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Abstract

Performance characteristics of Bayes' estimates are

studied. More exactly, for each subject in a data set, let i

be a vector of binary covariates and let Y be a normal response

variable, with E{YIE} = f(E) and var{YjE} = 1. Here, f is an

unknown function to be estimated from the data; the subjects

are independent and identically distributed. Define a prior

distribution on f as EkwkJk/Ekwk, where 'k is standard normal

on the set of f which only depend on the first k covariates

and Wk>0 for infinitely -many k. Bayes' estimates are

consistent at all f. On the other hand, if the lk are flat,

inconsistency is the rule.
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1. Introduction

Consider a sequence of independent pairs (Yj,Ei),

(Y2,E2),.... Given Ei, suppose Yj is normally distributed

with conditional mean f(Ei) and conditional variance 1. Thus,

Y= f(E )+ 1, where Esi N(Q,1). Here, f is an unknown

function to be estimated from the data. A Bayesian approach

postulates that f lies in some class of functions e and puts

a prior distribution n on e. This generates a posterior

distribution iTn, namely, the conditional law of the

regression function f given the data (Y1,Ui), (Y2,U2),

(Yn, in). The prior n is said to be "consistent" at f if iTn

converges to point mass at f almost surely as n-*.

When e is finite-dimensional, n will be consistent at any

f in the support of n; of course, some additional regularity

conditions are needed, but normality is not involved. If e

is infinite-dimensional, the situation is quite different,

and inconsistency is the rule rather than the exception.

See, for instance, Freedman (1963, 1965), Diaconis &

Freedman (1988). This paper continues the story, for normal

models. We show that for conventional hierarchical normal

priors, consistency obtains-- provided the data are

independent with a common normal distribution. We use a

nested increasing family of finite-dimensional models with

the usual normal prior in each dimension, but the dimension

is itself a hyper-parameter with its own (discrete) prior.

So far, the priors under discussion have been proper; and
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technical conditions are given below. With flat priors,

inconsistency is the rule, even under our regularity

conditions.

In previous papers (Diaconis & Freedman 1993, 1995),

we looked at nonparametric binary regression. There,

natural priors were generally seen to give consistent

estimates; but, under some circumstances, the estimates were

inconsistent. This seemed quite mysterious, at least to us.

We now have a heuristic understanding of the basic reason for

inconsistency-- to be explained below-- and the present paper

is a first test of that heuristic. The following paragraphs

explain the background in more detail, and the heuristic.

We also give a brief literature review on nonparametric

Bayesian regression and consistency theorems.

Binary regression

Next, we summarize results from Diaconis & Freedman

(1993, 1995). There is a binary response variable

Y, which is related to a covariate E:

P{Y=11E} = f(E). (1.1)

The problem is to estimate f from the data.
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Following de Finetti (1959, 1972), we think of E as a

sequence of 0's and l's. Sequence space is given the usual

product topology, and the parameter space e is the set of

measurable functions f from sequence space to [0,1]. The

L2 topology is installed on 8, relative to coin-tossing

measure A in sequence space. A basic neighborhood of fee is

N(f,e)={g: f(g_f)2 dA < (1.2)

We will consider a prior E on e, with posterior tno. Then

i is consistent at f provided 7tn{N(f,e)) -+ 1 almost surely,

for all positive E.

The next step is to define the hierarchical priors on B.

Begin with a prior Ek supported on the class of functions f

that depend only on the first k coordinates, or bits, in t.

Under to, the funtion f does not depend on e at all. Under

U1, f depends only on El. And so forth. Then treat k as an

unknown "hyper-parameter", putting prior weight wk on k.

We refer to k as the "theory index"; theory k says that f(x)

depends only the first k bits of x; and Wk is a "theory

weight." Our prior is of the form

it = wkTEk/L wk, (1.3a)k=0 k=0

where

Wk>0 for all k and kOwk <c. (1.3b)
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To complete the description of the prior, ik must be

specified. According to nk, only the first k bits in t

matter, so f depends only on l Thus, nk is

determined by specifying the joint distribution of the 2k

possible values for f. More crudely, ik involves 2k free

parameters, namely, the possible values of f on its intervals

of constancy. For now, we take these parameters to be

independent and uniformly distributed over [0,1].

