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1. INTRODUCTION
It is logically clear but not always evident or appreciated that the usual

nonparametric bootstrap (the n out of n bootstrap) should fail when one tries to
estimate the distribution of test statistics under a semiparametric (restricted
nonparametric) hypothesis and ignores the restrictions imposed by the hypothesis. For
example, Freedman (1981) points out that in setting confidence intervals for the usual
slope estimate for regression through the origin, one must resample not the residuals but
the residuals centered at their mean. If one considers setting confidence bands as the
dual of hypothesis testing, a moment's thought will show that not centering the
residuals is tantamount to not imposing the model requirement that the expectation of
the error is 0. For more recent examples, see Hardle and Mamimen (1993), Mammen
(1992), Bickel, Goetze and van Zwet (1994). Particularly, Bickel and Ren (1995) showed
that the usual n out of n nonparametric bootstrap fails to estimate the null distribution
of the Cramer-von Mises test statistics in goodness of fit tests with doubly censored
data. They propose that one uses the m out of n bootstrap to set the critical value of
the test and show that the proposed testing procedure is asymptotically consistent and
has correct power against /ii - alternatives.

In this paper, we consider the use of the m out of n bootstrap (Bickel, G-oetze and
van Zwet, 1994) in a general class of hypothesis testing problems and consider the
critical issue of choice of m. The complete sample case, the right censored sample case
and the doubly censored sample case are all considered in the same framework.

The paper is organized as follows: Section 2 shows that the n out of n bootstrap
fails to estimate the null distribution of the test statistic for a general class of
hypothesis testing problems, and proposes the use of the m out of n bootstrap in setting
critical values in these tests. Section 2 also shows that generally, the proposed m out of
n bootstrap method is asymptotically consistent for hypothesis testing problems. Proofs
are sketched in the appendix. For a quite general class of hypothesis testing problems,
Section 3 proposes a method of selecting m in the m out of n bootstrap testing
procedure, and establishes the asymptotic consistency of the selection method with
proofs deferred to the appendix. Section 4 presents some simulation results on the
proposed method of selecting m, and Section 5 includes some concluding remarks.

2. The m OUT OF n BOOTSTRAP IN HYPOTHESIS TESTING
Since the two-tailed case can be studied analogously, we only consider the one-

tailed testing problem:
(2.1) Ho 0=0 vs Hi: 6>0
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where 6 = T(F), F is the underlying continuous distribution function (d.f.) and T( - ) is
a statistical functional. The following are some examples of the statistical functional
T(.).

,00

Example 1. Mean: If 6 is the mean of F, then T(F) = JxdF(x).

Example 2. a-timmed mean: If 6 is the a-trimmed mean of F, then

T(F) 1 J1 F '(x) dx.

Example S. Median: If 0 is the median of F, then T(F) = F - '(O.5).
If an independently and identically distributed (i.i.d.) sample: Xi, Xn from F

is observed, the empirical d.f. Fn based on this sample is the nonparametric maximum
likelihood estimator (NPMLE) of F. Since V/i n(Pn-F] weakly converges to a centered
Gaussian process (see Shorack and Wellner, 1986), from Theorem II.8.1 (Andersen,
Borgan, Gill and Keiding, 1993) we know that a Hadamard differentiable (or compact
differentiable) functional T(.) implies

D
(2.2) s/- [T(Fn) - T(F)] DT'F(GF)=N(O,4), as nG
where 0 < aF <o GF is a centered Gaussian process and TF is the Hadamard
derivative of T( ) at F. Hence, the test statistic for (2.1) is given by

(2.3) Tn =ViT(Fn)-
Since incomplete data are frequently encountered in medical research and

reliability research, we note that (2.2) and (2.3) also apply to the following censored
data cases.

In a right censored sample:
( X,, ifX,<Yi,, E

(2.4) Vj -
i

1 Yj, if Xi > Yi', i = 0

where Y, is the right censoring variable and is independent from Xi, the Kaplan-Meier
estimator based on (Vi, 6,), i = 1,-. , n, still denoted as Fn, is the NPMLE of F.

