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SOME ASYMPTOTICS OF WAVELET FITS IN THE STATIONARY

ERROR CASE '

DAVID R. BRILINGER

University of California, Berkeley

The model Y(t) = S(t) + E(t), t = 0, ±1, ±2,... with S(t) a deter-
ministic mean level and E(t) stationary mixing noise is investigated. There

is a brief review of traditional methods of estimating S(.), then wavelet

techniques of fitting are considered. The large sample distributions of both
linear and shrnken wavelet estimates are developed.

1. Introduction. Wavelets are a contemporary tool for function
approximation. They are competitors/collaborators with traditional Fourier

analysis and other orthogonal function expansions. In particular they are

useful for handling localized behavior, discontinuities, and scale and shift

transformations. In the time series case they have the useful ability to
pick up transient behavior. For example Donoho (1993c) records,

Mallat's Heuristic: "Bases of smooth wavelets are the best bases for

representing objects composed of singularities, when there may be an arbi-

tary number of singularities, which may be located in all possible spatial
positions."

For example the case with piecewise continuous mean level of a time
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senes falls into this domain. The locations of the jumps could correspond
to the times of exogenous events in a practical situation.

Wavelet estimates may be linear in the data available, however a

breakthrough occurred when the concept of shrinkage was introduced to

wavelet analysis. In it the estimated coefficients of the expansion are
moved closer to 0. Quoting from Donoho (1993b): 'Traditional methods

are linear and cannot compete effectively with the wavelet inkage
method in cases of high spatial variability - either in practice ... or i

theory. In estimating functions of bounded variation, linear methods can-

not attain the optimal rate ... ; the wavelet shrinkage method ... attains
mean-squared error size (log(n)/n)213 based on n observations, while

linear and adaptive linear methods attain only an error size n~la2 i. There
ar different ideas re what constitutes high spatial variability. Hall and

Patil (1993) are concerned with highly oscillatoxy behavior near a time
point. This paper, motivated by examples in Brillinger (1993, 1994), is
concemed with the possible existence of jump discontinuities.

The focus of this paper is the case where the additive error is station-
ary. The paper begins with some review of existing procedures for the
problem of estimating mean level functions of stationary time series.
Some of these are regression techniques, others are kemel smootliers.
Then wavelet estimates are discussed and the large sample distribution
derived for both the linear and shrunken cases. The linear case is studied
quite generally. The shrunken case is investigated for a model of the
wavelet expansion containing a finite, but unknown, number of terms and
with hardlimiters employed in he shrinking. The final estimate studied
requires an assumption of normality in the derivation of its asymptotic dis-
tribution. The large sample distribution allows the construction of approx-



- 3 -

imate confidence intervals for example.

2. Estimating mean level functions. Consider the model

Y(t) = S(t) +E() (2.1)
t = 0, ±1, ±2, * with S(.) a deterninistic signal and E(.) a stationary

noise, that is E Y(t)) = S (t) is the mean level of the series Y(.) at time t.

Quite a variety of different procedures have been proposed for estimating

S(t) given data Y(t), t = 0, *-* * , T-1. These methods can be linear or

nonlinear and parametric or nonparametric. In the case of a finite parame-

ter linear model, such as

E( Y(t)1= SI(ta)= algl(t) + ** + ajgj(t) (2.2)

with J known and the g 1(.), - - g, (.) given functions, the large sample

distribution of the ordinary and of best linear unbiased least squares esti-
mates were determined long ago (see Grenander and Rosenblatt (1957),
Rosenblatt (1959), Hannan (1970), Anderson (1971), Brillinger (1975)).
Hannan (1973, 1979) considered the case of gjT(t). Results are also avail-

able for the case of nonlinear regression, the function S (t I 0) being known

up to a finite dimensional parameter 0. Asymptotic distributions may be
derived, see Hannan (1971), Robinson (1972), Gallant and Goebel (1976).

