Theorem 5.1 that qn(1) > 0 and Fn(O) =
Q(n-1) a.s. are fulfilled for all standard classes C mentioned in the present
paper. These assumption (together with (A3)) imply that the silhouette inte-
grates to 1 -Fn(O) = 1 -O(n-1). Actually the assumption that the silhouette
integrates to 1 - O(an) a.s., where an is the rate asserted in Theorem 5.1,
would be enough. This is equivalent to qn(1) > 0 and Fn(O) = O(an) a.s.
(v) The rates given in Theorem 5.1 are not faster than Op (n-1/3 (log n)1/3).
However, for example for finite X the MLE under order restriction is known to
converge at rate Op(n-1/2) (see for example [28]). We can rederive this rate
up to an additional log-term for underlying densities which attain only finitely
many different values. Here one needs the additional assumption that C is closed
under finite unions und one has to combine the ideas of the proof of Theorem
3.5 of Polonik [26] with the ideas of the proof of Theorem 5.1 given below.

Finally we give a brief heuristic comparison of the rates given in Theorem 5.1
(a) and (b), case Y2 < 1 with rates given in Theorem 2 of Wong and Severini [32]
for MLEs in infinite dimensional parameter spaces. The comparison is not
so easy, because of the different nature of the assumptions used. Moreover,
different metrices are used in both papers. Wong and Severini use a certain
L2-type metric, called Fisher metric. For that reasons the given comparison is
of very heuristic nature and leaves several open questions which perhaps seem
worth for further investigations. We shall not do this here, since the rates of
convergence are not our major interest. Nevertheless, the comparison provides
interesting connections.

First note that in both cases metric entopy (log-covering numbers) determine
the (upper bounds) for rates of convergence. In Theorem 5.1 we use metric
entropy with bracketing of the underlying class C whereas Wong and Severini use
metric entropy (without bracketing) of a class of score functions with respect to
the sup-norm. In both cases the same upper bounds of the form AG-r, A, r > 0,
are used for the metric entopy (both use results of Alexander (1984)). The rates
stated in Wong and Severini are of the form n-l/(2+r), where r is the exponent
in the bound for the log-covering numbers of the class of score functions. In
contrast to that, the rates given above for -y2 < 1 (and in part (a) (by ignoring
the log-term)) are of the form n-1/(3+Y2), where here -Y2 is the exponent in the
upper bound for the metric entropy of C. Now, a rough heuristic upper bound
for the covering numbers of the class of functions Fe is given by N(C)1/E, where
N(C) denotes the covering number of C. The heuristic holds, if f is bounded
an has bounded support otherwise the behaviour around the mode(s) and in
the tails enters. The idea is to construct approximating functions as follows:
divide the y-axis (levels) into a regular grid of distance c. This gives (assuming
boundedness) of the order 1/c different levels. Approximate the level sets of
a function f E TF at these levels by the approximating sets corresponding to
the covering number N(C). If in addition f has bounded support this leads

15



to approximating functions for f at an Ll(F)-distance e. An upper bound for
the number of these approximating function is of the order N(E)l/. Using
N(E) < A2GE 2 gives an upper bound for the L1-covering number of Fe of
the form As-7 with -y* = y2 + 1. Hence the rates in Theorem 5.1 are of the
order n-l/(2+ )7 which is of the same form as the rates in Wong and Severini.
Examples in Wong and Severini are given where the covering numbers of the
class of score functions can be bounded by the covering numbers of the class
Se. Hence, in the situation just discussed, the rates in Wong and Severini and
the rates given here (for 72 < 1) are of the same nature.

6 Proofs
Proof of Lemma 2.1: Let for any c > 0

Fn(c) = {x : f.,C(X) > Cf-
Define further Jc = Pr C {0 ... , kn - 1}: EZjr(Aj+l - Aj) > c}. Then, since

xcFn(c) X 37rE Jc: xEnrn,e(Aj)
jE7r

it follows that

N(c = U (n rne(Aj))
from which the first assertion follows.

To see that V(rn,e(Aj+i) \ rn,C(Aj)) = 0 assume that it actually is > 0.
Since

Hn,AJ(Fn,e(Aj) U rn,e(Aj+i)) = (10)
Hnj (rn,e(Aj)) + Hn,Aj (In,e(Aji+) \ rnI,(Aj)), (11)

and rn,e(Aj) U rn,e(Aj+i) C C it follows by definition of the empirical A-clusters
as maximizers of the functional Hn,\ that Hn, (Fn,e(Aj+1) \ rn,e(Aj)) < 0.
Hence, since Aj < Aj+1 and v(rn,e(Aj+i) \ rn,e(Aj)) > 0 (by assumption) it
follows that

Hn,,\j+i (rn,C (Aj+,) \rn,e(Aj)) <°0

On the other hand we have

HnX( (j+1 (rn ,Aj -( ) n rn+e)(j+\,)()
= Hn,,\j+i (rn,C(Aj+l)) -Hn,Aj+l (rn,C(Aj+l ) rnX(Aj))
> Hnx,,j+l (rn,e (Aj+l )) -
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Since C is closed under intersection this gives a contradition by definition of
empirical A-clusters.