In a doubly censored sample (Turnbull, 1974):
Xi7 if Zj < Xi < Yj7 6i 1

(2.5) Vi={ Y,, if Xi>Y, 6i=2
Z,, if Xi < Z,7 Es = 3

where Xi is independent from (Yi, Z,) with P{Y,> Zj = 1 and Y, and Z, are the right
and left censoring variables, respectively, the NPMLE Fn of F can be nuimerically
computed (Mykland and Ren, 1994) based on (Vi,,6), i = 1, ,n. One may note that
the right censored case (2.4) is a special case of the doubly censored case (2.5).
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Since the weak convergence of the NPMLE Fn for right censored data (2.4) and
for doubly censored data (2.5) have been established (Gill, 1983; Gu and Zhang, 1993),
respectively, we know that (2.2) follows from Theorem II.8.1 (Andersen, Borgan, Gill
and Keiding, 1993), and thus (2.3) is the test statistic based on (2.4) or (2.5) for (2.1).
For the rest of the paper, we refer (2.3) to the test statistics for (2.1) either with a
complete i.i.d. sample or a right censored sample (2.4) or a doubly censored sample
(2.5).

One should note that for censored data, the variance aF in (2.2) also depends on
the censoring variable distributions, which can be quite complicated and are usually not
easy to estimate even under the null hypothesis. To set the critical value of the tests,
one needs to estimate the unknown null distribution of the test statistic Tz given in
(2.3). As expected, the usual nonparametric n out of n bootstrap fails in this case. We
justify this as follows.

For the complete data case or the censored data case above, we first note the
following under suiitable conditions (Gine and Zinn, 1990; Bickel and Ren, 1995):

(2.6) s/~i[Fn F] +GF [Fm -Fn]GF a.s.

where GF is a centered Gaussian process, F* is the NPMLE based on the bootstrap
sample of size m with replacement, and m - oo, as n -* oo. We also note that from
Theorem 11.8.1 (Andersen, Borgan, Gill and Keiding, 1993), the weak convergence of
VHi [Fn- F] and the Hadamard differentiability property of T( - ) ensure

(2.7) / T(Fn) = ;f T(F) +TF(V/iidFnf-F]) +op(), as n oo

where TF is the Hadamard derivative of T(-) at F and is a linear functional. From
(2.6), we have the tightness of [Fm - F] for m = 0(n), and thus from Fernholz
(1983, Chapter 4),

(2.8) v/imiT(F*) = %/miiT(F) + TF(/m[FA* - F]) +o(1), as n -
.

Hence, under the null hypothesis of (2.1), the n out of n bootstrap gives m n in (2.8)
and thus from (2.6),

=*) -TF(V/i[ F]) + OP(1)
- rF(V/i [F - AFn]) + T/(Vi[F - F]) + oP(1)
'-% TF(GF)+F(GAj'as n - oo

where GF and GF are two independent centered Gaussian processes with the same
covariance function. Evidently, 1/iiT(F*) does not have the same distribution as the
null distribution which is T'F(GF) in (2.2). So we have a bootstrap failure.
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To see that the m out of n bootstrap gives correct estimate for the null
distribution under Ho, one may note that if m = o(n) in (2.8), then from (2.6) and the
weak convergence of V/i [Fn- F], we have that for m -- oo,

(2.9) iiT(FmT) =TmF(/[Fm-Fn]) + VT/T/;T [Fn- F]) + op(l) D: TF(GF).

Thus, we propose that one uses m = o(n), m -- oo, as the bootstrap sample size, and use

C* as the critical value of the test (2.1), where for 0 < a < 1, C* is given by

(2.10) Pn{T* > C*} =.
This is called the m out of n bootstrap method for hypothesis testing.

In the next theorem, we show that generally, the proposed m out of n bootstrap
method is asymptotically consistent for hypothesis testing problems. Proofs are deferred
to the appendix. Let

=0= {collection of distribution functions}
and consider the test
(2.11) Ho: F E go
where F is the underlying distribution from which a random sample 01, 0n is drawn.
In particular, one should note that 0, = Xi for the complete i.i.d. sample case, and
0i = (Vi,86) for the censored sample case with F to be the distribution of (Xi, YJ) or