In the case that the mean function S(t) is smooth, one can consider its
estimation by a running mean or kemel smoother. In one formulation, to

handle the discreteness of:, S (t) is written h (tT) for a function h (x), on

[0j1]. The estimate is

t ~~~~th(x) = Y(t3 Wb(x )I wb(x - ) (2.3)

where the kerpel, Wb (.), has binwidth b. In the case of fixed b, the esti-

mate (2.3) is linear in the data so various approximate distribution results
a..
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may be developed. Hlrdle and Tuan (1986) present results including
robust procedures. The problem of estimating b is considered in Chiu
(1989), Hart (1989, 1994), Altman (1990). An optmal b is determined in
Truong (1991). Variable binwidth smoothers have been proposed for ker-
nel estimates on occasion, see Mnller and Stadtmuller(1987), Staniswalis
(1989), Hastie and Tibshirani (1990), Brockman et al. (1993). The
wavelet estimates to be presented in Section 3 have a variable character.
Further approaches to the estimation of the function S(.) include: orthogo-
nal series expansions (Kronmal and Tarter (1968), MXller (1988)), smooth-
ness priors, (Akaike(1980), Kitagawa (1987), Gersch (1992)), local regres-
sion (Cleveland et al. (1991)), penalized likeliood and splines (Silvernman
(1985), Diggle and Hutchinson (1989)). MBller (1992) and Wu and Chu
(1993) investigate the case with a discontinuity in h(.).

3. Wavelets.

3.1 Introduction. Wavelet analyses correspond to particular types of
(orthonormal) series expansions. There is a scaling function f(.) and a
mother wavelet y(.) given by

4v(x) = £ (-1)kc4+4(2x-k) (3.1)
k

for some coefficients Ck. These functions generate families

*jk(x) = 2J12(2Jx-k) (3.2)

,jk(x) = 2J'2y(21x-k) (3.3)

such that, for given integer I (which may be ),

&k(x) and vJk(x)t j = 1+1, k = 0,,±2, * *

-providean orthono basis for L2(R). A square-integrable function
h (x) can be written as --
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h(x) = aa Ikk(X) + jikjk@) (3.4)
J-oo j>l k=-

with

alk = Olk (x)h (x )dx (3.5)

pjk = Jjk (x)h (x )d (3.6)

The pair (3.5), (3.6) are called a wavelet transform of h (.). The presence

of the 2i factor in (3.2), (3.3) is what leads to the variable scale character

that wavelet approximations are noted for. Also when 4(.) and 'G(.) have

compact or near compact support, the effects of the individual

lk(), Vjk (.) terms in (3.3) are localized in t and this is another of the

advantages of the wavelet approach. General references include Dau-

bechies (1992), Walter (1992,1993), Meyer (1993), Strichartz (1993),

Benedetto and Frazier (1994).

Two particular examples are:

a) the Haar case where

O otherwise
and

v(x) = 1 o < x < 1/2
-1 1/2 x < 1
O otherwise (3.7)

The expansion (3.4) can be anticipated to be particularly appropriate when

h (.) is piecewise constant.

b) the Daubechies' case where $(.) has support [0,3], is continuous and the
coefficients of (3.1) are

CO ci C2 C3



Because of its continuity, the Daubechies' case is finding substantial use in

practice. There are variants where (.), i(.) have a specified number of

derivatives.

In practice a finite expansion will be employed, rather than
one may be concerned with cbnvergences other than that of L2.

results pertinent for the case of general orthonormal

{v,,(), n = 1, 2, * * * I of L2(I), I a finite interval.

h(.) L2(I), withl

(3.4), and

There are

systems

Consider

Yn = vn (x)h (x)dx
I

Then £ < 00 and the partial sum
n

converges to h (x ) in L2(J

IF

N
hN(x) = y'v (x)

n=l
(3.8)

IhN(x) - h(x)I2dX e0

as N -4 oo. If, in addition,

£, [log n i2 2 < 00
n

then hN -e h almost everywhere, see Section 10.21 of Zygmund (1959).
Further, if for some positive sequence k(n), that increases to oo,

I [log n ]2k(n )2y< °°
n

then

hN(x) - h(x) = o(l/A(N)) almost everywhere in x

as N -e oo, see Tandori (1959). One can insert convergence factors in

(3.8) to improve the convergence rate.



In what follows concern will be with the almost everywhere case.