These arguments also show how the empirical A-clusters can be chosen in
order to be monotone for inclusion. Namely, if actually I'n,e(Aj+i)\FnF,e(Aj) 74 0
then replace In,(Aj+1) by rn,(Aj+i) n 1Fn (Aj).

Proof of Lemma 3.1: (i) => (ii): Suppose (i) holds. If Fn would have
no jump at 1 = Fn(17) then there exists a set C E C with v(C) = lo < 1 and
Fn(C) = a = Fn(F). Hence, qn((a) < 1o < 1 and it follows that I F MVn. This
is a contradition.
(ii) .= (iii): Suppose Fn has a jump at 1. If qn would have no jump at a = Fn(l)
then there exists a set C E C with Fn(C) = a and v(C) = lo < 1. This implies
Fn (lo) = a which is a contradiction to the assumption that Fn has a jump at 1.
(iii) => (i): Suppose qn has a jump at a. Then ]r with F,(F) = a and v(F) =
qn(a). If r ' M(9n(v(r)) then 3C E C with v(C) < qn(a) and Fn(a) > a.
This implies that qn has no jump at a. Contradiction.

Proof of Lemma 3.2: We have

En (A)= sup{cEe}{Fn (C) - A v(C)}
= sup1>0 SUp{CEC:v(C)<l}{Fn(C) - A v(C)}
= Sup1>0{Fn(l) - A 1}.

The last line is the maximal difference of Fn and a line through the origin
with slope A. This supremum is attained at a point where Fn = Fn* and the
maximal value itself of course is the intercept of the tangent at this point. If
there exist more than one point where this supremum is attained, then they
all lie on the same tangent. This argument has been used in Groeneboom [10]
(with Fn instead of Fn). He used this argument for proving exact Ll-rates of
convergence for the Grenander density estimator.

Proof of Lemma 4.1: Let fn e c = (fn + c1c)/(1 + Ev(C)). It then follows
that for the ML-estimator fn one has

d n

de {n 1O9 fn*E,C(Xf) < 0

for all C E C such that fn,E,c e FC. From this, (9) follows by elementary
calculations. The fact that (9) holds for all C E C if C is a a-lattice follows
directly from the fact that in this case Fe is a cone (see [28]). It can also be
seen easily directly be noting that

{x : f(x) + c lc(x) > A} = {x : f(x) > A} U {{x : f(x) > A - 6} n C}.
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However, this essentially is the proof of the fact that .e is a cone for a-lattices
C.

Proof of Lemma 4.2: Let f E Fe be arbitrary. Denote fo 0, fj =
f(Xj)5j = 1,... ,n and let Fj = {x f(x) > fj} be the level sets of f at the
levels f,. Without loss of generality assume them to be orderd, fo <f. < ... <
fn. Define

g(x) = c fj for x E rj\rj+, j = O, ...,n

where ]7n+1 = 0 and c > 0 is a norming constant to make g integrate to 1. Since
g/c < f we have c > 1. Moreover, g C Fe and H>n g(Xj) = cn ln>1 f(Xj) >

HIj=1 f(Xi)
Now we construct a density with even larger likelihood product and level sets

in Cn Let -C = {i: Xi e rj},j = O,...,n and define Fj =njC e ( : X7r- c
C}. Then, since X'j+1 C XT' we have rjT+1 C j. Let gj = g(Xi) = c f3.
Define

h(x) =gj for x C Fj \fj+j,
where as above c is a norming constant. As above it follows that h has larger
likelihood product than g since the norming constant is bigger than 1. By
definition h has level sets 1j E Cn. The density h is constant at Fj \ r1+1.
These sets define a partition of fo and it is not difficult to see (see for example
[5]) that for a given partition Al,...,Ak with v(Aj) > 0Vj = 1,...,k the
histogramm density, which has constant values F, (Aj)/v(Aj) at Aj has the
largest likelihood among all densites which are constant at Aj,j = 1,... , k.
This finishes the proof, since v(rj) > 0 Vi = 1,... , n. This follows from the
assumption that a MLE exists (cf. Theorem 4.2).