(Xi, Y, Zi). Suppose that Tn= Tn(01, - -- On; F) is the test statistic for (2.11) and that
Ho is rejected for large Tn. Then, denoting

i-={h:R-+R; Ih(x)-h(y) I < I|x-y 1, 1 h 1 < 1}
and for h E 2,

Om(F) EF{h(Tm(O1-i O;F))}

'~~ ~~~() .l+ ,-t>(r(..,)F{h(Tn(O("7, -O F))},
where O0 (Oi--( , Oi)1xj,

THEOREM 1. Let m=o(n) with m -- oo, as n oo and let C* be given by
(2.10). Assume:

D(a) under Ho, Tn D WO, as n - oo, where P{WO > C<:} = a for a continuous WO;

(b) for F f B>, Tn + oo and T7/Tn P 0, as n - ;

(c) sup Iom,n(F)-m(F)I = o(l).
hE2

Then,
(i) For 0< a < 1, IimnO+P{Tn ! C* I Ho}-P{WO > Coa}
(ii) For alternatives Hn: F = Fn such that for some Fo E t0, {Fn} are contiguous to
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Fo, we have that under Hn,
C* P co ° oo.

DTherefore, if under Hn, T. D Wa, we have

limn,OP{Tn > C* j Hn} = P{Wa > Co};
(iii) For fixed alternatives H1: F = F1 ¢ ,

limnooP{Tn > C* I H1} 1.

REMARK 1. Assumption (c) in Theorem 1 is to ensure that statistic Tm is not
greatly affected by ties in its arguments. Bickel, G6etze and van Zwet (1994) give some

simple and easily verifiable sufficient conditions for (c).
REMARK 2. Theorem 1 includes the Theorem of Bickel and Ren (1995) as a

special case. Theorem 1 also includes those Hadamard differentiable test statistics given
by (2.3) as special cases, where we have that for Ho given by (2.1),

limn P{Tn > Cot I H} = P{T"(GF) > CX | Ho}-=a
and

lim Po{Tn > C* I Hn} = P{6 + T' (GF) . CaJ
for s,/iiT(F.) - ancld ||v[Fn FoI-AoIIAO .

We note that to apply the above proposed method in practice, the critical issue is
the choice of m. This is investigated in the next section.

3. CHOICE OF m.

In this section, we consider the test (2.1) and the test statistics Tn given by (2.3).
To select an rn in the proposed m out of n bootstrap testing procedure, we note that
(2.7) and (2.8) hold when T(-) is Hadamard differentiable and for the NPMLE FPn
/iT[AFn- F] converges. Now from (2.9), we know that under Ho, we should choose m

such that
(3.1) T* = ,/;iiT(kF) z TF(GF
Note that for any given F, (2.7) and (2.8) along with (2.6) give

T = ,/iiiT(F ) = Ef/- T(F) + TF(/(F* - F)) + oP(1)
= V T(F) + rF(S/-(Fm - FA)) +TF(/(Fn- F)) + op(l)

(3.2) = FF(/(F -Fn)) + v/nI{sfiiT(F) + T'/u (Fn - F))}+ op(l)
= T' A(Fm-Fn)) + F Tn + op(l) t TF(GF) + fTn.
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Hence, we would want to choose m such that the term v7/W/Tn in (3.2) is 'negligible'.
This calculation does not take into account 1/.\/ii terms comiing from the Edgeworth
expansion of the distribution of s/iiT(F*) and implicitly assumes that op(l) in (3.2) is
of smaller order than /; Tn. Nevertheless, this crude first order attack gives
reasonable answers. One may note that there are two points which should be taken into
account when one sets a selection rule for m: (i) m should be small enough to have
small /m7XTn; (ii) m should be as large as possible to have (2.8). In this context, it is
reasonable to consider the concept of 'smalrl'\/;;7Tn with respect to the (1 -a)th
percentile of T*. We explain this concept as follows.

One may note that (3.2) suggests C* - C° + f/;7Tn under H0, which implies
that the Type I error of the test satisfies

P{Tn > CjI Ho}
-
P{T'(GF) . C + fW/Tn j Ho}.

Thus for e>0 and e=min{C° C°,C° Coa+j if V/nI TnIT <.eE, then
asymptotically I P{Tn > C* I Ho}0-) <a .

Given e> 0, we need to estimate el in practice. From (3.2) and (2.7), we know
that if T(F) =0(1/VF) (i.e., under /ii- local alternatives), we may use sampling
m = n/i (say) out of n to estimate eE; that is use e* to estimates eE, where

(3.3) ef min{C* _ C*,C* C* E}

for C* and C* E given by (2.10) with m =w. Thus, we choose 'm such that

(3.4) th/n Tn |< ee X4 m =(e)2

This selection procedure of m for the m out of n bootstrap in .hypothesis testing is
summarized as follows.