3.2 The statistical setup. Consider the model

Y(t) = S(t) + EQ) (3.9)
t = 0, ±1, ±2, with S (.) detenninistic and E(.) zero mean stationary
noise. Suppose that the data Y(t), t = 0, * ,, T-1 are available and that
one can write

S(t) = h(tIT)
with h (.) zero outside [0,1]. Paralleling (3.5), (3.6), (3.4), one can con-

sider the statistics

k T-1 t(3.10)
Tt=O T

Ojk = Tz1 Vjk()Y (t-) (3.11)Tt=O T
The wavelet transfornms of both the signal S (tIT) and the noise E(t) are
involved here. The linear estimate of h (x) is

A JT
ho(x) = £ d&0(x) + ££ Vjk(x (3.12)

k j>4k
for some large JT. Since 4 has compact support the number of k for

which 4jk (x) . 0 is bounded, unifonmly in j, by 2 Isupport 4)1. Simi-

larly for Vjk (x), so only a finite number of terms are involved in (3.12).

For Haar wavelets the function (3.12) will be piecewise constant. In

applications, the times of change of the mean level might correspond to

discrete exogenous events. In this case the statistics d, 0 simplify. There
is a single d in (3.12), say do, and it is the mean of the available Y's.

The ijk are given by

jk [Tally (t - "Y(t)]



where 'is over 0:S21t/T - k< 1/2 and V" is over 1/2<2it/T - k <1.

Computing such local means, in either a smoothing or a search for

change-points, seems intuitively reasonable. The estimate (3.12) is simply

JT 2J-1
ho(X) = 60 + F, I jk2J'i2(2iX- k)

j=O k=O
with (.) given by (3.7). The estimate, ho(x), is the mean of the data

values Y(t ) with t IT in the dyadic interval of order JT containing x.

3.3 Properties of the statistics. The statistics (3.10), (3.11), (3.12) are

linear in the Y's, hence certain sampling properties are directly available,

eg. large sample variances, cumulants and distributions. Some assump-

tions and consequent results will be set down.

ASSUMPTION 1. The functions {(.) and 'G(.) are of bounded varia-

tion and compact support. Further, given I integer, the collection

IIk( )' VWk(*)' j = 1+1, ... , k = 0, ±1, ±2, * * provides an orthonor-
mal basis for a finite interval containing [0,1].

ASSUMPTION 2. The function h (.) is bounded and of bounded vari-

ation on [0,1] and vanishes outside that interval.

ASSUMPTION 2'. Assumption 2 holds and the coefficients of the

expansion (3.4) satisfy

££[iog j ]2Aj)2 132 < 0

j k
for some A(n ) increasing to oc with n.

Suppose the cumulant functions of the stationary error series E(.) exist
and are denoted

Cm (uI*,Um-um) = cum {E(t+u 1). ..*E(t+um_.)E(t))

for m = 1, 2, * and t,u = 0, ±1, ±2, *... The power spectrum at
frequency 0 is
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f2(0) = 2
I C2(U)

and will be needed below. Needed as well is

ASSUMPTION 3. The cumulant functions of the zero mean station-

ary series E(t), t = 0, ±1, ±2, * satisfy

Cm cm (u 1, * Um-1) I < cc (3.13)
U1, *Um_1

Also

£ U 1 1C2(u)' <oo0
U

and f 2(0) 0.

Here (3.13) is Assumption 2.6.1 in Brillinger (1975). It is a forn of

mixing condition and leads to the consistency and asymptotic normality of

the estimates to be studied.

THEOREM I. Suppose the model (3.9) holds with S (t)= h (tIT),
then under Assumptions 1, 2, 3

i)

E 27-12(dik - ak)) = O(T-1) (3.14)

Et{2"jl2(Pjk - Pjk)= (T-1) (3.15)

where the errors terms are uniform in j, k, 1. Also

var {2"/2dk) = 2f2(O)21 T-1 + 0 (T-2)

var 2-J'/23jk I = 27f2(0)2-iT- + 0 (T-2) (3.16)

cov t2"l2Ijk, 27%,2jk, 0 (T-2) (3.17)

with similar results for the remainingfor (jtk) # Vk.)
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cov(&, 13,cov{3, g3. The errors terms are unifo in j, , k,k,l 1.

iii)

cum {ljikl,i.* "'3mkm) I .AmCm *h +jm)(112 l/m)T_m+k3

for some finite A.

iv) as T - co finite collections of the d, 5 are asymptotically normal with
the indicated first and second order moments.