Proof of Theorem 4.1: We first prove Theorem 4.1 under the additional
assumptions that (for given observations) the MV-sets and modal sets at each
level are monotone for inclusion. We refere to this assumption as (M).

Using Lemma 4.1 one easily gets fk* > Fn(C)/v(C), VC E C. Since by
assumption a MLE exists, it follows from Theorem 4.2 and Lemma 4.2 that

fk* = SUpCECFn(C)/l(C) = SUpLECnFn(L)/v(L). (12)

Clearly, any set maximizing Fn(C)/v(C) over all C e C has to be in MVn n
Mon. Assume for the moment that this maximizing set is unique. Then it
follows from Lemma 4.2 that the maximizing set is 1F*e(fk*), the level set of
the MLE at the maximal level fkn such that

r* <(fk*) C MVn n MOn (13)

and
Fn(Fe(fk*))

fk* = v(~(k)(14)
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Equation (12) says that fk* equals the steepest slope of F,* (note that Fn* starts
at (0, 0) since a MLE exists) which is the left-hand derivative of Fn* at lkn- Hence
we have

fk* = Skn.

In the next step we can restict ourselves to sets C C C with (e(fk*) C C.
Then (9) gives

S 1 ~~+ 1 < V(C), (15)
e (f f(X) Xj Ec\re (fk) f(Xi)(1

From (14) we get that the first term on the left hand side of (15) equals
v(rF C(fk*)). Hence it follows that fk*-1 has to satisfy

f-1>Fn(c \Fre(fk*) E t 7
fn- 'v(C \ r* ,(fk*)) n.ne(fk ) c C. (16)

As above it follows that

Fn(L \ rF* (fk-))

= sup{ v(L \ * (fk)) Ln e(fk) cL}c (17)

Since the nominators and the denominators in (17) actually are differences of
the corresponding measures of the sets L and Pn e(fk* ) it follows by using (M)
that the maximizing set in (17) lie in MVn nf MOn. If we again assume that it
is unique then we have as above

17* e(fk -1)CMVEA nMn n

and
fn,k*-1 = Skn-1.

This arguinenit cani be repeated aind leads to the desired result.
It remains to remove the assumption of uniqueness of the maximizing sets in

(12), (17), e.t.c. and to remove (M). First note that it follows from the graph-
ical representation of the silhouette (cf. discussion after Lemma 3.2) together
with Lemma 2.1 that there exist empirical A-clusters Pn,e(Aj), j = 1,... ,kn
(which by definition all lie in MVn nAMOn) which are monotone for inclu-
sion. These sets correspond to the vertices of Fn*, this means, that the points
(V(Fn,e(Aj)),Fn(rn,(Aj))) are vertices of the graph of Fn*. From this it fol-
lows, that the maximal values in (14), (17), e.t.c., i.e. the different values of
the MLE, are the slopes of Fn even if (M) is not assumed to hold. It also
follows, that all the maximizing sets correspond to points on Fn*, i.e. for any
maximizing set Fn the point (v(Fn), Fn(Fn)) lies on the graph of Fn*. In other
words, the maximizing sets are empirical A-clusters. The corresponding value
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of A equals the maximal value in (14), (17), e.t.c. We show below, that if IL
and 172 are two empirical A-clusters to the same value of A, then also the union
rl U 172 is a empirical A-cluster to this value of A. From this we can remove the
assumption of uniqueness as follows: Suppose the maximizing set in (14) is not
unique, and we did not choose the largest maximizing set, i.e. the union of all
maximizing sets. Then the next iteration step leads to the same maximal value,
i.e. we stay at the same level of the MLE, and the (present) level set of the
MLE only becomes larger, until we finally reached the largest level set. Hence,
the uniqueness assumption is not necessary.

It remains to show, that if IF and r2 are two emprical A0-clusters, then
I17 U I2 also is a A0-cluster. We have

Hn,A0(I UP2) = Hn>,0(PI) + Hn,A0 (P2 \ P)

and
Hn, (r ln I72) = Hn(172) - Hn,o (172 \ Pr).

From the first equalility it follows that HnF,o(172 \ rP) < 0, since by definition
rP maximizes Hn,Ao over all sets in C. Analogously, the second equality gives
Hn,A0 (172 \ 17) > 0 and hence it equals zero. The first equation now gives the
assertion.