SELECTION OF m FOR THE m OUT OF n BOOTSTRAP:
(MNB1) For a desirable e> 0, use bootstrap samples with size m = /iT to compute e*

given in (3.3);
(MNB2) Use bootstrap samples with size 'm given by (3.4) to find the critical value C*

which is given by (2.10) with m =-;
(MNB3) Use the test statistic Tn given by (2.3) and the critical value C* found in

(MNB2) to draw conclusions.

In the next theorem, we give the asymptotic results on the above proposed
selection method for m. The proof is given in the appendix.

THEOREM 2. For the test (2.1) with a complete i.i.d. sample or a right censored
sample (2.4) or a doubly censored sample (2.5), if Tn in (2.3) is used as the test statistic
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and if C* by (MNB1)- (MNB3) is used as the critical value of the test, then (2.6) and a
Hadamard differentiable T( . ) at F imply that for any e > 0,
(i) for 0 < ae < 1, under Ho, we have mr = Op(n) and

(3.5) 1 limn,wP{TU > C Ho} - a < e;
(ii) for contiguous alternatives Hn: 9 = O = T(Fn), where 11 J/i4[Fn- FO] - Aj 0
and 1/vn9n-+ 6, as n -+0oo with Fo satisfying Ho and T'F exists, we have m = Op(u) and

(3)1PlimP{Tn >.C I Hn}}-P{S+ TFO(GF)>CajI
(6 .P{Ct+E.<5 +TF(GFo) < Co _};

(iii) for fixed alternative H1: 9 = 01 > 0, we have mr = Op(1) and

(3.7) lim ..P{Tn > C* I Hl} = 1.

REMARK 3. Theorem 2-(iii) shows that using Ca by (MNB1)-(MNB3), the
power of the m out of n bootstrap test approaches 1 faster than that using C*, given by
(2.10) with m = o(n), as the critical value, because under H1, (2.8) implies
C* = Op(A/ii) while C* = Op(1). This is clearly supported by the simulation results
presented in Section 4.

4. SIMULATION RESULTS.
In this section, we present some simulation results on the proposed method

(MNB1)-(MNB3). We denote N(p,u2) as a normal distribution with mean u and
variance a2, and Cauchy(,u) as a standard Cauchy distribution with median It. For Tn
given by (2.3), let Cn), given by
(4.1) P{Tn > (n) Ho} = ,
be the true critical value of the test (2.1). We denote the power functions of the test
(2.1) with the true critical value C(n) given by (4.1), the m out of n bootstrap critical
value C* given by (MNB2) and the m out of n bootstrap critical value C* given by
(2.10) with m=- oiT as

PO(t) P{Tn > of I =

P6(t) P{Tn > C* I H = t}

P2(t)= P{Tn > CxI0 =t},
respectively, where Tn is given by (2.3). All simulation results presented below are
based on 300 runs for complete or right censored samples, and 100 runs (because it is
very time consuming to conduct the simulation studies) for doubly censored samples or

Cauchy samples of size n = 1000. In all the tests considered here, a = 0.05 and e = 0.025
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are used in (MNB1)-(MNB3).
In Figure 1, we compare the power curves of PO, Pb and P2 for a median test with

a complete i.i.d. sample of size n = 400 from N(1, 25). In our study, the true critical
value C(n) is obtained by the Monte Carlo method, all power curves are the average of
the 300 simulation runs, and for each run the percentiles of PO, Pb, P2, C*, C* are
obtained from 400 bootstrap samples. Figure 2 and Figure 3 compare P0 andl Pb for the
same median test as Figure 1 with right censored data and doubly censored data,
respectively.

Po: -; Pb: * 0; P2: -----; X - N(y,25)
Figure 1.

po -----; Pb: .o *; X - N(y7,25), Y - N(3,36)

Figure 2.

P:O-; Pb: * *; X - N(tt,25), Y - N(3,36),Z = 2Y/3 -6.5

Figure 3.