The proof of the theorem is given in the Appendix. The wavelet
transforn values are seen to be asymptotically normal. The asymptotic
independence of the individual d's and 5's follows from the orthogonality
of the O's and xj's. Expression (3.16), with the occurrence of the power
spectrum at 0 frequency, makes explicit in a sense that the moderate order
wavelet transform is a form of lowpass filtering.

Consideration now tums to the estimate (3.12).

THEOREM II. Under the assumptions of Theorem I

i)

E{hO(x)) = amlk(x) +
, , ijkfjk(x) + 0(2 (3.1

k j>I k
ii)

cov (ho(x), ho(y)) =

2lrfEE(O) [JT +12
T jkIk (xOlk y ) + ££ Vjk(X)1Vjk()J + 0 (22JTT-2)

(3.20)
iii) joint cumulants of order m are 0 (2(m )JTT++l) and

iv)If2T1 +v /t{h(x+}nVasT-1 "for m 3,4,4 ,
then ho(x) is asymptotically normal with the indicated first and second
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order moments.

The proof is given in the Appendix. The division by var {ho(x)} in

iv) is because the actual order of magnitude of the variance of ho(x) is

unclear. It is 0 (2JTT-1) in any case.

COROLLARY. Under the assumptions of the theorem and Assump-

tion 2' ho(x) is asymptotically unbiased and consistent at almost all x,

provided X(JT) -> , 2TT-l -* 0 as T -4 oo.

For a proof see the Appendix. The asymptotic distribution of

ffho(x) may be centered at h (x) provided 2'T-T112, Tl2X(JTl e 0 as

T eoo.

In the Haar case one sees from (3.20) that

var{ho(x) I 2JT2nf2(0)/T. The condition iv) is immediate and the

asymptotic normality is not surprising, since the estimate is the mean of

2JTT-1 contiguous values and 2JTT-1 o c*.

To construct a confidence interval for h (x) one will need an estimate

of f2(0). Noting (3.15), (3.16), an estimate could be based on the jk for

which it is felt that the corresponding Pjk = 0. One estimate has the form-

2(0) = - 1 r+1,k /K (3.21)

where K is the number of k's summed over. In the Appendix the esti-

mate is shown to be consistent when KT -4 co appropriately with T. The

size of KT will be order of magnitude 2JT+1 for the present case. One

could also base an estimate of the power spectrum on the residuals

Y(t)-h0(t-T).
4AShrhikage-esntimates-In--this paper--by--shrinkage is meant the

replacement of coefficients-'of a statistic by related "smaller" values in an
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attempt to obtain greater stability at the expense. of some increased bias.

Shrinkage is basic in statistical work with wavelets, Donoho and John-

stone (1990), Kerkyacharian and Picard (1992), Donoho (1993b) and Hall

and Patil (1993). The suggestion to use shrinkers or multipliers to

"improve" estimates has been around in statistics for many years, see

Lemmer (1988). There is an early spatial harmonic synthesis application

in Blow and Crick (1959), concemed with crystal imaging. Thompson
(1968) is concemed with improving on a simple sample mean by shrink-
age and King (1972) wi'th improving on simple regression.

There are a variety of forms of shrinkage estimate. One involves

regression coefficients j being multiplied by factors between 0 and 1

depending on their individual uncertainty. For example (3may be shrunk

to

w(,s) [3
where s is an estimate of its standard error and w(.) is a function such

that w(u) =1 for large lu I and 0O for small Iu 1. Tukey (1979), for

example, proposes

w(u) = (1-1/u2)-

It may be noted that this multiplier weights to 0 all terms where 1 1 is

less than its standard error. There are pertinent connections with the prob-
lems of selection of variables and pretest estimates.