Proof of Theorem 4.2: The equivalence of (ii) and (iii) is obvious. (i) =
(ii) follows from Lemma 4.2. (ii) =s (i) also follows from Lemma 4.2: (ii)
says that all the MV-sets at levels a > 0 have positive v-measure. Hence (i)
follows from Lemma 4.2, since all sets in Ln, defined in Lemma 4.2, have bigger
v-measure than the MV-set at level 1/n. (v) X (iii) follows from the fact that
f fn e (x) dx = F_n (1) -n (0) (cf. Polonik [26]).

Proof of Theorem 5.1: The proof is very similar to the proof of Theorem
3.4 of Polonik [26]. We only give the main steps and indicate the argument for
removing the log-term.

First note that 11 fn,c - f 11 < 2 f v(Pn,e(A) \ 17(A)) dA + O(n-1). This fol-
lows from Fubini's theorem, Jensen's inequality and the fact that the silhouette
integrates to 1 + O(n-1). (Equality holds, if the sets In,e(A) are level sets of
fn,e as for a-lattices C (see Section 2).) We use estimates for V(Pn,e(A) \ 17(A))
in order to obtain rates of convergence of the silhouette in Lj(v). The trunca-
tion argument for unbounded densities given below essentially uses the fact that
F(Pn,e(A) \ r1(A)) < A v(1n,e(A) \ 17(A)). Since this in general does not hold for
the symmetric difference In7<e(A)AL1(A) we don't use this symmetric difference
here, as is done in Polonik [26]. There on uses similar inequalities as below, but
with n,e (A)AP(A) instead of rn,e (A) \ 17(A), which hold without the additional
assumption that C is closed under intersection. Therefore the proof given here
also shows, how to remove the additional log-term of Polonik [26] for the case
Y2 = 1 in (b) by analog argument.
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Now, there is the following basic inequality. For any a > 0 we have with
TIK(A) = A-:A-a < f(x) < A} that

1
V(Fn,e(A) \ r(A)) < 'I'a (A) +-( (Fn - F)(Fn,e(A) \ r(A)) ) (18)a

The proof of (18) is as follows. First note that Hn,A\(1Fne(A) \ C) > 0 for all
C e C, provided C2 is closed under intersections. This follows from the last
equation given in proof of Theorem 4.1 above, by replacing F2 by C. Hence,
we have with Dn(A) = Pn,e(A) \ F(A) that 0 < Hn,A(Dn(A)) = HA(Dn(A))+
(Fn - F)(Dn(A)), and it follows

0 < -H (Dn (A)) < (Fn- F) (Dn (A)). (19)

Moreover, we have

-H\(Dn(A)) = J (X-f(x) dv(x) > a v(Dn(A)n{x: f(x) < A - a}). (20)
Dn

By writing v(Dn(A)) = v(Dn(A) nf A - a < f < A}) + v(Dn nf {f < A - a})
inequality (18) follows from (19) and (20).

Note that (18) does not help us for "small" A if v(X) = oo. Therefore we
use that for any 0 < an < Mn we have

llfn,C-f Ill < 2J v(rne(A)\F(A))dA + (E(an) + E(Mn)) + Op*(||Fn-FjlC)
cn

(21)
where Ie denotes sup-norm over C. Here and below P* denotes outer measure.
The proof of (21) is given below. Inequality (18) can be exploited to get that
under the assumptions on an and Mn formulated in the theorem

sup V(F,(A) \ r(A)) =Op(1) (22)

for some large K > 0 determined later. We use this power of an in order to
avoid considering levels A with T'n (A) = 0 separately. The proof of (22) is also
given below. Plugging in (22) into (21) gives the assertion:

11fn,C f Ill < Op* (1) Jr nna(!X(A g)d
E(an) + E(Mn) + Op*(I Fn - Fle)

. Op* (1)[
Mn T,n (A) dA + a0K(M- an) ] +

2E(an) + E(Mn) + Op* (IFn- Fle)

. Op*(1)[ E(an) + E(Mn) + an(M-an) ] +
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E(oan) + E(Mn) + Op* (IFn-Flle)

The last inequality follows easily by using the fact that up to at most countably
many levels A we have xE1,(A) = v(F(A - -))- v(F(A + 71)). Now choose K large
enough such that a$K (Mn -an) = O(n-1). As for the term OP* (IIFn - Fle
it follows from Corollary 2.4 of Alexander [1], Correction, that this term is
negligible here. The rate of this term is Op. (n-1/2) for classes of sets as in part
(a) and for classes of sets with 72 < 1 as in (b). For classes with y2 = 1 the rate
is Op* (n-1/2 logn) and Op* (n-1/(Y2+1)) if Y2 > 1-