We turn now to the data. For technical reasons, it is

simplest to consider "balanced" data, as in Diaconis &

Freedman (1993); more conventional sampling plans are

discussed in Diaconis & Freedman (1995). At stage n,

there are 2"' subjects. Each has a covariate sequence;

the first n bits of these covariate sequences cover all

possible patterns of length n; each pattern appears once and

only once. The remaining bits from n+1 onward are generated

by coin tossing. Given the covariates, response variables

are generated from (1.1); the response of subject i depends

only on the covariates for that subject. The preliminaries

are now finished, and we can state a theorem. (The present

paper will make the extension from binary data to normal

data, in Section 2.)
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Theorem 1.1. With nonparametric binary regression, balanced

data, and a hierarchical uniform prior:

a) t is consistent at f unless f-l/2;

b) Suppose f-1/2. Then n is consistent at f provided

that for some 8>0, for all sufficiently large n,

co 2n (1/2 +8 )
kfWk <

Ek=nk

On the other hand, E is inconsistent at f provided that for

some 6>0, for infinitely many n,

0 ~~-n (I /2 )
EkWk > 2Xk=nW >

The surprising part of this theorem is the inconsistency

result in b). Suppose the data are generated by tossing

a fair coin, so f=1/2. Theory 0 is true: f does not depend

on e at all. You don't know that, and allow theories

of finite but arbitrary complexity in your prior, according

to (1.3). In the face of all these other theories, the

posterior loses faith in theory 0-- the curse of

dimensionality strikes again.

Regression is a natural problem, hierarchical priors are

often used, and the one defined by (1.3) charges every weak

star neighborhood of the parameter space e. Still,

inconsistency may result. In high-dimensional problems,

little can be taken for granted. "Rational use of additional

information" is not a slogan to be adopted without reflection.
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Why inconsistency?

What is the root cause of the inconsistency? Suppose

f=1/2, so the data result from coin tossing, and the

covariates do not matter. Thus, theory 0 is the truth. The

statistician does not know this, however, and high-order

theories may be deceptively attractive because they have many

parameters.

However, the "curse of dimensionality" only strikes under

some circumstances. When? To make this a little clearer,

consider a design of order n, so there are 2n subjects.

According to theory n, the response of each subject is

determined by the toss of a coin, where the probability

is uniform on [0,1]. Now one toss of a coin with a

uniformly-distributed random p is just like one toss of a

fair coin-- you get heads with probability 1/2 and tails with

probability 1/2. Thus, theory n competes with theory 0.

Indeed, the predictive probability of the data under theory n

is

TLn{data} = 1/2

Let S be the sum of the response variables-- the total

number of heads. Under theory 0, the predictive probability

of the data is

to{data} = [(2n+1)( )] 2n/2 In{data} (1.4)

because S = 2n/2. Thus,
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'in{data} = const. 2n/ no{data} (1.5)

The prior n is a mixture Xk wknk/c Wk. The posterior
k=O k=Q

is a similar mixture, the posterior weight on theory k being

Wk times the predictive probability of the data under nk.

If f=1/2, then, it is the theory weights Wk that decide

consistency. If wk declines rapidly, for example, wk=1/2k,

the weight on theory n compensates for the factor 2 in

(1.5); and the prior is consistent at f=1/2. On the other hand,

if wk declines slowly, for example, wk=l/(k+l)2, the factor

2 dominates, and inconsistency is the result.

The heart of the problem seems to be that a mixture

of Bernoulli variables is again Bernoulli.- Our heuristic,

then, is that consistency obtains when mixing leads

outside the basic parametric family. For example, suppose

the response variable takes three values, 0, 1 and 2;

and, given the covariates i, the response is distributed

as the number of heads when an f(E)-coin is tossed twice.

A mixture of bin(2,p) variables cannot be bin(2,g); the

heuristic suggests that Bayes estimates will be consistent.

To prove this kind of theorem in any degree of

generality, we would need to impose smoothness conditions

like those which underlie the usual asymptotics of maximum

likelihood estimates, including the Bernstein-von Mises

theorem. We would also need integrability conditions of the

kind which underlie the usual theory of entropy bounds. The

second set of conditions would enable us to localize the
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problem, and the first set would enable us to make local

estimates. Rather than pursue such technical issues here,

we prove a theorem for normal response variables-- which is

difficult enough. Consistency obtains, according to our

heuristic, because a mixture of N(..,l) variates cannot be

N(p.,1). The theorem is stated in section 2, and proved in

later sections. A second theorem shows that Bayesian

regression gets the order of the model right-- if the model

is of finite order. Inconsistencies arising from flat priors

are also discussed, and an extended example is given.

Literature review on Bayesian regression

Roughly speaking, one observes

Y= f(ti)+E. (1.6)

with f in some class of functions, tj in an interval

(say), and Ei iid errors. A prior is assumed for f, a

posterior is computed, and the posterior mean is used to

estimate f. Typically, the ti are taken as deterministic;

our ti are random.

The earliest reference we know is Poincare (1896). He

used a Gaussian prior of the form f(t) Xi Xit1 for t

in [-1,13, the Xi being independent Gaussian variables with

mean 0 and variances tending to 0. He assumed (1.6) with

Es = 0. Invoking the "Method of Causes" -- the classical

phrase for Bayes' theorem-- he computed the posterior mean of
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f(t) given f(t1) for i=1,...,n; his ti were deterministic.

Poincare's beautiful calculations are equivalent to what we

now call the theory of "reproducing kernel Hilbert spaces."

The subsequent history of Bayesian regression is traced in

Diaconis (1988) and Traub, Wasilkowski & Wozniakowski (1988).