4.1 The shrmken wavelet estimate for known variance. In the wavelet

case, one can consider the shrinkage estimator

~~~~~JT
h(x) = 2 &lk4lk(x) + z z wjk jk (x (4.1)

k j>l k

where wjk is a. multiplier depending on Jk. This estimate is nonlinear
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and as the quote in Section 1 indicates Donoho (1993b) argues that such

nonlinearity is necessary to obtain efficient estimates, see also Donoho et

al. (1994).

To begin it will be assumed that Cy=var (jk is known and

nonzero. The multipliers at Ievel j will be the indicator variables

Wjk =I(II jk Cajk8j) (4.2)
meant to provide infonnation on whether Pik = 0 or not. The wil be

specified in the theorem. They will slowly increase to as T increases.

The class of mean level functions to be considered is delineated by
the following assumption.

ASSUMPTION 4. The function h (.) satisfies Assumption 2 and in

addition only a finite number of the Pjk in (3.4) are nonzero.

Provided JT is large enough, the estimate (4.1) includes all terms with

Pjk * 0 and is meant to be close to and of the same character as

Jo
£ akflkd(X) + £ £ PjkVjk(x
k j>l k

where J0 is the largest j such that Pjk . 0. The quantity J)Pjk wil pro-

vide an estimate of the number of terms with Pjk . 0.

The following assumption will be needed

ASSUMIPTION 5. The cumulant functions of the zero mean stationary
series E(t), t = 0, +1, ±2, with

I cm(u*i**t UM-l)lI Cm
u1.. ,Um...

satisfy

I CMZM/m!o om (4.3)
m
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for z in a neighborhood of 0.

Assumption 5 is satisfied by a stationary Gaussian series for which

C2 < oo* It is Assumption 2.6.3 in Brillinger (1975) and is needed to

obtain large deviation bounds required in the proof of the following

theorem. Note that the 8. depend on T.

THEOREM III. Suppose: Assumptions 1, 4 and 5 hold, b) h(x) is

given by (4.1) with Wjk given by (4.2), c) JT' 2fJT'2T -- oo as T -e oo, d)

the 8j are such that 2j28 =o(T1/2) for j=1, - JT and

JT 1£ 2J'2exp{-8j?/(1+e)2} = o (1) (4.4)
j=i

for some e > 0. Then, almost everywhere in x, finite collections of the

h (x) are asymptotically normal with mean h (x) and covariance function

cov{h(x), h(y))

2irf 2(e) 2rf2(0) Jo 2
T 0lk (x )¢Ik (Y ) + T :£zWjk VKjk (S )\k(t ) (4.5)Tk T j>l k

where wjk = 1 if ijk # 0 and equals 0 otherwise.

The proof of the theorem is given in the Appendix. It is notable that

the variance here is of order T-1 rather than the 0 (2JT-T1) of Theorem II.

One wants both JT and 8j large, but not too large: JT large to exceed

J0, but not so large that d, 5 become biased. An example of a sequence

81 satisfying (4.4) and 2J/28j = o (Ti12) is given by

where 2JT(3+e)/(i+e)2T-11(1+e)= o

4.2 Unknown variance. In the previous section, the var{(jk) were

assumed known. This is unrealistic for practice. In the case they are
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unknown one needs an estimate of 2if2(0)/T. Let 2 denote such an esti-

mate, eg. (3.21). The multipliers now employed are

9jk =I(IIjkI .68) (4.6)
with the 8j to be specified.

One has

THEOREM IV. Suppose: a) Assumptions 1 and 4 hold, b) the zero

mean stationary series, E(t), t = 0, ±1, is Gaussian with C2 < c*, c)

h(x) is given by (4.1) with Wik given by (4.6), d) f2(0) is given by (3.19)

based on KT coefficients, e) JT' 2 JT2T -4 co as T .- cc, f)

T"12Kf1 -+ 0, for some so > 0, g) 2i/28b = o (T12) for j = 1, ..I JT and

JT
£ 2i'2exp{-fr/(l+e)2) = o(1)
j=1

for some e > 0. Then almost everywhere in x, finite collections of h (x)
values are asymptotically normal with mean h (x) and covariance function

(4.5).
The proof is given in the Appendix. One wants JT, KT, 8. large, but