From Figure 1- 3, it is clear that the over all performance of the power curves for
median tests is excellent for either complete data or censored data with normal
distributions, and Figure 1 clearly shows that the over all power by m obtained from
(MNB1)-(MNB3) is much better than that by m =/;i.

Figure 4, Figure 5 and Figure 6 compare PO and Pb for a 15%-trimmed mean test
with complete data, right censored data and doubly censored data, respectively, where
F is N(g, 100). One may note that the NPMLE for censored data is used in Example 2
to compute the trimmed mean for nrght censored data or doubly censored data.

P ;Pb:-;X N(p, 100)

Figure 4.

PO: ----; Pb: -----; X - N(t,100), Y - N(6.5,144)

Figure 5.

Po ----; Pb: ------; X - N(j, 100), Y N(6.5, 144),Z = 2Y/3 -14

Figure 6.
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Figure 4- 6 show that the power curves of trimmed mean tests by (MNB1)-
(MNB3) perform very well for either complete data or censored data.

In our simulation studies, we also considered distributions with heavy tails such as
Cauchy distribution. In Figure 7 and Figure 8, we compare PO and Pb for the median
test with a complete i.i.d. Cauchy sample of size n = 400 and n = 1000, respectively.

po ; Pb: -----; X - Cauchy(/l)
Figure 7.

-----; Pb:-----; X Cauchy(p)
Figure 8.

Figure 7 and Figure 8 show that the power curves by (MNB1)-(MNB3) also
perform very well in the neighborhood of the null hypothesis for Cauchy distribution,
but that the m out of n bootstrap test has lower power than the unattainable PO. We do
not have a good heuristic explanation. The corresponding attainable permutation test
using symmetry of the null has power close to PO. One may note that the over all
performance of the power curves is better for the larger sample case n = 1000 than that
for n = 400.

5. CONCLUSIONS.
It is shown that generally, the m out of n bootstrap testing procedure is

asymptotically consistent for hypothesis testing problems. For a quite general class of
testing problems, a method of selecting m for the m out of n bootstrap in hypothesis
testing is proposed, and it is shown that the proposed method is asymptotically
consistent. With a general formulation, the proposed method applies to complete data
or right censored data or doubly censored data. Simulation studies show that the
proposed method generally performs very well.

One may note that the proposed method of selecting m is determined by the
analysis in certain types of situations, which along with some simulation results, such as
Figure 7-8, suggest this is not the last word in choice of m. In particular, we critically
use the /ii- standardization of our test statistics even though we do not use explicit
knowledge of its limit law. One may also note that we do not advocate using the m out
of n bootstrap method if other easy and computationally efficient methods are available
(for instance, resampling n observations from centered residuals may be applied for our
examples here with complete i.i.d. samples or nrght censored samples), rather in cases
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such as those treated in Bickel and Ren (1995).

APPENDIX
Proof of Theorem 1. (i) It suffices to show that under Ho,

(A.1) C* P CO as n -4oo.

Let QmF be the d.f. of Tm = Tm(O..I Om;F) and Qm be the d.f. of

Tm = Tm(0--- O; Fn) where °1, , O* is the bootstrap sample from Fn, the
empirical distribution of the observed sample. From assumption (c) and the proof of
Theorem 2 by Bickel, G6etze and van Zwet (1994), we know

(A.2) EFd(Q*, nR Qm,F)-=
where d is the bounded Lipschitz metric on probability distribution on the range space
of Tm. Thus, the assumption (a) implies that under Ho, d(Q* ,+,L 0, as n oo,
where QO is the d.f. of WO. Hence, the continuity of QO implies (A.1).

(ii) (A.1) and the continuity condition imply that under Hn, C Co, as n oo.

(iii) For any x E R and p > 0, define a continuous and bounded function as below
1, t<x-p

hp(t) = (x - t)/p, x - p < t < x
0, t>x

then

Pn{T* < x}= I{t < x} dQ*,n(t) . Jhp(t) dQ*,n(t)

= {J hp(t) dQ* h(t)-Jhp(t) dQm F(t)}+ J hp(t) dQm,F(t)

. {J| hp(t) dQm n(t)-J hp(t) dQm, F(t) } + J I{t < x - p} dQm, F(t)

= {Jhp(t) dQ* tn(t)-Jhp(t) dQm F(t)}+ P{Tm . Xp}.
From (A.2) and the above, we know that under H1,

a=Pn{T* >C* IHj} < P{Tm>C* -pIHI}+op(1)
P{(Tm/Tn) > (C* -p)/Tn I H1 + op(l).