It remains to proof (21) and (22). As for the latter we get from (18) that
for any c > 0:

sup >
Mn>A\>c,, max(,. (A), o)an)

r (Fn- F)n(F c(A) \ r(A)) 1
C { v(Fn,e(A) \ F(A)) _ adl -c

for some Mn > A > an s.th. v(17n,e(A) \r(A)) > an

Now we use empirical process theory to find the "smallest" an such that the
probability of the last event tends to zero. For m E R let gn,m = {g = r(C\D):
r < m, C, D E e, C \ D C F(Mn)}. Then it is enough to find a,n such that for
any 7r > 0 there exists a c > 0 such that for all n large enough

P( sup n n2(F - F)(g)/jIgjjj > nr/2n(1j- 1/c) <r1 (23)
gEgn,11 91 11 >an

This follows from
00

S P( sup n1/2(F - F)(g) > 2i-1 n1/2c}<2r. (24)
j=1 {9E9n,1: jjg||j<2ja>n1

Now we are ready to use Theorem 2.3 of Alexander [1]. This theorem gives
conditions under which for classes of sets C with 0 > Mn > SUpfeF IIIf Ik. and
2max > SUPcEc F(C)(1 - F(C)) we have

P(supm1/2(Fn-F)(C) > L) < 3exp{-12 (:)}
CEC O'max

for some 0 < 6 < 1. The result of Alexander can easily be generalized to classes
of functions like 9n,m, by replacing the Ll-bracketing entropy of the class of sets
C by the Ll-bracketing entropy of 5n,m Note that sup{9gEn m lg9lI1<23Lan} var(g)
< Mn m 2jan- If we apply this result (for each j) with L = 2'-lnl/2a2 and
m = 1 such that cxmax = Mn 2ic3n then we directly obtain the assertion of the
theorem with the exception of the case -y2 = 1 in part (b). In this case a direct
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application gives an additional log-term (see below) as in Polonik [26]. This can
be avoided by the following trick. Instead of applying Alexander's theorem to
the probabilities in (24) (for each j), we instead apply it to

Pfsup n1/2(F - F)(g) > 2j-1 n1/2z2n+ }
P(E5 sup|||12Cnn}
{gEg ,,,,,: IIgIIl<23c4±/3}

for some / E R. This means, we multiply "everything" inside the probability by
aO,. Of course, this does not change the actual probability. However, it changes
the crucial condition (2.8) from Alexander's theorem (and the appropriate gen-
eralization) in the case -Y2 = 1. This crucial condition rewritten for the case
of an underlying function class 5n m is as follows. Let H(E) = A(C/m1/2)_2 r

and define t = H-( c(1 - c) L2/8 a2 ) and s = (c L/16 nri/2)1/2. Then
log NB(E, 9n,m, F) < H(E) and L needs to satisfy

t

L > 29C-3/2 m1/2 j H(E)1/2 de.
s/4

With L as above and since m = ad we get for y2 = 1 (by collecting constants):
n-l/2a2n+ > const. a /2a4r/4 log s and hence

n-_1/2a2 > const- log a2+0

Therefore, if we choose /3 = -2 we obtain an > const. n-1/4 without an addi-
tional log-term.

Now we proof (21). As mentioned above IIfn e-f III < 2 fV(1Fn,e(A)\I(A)) dA +
O(n-1). Now split the integral into a sum of three integrals:

r r~~~~~~Mra 0oo
J v(rn,e(A) \ r(A))d = j + + v(rn,e(A) \ r(A))d

Note that v(rn,e(A) \ r(A)) < v((rn,C(A)) and that v(rn,C(A)) is the derivative
of En,e almost everywhere. This follows directly from the definition of the
empirical excess mass (cf. Polonik [25]). Hence, the last two integrals are smaller
than or equal to 1-EEn,e((a) and En,e(M), respectively. Since supx.oIEn,C(A) -
E(A)l < IIFn - File (Polonik [25], Lemma 2.2) the assertion follows.

A small step remains open. In order to formulate the rates as in the theorem.
we need that for each K > 0 there exists a K* > 0 such that E(KA) < K*E(A)
for all A small enough. However, this follows easily from the fact that E is
continuous. (Note that trivially E(K M) < E(M) for M large enough, since E
is decreasing.)

Acknowledgement: I am greatful to Lutz Diimbgen for the hint to look
at derivatives in directions of indicator functions which is used in the proof of
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Lemma 4.1. This lemma eventually turned out to be one of the key results
in the proof of the graphical representation of the MLE. I also want to thank
Jianhua Huang for careful reading of the manuscript and for suggestions that
lead to an improvement in the presentation of the proof of Theorem 5.1 and to
the discovery of a serious error in an earlier version of the manuscript.
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