not too large.

One can estimate var { h (x ) by

27f2() k(x)2 + t2(0) JT 2 (x)2
T 1: ~~T 1:2 kW jk4f()

k J>1 k
and thence form approximate confidence intervals.

In the theorem an assumption of normality is employed. Perhaps it
can be replaced by the type of assumption employed in Section 7.7 of
Brillinger (1975) to obtain almost sure bounds for spectrum estimates.

5. Discusson. Through the inclusion of Section 2 we have sought to

contrast regression and kernel estimates with wavelet estimates. The linear
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wavelet estimates have important similarities wi'th the kemnel estimates eg.

consistency and asymptotic normality, but the shrunken estimates are

inherently of different character.

The question of appropriate multipliers to employ in practice is far
from settled. Those of Tukey (1979) and Blow and Crick (1959) do not

tend to 0 or 1 as T -+o0. whereas those of Donoho and Johnstone do.

Donoho and Johnstone also consider another class of multipliers, "soft-

thresholders", in contrast to the "hard-thresholders" that have been investi-

gated here. In the case of independent observations they suggest a pro-

cedure, based on an identity of Stein (1981), to estimate a threshold level.

The convergence that has been studied in this work is pointwise,
because it is felt that this has pertinence to applied work. The class of

function 4s considered in Assumption however is quite narrow. Donoho

(1993a, b, c ), Donoho and Johnstone (1990, 1994), Donoho et al. (1995)
consider subtler spaces and types of convergence. Further they are con-

cerned with studying the risk of the estimates relative to the least possible
and modifications for discreteness and to handle change. Their focus is on

the case of independent observations and consistency type results, whereas

the present work has focussed on time series and distributional results.

There are many extensions to consider: the continuous time case, the

spatial case, series with long range dependence, and borrowing strength
across coefficients. The first two extensions are immediate, the same ana-

lytic arguments applying. One can consider simultaneous confidence
bounds of the estimate and weak convergence in pertinent function spaces.

One could consider other types of mixing conditions. The condition
employed in the paper has the advantage of having an associated manipu-
lative calculus. It has the disadvantage of requiring the existence of
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moments, but one could work with truncated variates if that were crucial.

Acknowledgements. I dtank Mark Rizzardi for some help with- the

word processing.

APPENDIX

Throughout the proofs, A with a subscript will denote a finite bound.

In particular suppose lo(.) 1, 14y(.)) I . A . Sometimes the properties of

the dc will not be developed, but in those cases the argument presented for

the 5 is applicable.

The following lemma of Polya and Szegb (1925) will be needed.

LEMMA 1. If the function g (.) has finite total variation, V, on [0,1],

then

1 ~~~T-1 V
I |g(x)dx _T-1 F, g 1t I<
0 t T

for integer T > 0.

Proof of Theorem I.

Consider (3.15). One has

E(jk ) = ITjk(T)h (T)

t
and from Lemnma 1

£tN jk ( T) JYjk (x)h (x)d I < VIT
Tt T

where V =A 2j/2 is the variation of Vjk(.)h (.). This gives (3.15). The

result for djk folows similarly.

-~~~~~e-m~sidff xeIh&5,odI(AL6) }=One-haTs

var {I3k) k ½~Aj2C0 2
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T-1 t+u t
T2 ~ ~ TK~T TKT

where the sum for t is from max (0,-u ) to min (T-1,T-1-u ). Next, witi
u > 0, (tie negative u case follows similarly)

I T