Thus, assumption (b) implies C*/Tn -+0 as n -+oo. Hence,

P{Tn >C* H1}=P{1 >(C*/Tn) IH1} - 1, as n-oo. 0

Proof of Theorem 2. (i) First, from (3.2) we have that for m = /fi,
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P

(A.3) sup IPn{T .> x Ho}-P{T'F(GF) > iHO} I + 0 as n -oo,
-o0 < x < o

which implies that under Ho,

(A.4) cc P 0c as n - oo.

Therefore, we have mO= 0p(n), as n oo.

For the complete i.i.d. sample case, we know that from Shorack and Wellner
(1986, page 108-109), if moo, then V4;4F* -Fn weakly converges to GF. For the

censored case, from Gu and Zhang (1993), V4i[F* -Fn] can be shown to be equivalent
to a linear operator of an empirical processes (we skip the technical discussion for this
part of the proof, whose idea can be found in Bickel and Ren, 1995), thus it also
converges wealdy. Hence, from the weak convergence of v/fi [Fn- F] and m O(n), we

know that
4 =[F,-F] F F]

is tight. Therefore, from Fernholz (1983, Chapter 4) and from (2.7), we have that under

Ho, for m -* oo,

T*= -/T(F*)* VT(F) +T(/-(F* F)) + op(1)
(A.5) =T-(F(F*A-F)) + &jnTn + op(l) D TF(GF) +4
where dn4 nTn. Note that (A.5) implies that for n -k oo,

sup AP -{T dn> Ho}-P{T'F(GF) XIHo} 0,
-oo <x <o

thus
P(A.6) sup IP"{T >x1Ho}-P{T'F(GF).-dn|Ho} | - 0

-00<x<omF
Hence, we have

|Iat-P{T1F(GF) C- d Ho}1| 0, asn oo,

and the continuity of the distribution of T'F(GF) gives

Co Ca+n | ! 0, asn oo.

Since 14dn < e, from (A.4) we have that for n oo,

C* =Cu°a + dn + op(l) < C°af + e* + op(l)-=C°a + ep, + op(l) < C°a + op(l),
C* = Cuaf + dn + op(l) > Cc°-ee* + op(l) = Co -ef°c+ op(l) > C°O,+ + op(l).

Therefore, (3.5) follows from

P{Tn > C* I Ho} < P{Tn > Cct+. e +op(l) I Ho} - P{TF(GF) > C +e IHo}= a+e,

P{Tn>C0I Ho}>P{T+n>

o p(l) IHo} -4P{T'F(GF)>C0 IHo} =a-e.

(ii) First, from the contiguity condition and (A.4), we have that under Hn
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(A.7) ec + e0, as n oo.

From the contiguity assumption, we have the weak convergence of v/ii [Fn - Fo]
(see Shorack and Wellner, 1986, page 108-109 for complete data case; see discussion
above (3.9) of Bickel and Ren, 1995, for the censored case), thus from Theorem II.8.1
(Andersen, Borgan, Gill and Keiding, 1993) we have

(A.8) .fiiT(Fn) = fiuT(Fo) + T'F(AIn(Fn - Fo]) + o0(1), as n oo,

(A.9) v/niT(Fn) = n,- T(Fo) + T'F( fiZ [Fn- Fo]) + op(1), as n oo.

Note that (A.8) and (A.9) imply that under Hn, Tn D T'FO(GFO) + 6, as n -* oo. Thus

(A.7) implies 'i = Op(n), as n - oo. From the tightness of [FA - FO] and from

(A.8), we have that under H, as n -4 oo

T*= /T(FP N)= VT(Fo) + T/( (FA - FO)) + op(1)
(A.10) T'F (x FA,i _ Fn]) + vi/nTn + op(l) Z T'F (GF) +dn
Hence, from (A.7) and (A.10) the rest of the proof follows line by line of the proof of (i).

(iii) Note that (2.7) and (2.8) hold in general for any F. Hence, we have
e= Op((1) under H1 and Tn = Op(./,i) under H1. The proof follows from 'i = Op(1)
under H1 and C* = Op(1) under H1. [1
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