< 2ji AO 1 l'jk(t+) - 'jk( T I + If (t+u-1)
T vk( t+u -2 )I

+ - + N'Yjk( )T Vjk(7)I]

. 2JAolu IV
where V denotes the variation of M'. From Lemma 1

I I IYjk ( T )2 JWjk (x)2d I c 2iA 2/T

and the result (3.16) follows on remembering the definition

I c

f 2(0) = 2 c 2(u)
and the assumption

I 'U I 1c2(u)l < 00

u

Next (3.17),

COV {jkk 0k' I

as above and further

IIt (t+U)v t

= TI 1 t u t
I: C2(U ) I WVjk(T(Vke Nf&)T u=T+l t T T

lYjk ( T)Wj'(&T) I
T T

< 2fl+f 2AOV I,u I
also as above. Finally

- 1:4fjk ( t )2 1
t T
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I I17£k (#)''k ( ) - J|jk (x )'ff' (x )dx I . 2f12+jfA/3
and one gets the desired result, making use of the orthogonality of the

vfjk() s -

For part iii), writing a for a subscript pair jk

cum { a,-* -'a.)
T-1 T-1 t+u1 t+uM.... t

m £ £ CM-1(u it IUM-01 Val( T) ..Va.l( T )lVa,,( )
u,= -T+1 um-.4oT+1 r-

Abreviating the notation for the moment, from Holder's inequality

Vlal ..Wam I (lal amlm...qIi m)/
t t t

and

£(T)Im.< 2imI2A m 2-jT I support iy I
aT

counting tenns. Putting these together one has iii).

The asymptotic nonnality follows from the fact that the cumulants of

if tend to those of the nonnal as T -e oo.

Proof of Theorem II.

At several places the fact that since yr has compact support, for a

given x the number of k for which iVjk . 0 is bounded, uniformly in j by

21 support v I will be used.

For (3.19) one uses (3.14,15) and the fact that 1Nrjk(.)l S2J2AO.
Specifically, consider the expected value of the second term in (3.12). It is

JT
£E [Pjk+ (2V T )]Vjkk(x)
j>lk

and the errpr term is seen to be
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O((T-12J)
j>l

For (3.20) one uses (3.16), (3.17) and the similar results. Consider

the term

JT JT
££ ££COV{Pjk fif |jkk(X)fY)
j>l k f>>lk'

2=rf 2(0) 1I N'jk (X )Jk (Y) + 0 (2112+f12)2J/221/2
j>lk Tjk'

and the second tenn is 0 (2 TT2)

Parts iii) and iv) follow likewise from the result iii) of Theorem I.

One has

cumm{ho(x))=2* cum{fa,l a.**a}al(x) ... Va, (X)
al am

= ( T-m'+1X . 2(iJ+ +im)(1/2-1m)2j1/2... 21m/2
al am

= 0( T" [Z 21(I - 1/m)]m)
a

The convergence of the standardized cumulants to those of the normial

gives the asymptotic nornality.
Proof of Corollary. This follows from (3.19), Assumption 2' and

Tandori's result given at the end of Section 3.1. One counts cases up to

and including order j and remembers that the number of k, is, for a given

j, bounded.

The proofs of Theorems m and IV follow from a sequence of lemmas.

LEMMA 2. Suppose the assumptions of Theorem HI hold. Then for

any F > 0, and T sufficiently large
9
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Prob { I - gjk I .SjOjk 1 5 2exp{4J2/(l+E)2)
withli jk = E{k),Ak = var(I3jk)-

Proof. This result follows as the proofs of Lemmas P4.7 and P4.10,

pages 405-407, in Brillinger (1975). Specifically from iii) of Theorem I

Icumm { )I < AmC 2i(m2 - l)T-m+
and so

Icumm {2-i"2TIk) I AAmCm2T
Therefore

I log E { exp{2"2Ta(11k -jk))) - 2kT2a2aJ2I

27Ta2o£ Ialm-2AmCm
m=3 m.

. 2-T2aj2ka2V2
for a sufficiently small. Here (3.16) and that f2(0) * 0 have been used.

This gives

Prob {fkI 1jk I > 8jjk ) . 2exp{-2j/2TaSojk Iexp{2iT2'Ilka2(1+r)/2)
< 2exp{[-8J/(l+F)2)

for the choice a = J/2"j2Tajk(1+E) which is to be small, and will be so

as it has been assumed that 2J%2 o (T1/2).

To continue to develop the proof of Theorem m write

h(x) - h(x)=

I(dlk -alX) + z'(wjk k-fijk )'jk (x) + rfWjk jk11jk(x)
(A.1)

with r over the (finite number of) terms with jk 0 and 0" over the
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tenns with [ijk = 0.

LEMMA 3. Under the assumptions of Lemma 2

C JT
E IZ'I < 4 , 2J'2exp{[-J/(1+E)2J (A.2)

j>JO
for some C > 0.

Proof. Consider the expected value of the general term in £" of (A.1).
By Schwarz's inequality it is less or equal to

E { I1WjkIyjk tjk) } < Prob {I jk1 2.j: J T2i12A 0

and one has the result from Lemma 2 and that J2 <A /T for some

A 1 > 0 following (3.16).

In the theorem, for £ = E, the righthand side of (A.2) is assumed to be
o (T-12), and one has therefore T12£" = op (1).

Tuming to the £' tenn in (A.1), one has

LEMMA 4. Under assumptions of Theorem Il and if Pjk . 0

Wjk = OP(T)
Proof. By definition

Wjk = 1 -jI(kjk I )
and

Prob{( jk I <8 Ijk ) < Prob {I I jk I.Ljk I - I I.jk I I . 8Jcjk

< Prob IuikI -jOjk S 0jk -P'jk I

2aI/ (I±jk I-8j_jk)

for Jk<< k I via the result of Lenmma 2. (That JCjk < IIjk I for T

sufficiently large follows from the assumption 21/25. = o(T 12) and

(3jk = O (T-1/2)). This gives the lemma.
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Next,

Proof of Theorem m. Using Lemmas 3, 4 and (A.1)

4 (h, (x) - h (x)) =

Jo
j\'f(dlk-alk)4lk(X) +

, 1 (5j-pjk )Wjk Vjk (X )) + O&(l)
k j>l k

(A.3)
The asymptotic normality follows from that of the d's and I's given in

Theorem I. Only a finite number of terms are involved in (A.3).

Consideration now turns to the proof of Theorem IV.

LEMMA 5. Under Assumptions of the theorem and particularly that

the PJT+I,k = 0 for k = 1, * T

E {f 2(o)) = f 2(0) + 0 (2JTT1)

var 212(0)1 = % f2(0) + 0(K 12 TT) + 0 (2 TT2) (A.4)KT
Proof. The first result follows from (3.17).

For the second,

var {2(o)) = var { 2 £'JT+1,k/KT}

kk2= KT ,2COV ok

=~~~~leK)££CV5k5}

7CKT k k'

=27rKT ){ f + 0 (2JT-2)] + 2k k (2TT-2)2}

-TI-.T76 The resultRthe
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This estimate of the power spectrum is seen to be consistent provided

2JTT-1,Kf - O as T < c*

LEMMA 6. Under the assumptions of the theorem and given
0 < co, E1 < 1,

Prob If2(0) < o E If 2(0)1

<5 2 11 )1-£l) KT exp{-(1--w)(1-e£)1)T/2} (A.5)

for T sufficiently large.

Proof. Ponomarenko (1978) develops the following bound for quadratic
fonns, Q, in normal variates

Prob I I Q -E QI I > xlvar (Q) .< 2-41 + x-2 exp{-x/N}

for x > 0. Now

Prob{ff pE{f }) <Prob{If-E{ff I 2 (1-p)Ef II)

From Lemma 5, for T sufficiently large

E If) > (1-e1)KT/2
and one has the result (A.5) from Ponomareko's inequality.

Next,

LEMMA 7. Under the conditions of the theorem

T1/2E Iz) o (1)
Proof.

TlaE I Ir"1)3 <Tl/2 I Prob {I jkI 6g -5) A
j>JO

for T sufficiently large. Now for 0 < p < 1

Prob{['1Ik 2!.7s)Prob{13k1 .PSIajk} +ProbP5<.Pajk)
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Following Lemma 2, for any r > 0, the first term on the right here is

< 2 exp{- p2j/(l+r)2) = 2 exp{- 8>2/(1+e)2)
with the choice r = e/2, p2 =(1+-0/0+0.

Given 82 > 0 and T sufficiently large the second term on the right is

bounded by Prob f{2(0) . p 1+s2)E f2(0)) and one can use (A.5) with

the choice (l-p(l+e2))(l-e1) = eO. The lemmua now follows under the

conditions of the theorem.

Next one considers £'. It contains a finite nxnber of terms and one

wishes to replace Wik by 1 if Pjk . 0.

LEMMA 8. Under the assumptions of the theorem and if Pjk . 0

Wjk = 1 + op(T-1) + o (KF1)

Proof. Follows as did Lemma 4. Specifically with P > 1

Prob{ IPjk I <8jdjkl

< Prob{I Ik < P1 jkjk) + Prob{6k > Pl2fl}
As in the the proof of Lemma 4, the first term on the right is o (T-1).

Now for T sufficiently large

Prob fd > p ajk}

<.Prob{(I& -E[d12 > Ip? 2 -E(I62)1

< var{s2) / Ip Cak - E(&) 12
and the result follows from (A.4) of Lemma 5.

And finally,

Proof of Theorem IV. Same as the proof of Theorem m, but using the

immediately preceding lemmas.
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