There is related closely related work on sieves and on model

selection, see Geman & Hwang (1982), Shibata (1981, 1986)

or Stone (1982). Hierarchical priors for regression in

finite-dimensional settings go back to Lindley & Smith

(1972).

The simplest possible regression model has a constant

mean function. That is the location problem:

Y = ji + Ei, where p. is an unknown constant and the

errors Ei are iid. Diaconis & Freedman (1988) studied

nonparametric priors on p. and the law of the errors; also

see Doss (1984, 1985ab). Some natural priors lead to

inconsistent estimates, while other priors give consistent

results.

Non-parametric Bayesian regression also connects with the

theory of splines: Kimeldorf & Wahba (1970), Kohn & Ansley

(1987); for a recent survey, see Wahba (1990). Cox (1993)

has an elegant mathematical treatment. He begins with the

model (1.6) on [0,1], say, where f is confined by assumption

to a given smoothness class (that is, a Sobolev space). He

specifies a Gaussian prior by the Karhunen-Loeve

representation,
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f(t) Xi aiXigi (t) for te[0,1.

The Xi are iid N(0,1), Xi a 2 < O, and the gi are

an orthonormal basis in a suitable Hilbert space--

a setup rather similar to Poincare's.

Cox computes the posterior for f given f(ti) + Es for

i=1,...,n, the Es being iid N(0,1). He shows that in this

infinite-dimensional setting, the Bernstein-von Mises theorem

does not apply: the posterior distribution (centered at the

mean) may be radically different from the frequentist

distribution of the Bayes estimates (centered at truth). His

setup differs from ours in several ways; recall that f is

the true mean function in the sampling model that governs

the data.

(i) His f is L2 and smooth, our f is only L2.

(ii) His prior is different, indeed, it is probably

orthogonal to ours.

(iii) His ti's are deterministic and equally spaced,

rather than random.

That all said, an interesting heuristic connection between

his results and ours can be made via wavelet theory-- as

pointed out by a very helpful referee. That discussion

continues in Section 11 below. There is a similar connection

with the Gaussian white noise model, which is discussed in

Brown & Low (1996) and Donoho (1994).
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Literature review on consistency of Bayes' estimates

Frequentist properties of Bayes rules have been studied

since La Place (1774), who showed that in smooth, finite-

dimensional problems, the posterior concentrates in a

neighborhood of the maximum likelihood estimates.

Modern versions of the result can be found in Bernstein

(1934), von Mises (1964), Johnson (1967, 1970), Le Cam

(1982), or Ghosh et al (1982). These results hold for almost

all data sequences. In very simple settings, we obtained

bounds that hold for all sequences (Diaconis & Freedman,

1990)

Freedman (1963) considered nonparametric

Bayes procedures, with a counter-example: there is a prior

supported on all of the parameter space, whose posterior

converges almost surely to the wrong answer. That paper

introduced the Dirichlet and tail free priors, and showed

them to be consistent. For reviews, see Ferguson (1974) or

Diaconis & Freedman (1988).

Le Cam is a major contributor to the study of frequentist

properties of Bayes procedures. Le Cam (1953) proved a

version of what has come to be known as the Bernstein-von

Mises theorem. Le Cam's theorems were almost sure results,

with respect to the true underlying measure that had

generated the data; and he proved convergence in total

variation norm. Previous authors had demonstrated only



12

convergence of distribution functions, in probability.

Furthermore, Le Cam seems to have been the first to condition

on all the data, not just summary statistics (like the mean).

Le Cam (1958) explained how localizing the prior affects

convergence of the posterior. In joint work-- see Breiman, Le Cam

& Schwartz (1964)-- Le Cam gave versions of Doob's theorem

showing consistency, starting from the joint distribution of

parameters and data. Le Cam (1982) gave bounds, rather than

asymptotic theory, for Bayes risk. Also see Le Cam & Yang

(1990). A more complete exposition of these results can be

found in Le Cam (1986). Convergence properties of Bayes

estimates are closely related to the behavior of maximum

likelihood estimates. Le Cam (1990) gives a beautiful

overview of counter-examples in the latter area.

There are now underway efforts to develop a unified

theory for consistency of Bayes' estimates in the infinite-

dimensional case: Bunke & Milhaud (1994), Ghosal, Ghosh

& Samanta (1995), Shen (1996), Barron, Schervish & Wasserman

(1997). So far, the results are somewhat fragmentary;

we do not think our examples are covered by such theories.
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2. The formal setup

The setup is virtually identical to the one for the

binary case, except that the response variables are normal;

details are repeated for ease of reference. The covariates t

are a sequence of O's and l's, sequence space is given the

product topology, and the parameter space e is the set of L2

functions f from sequence space to ( The L2 topology

is installed on 8, relative to coin-tossing measure A in

sequence space. A basic neighborhood of fe8 is the "6-ball"

N(f,8)={gEL2: { (g-f)2 dA < (2.1)
C
co

Consider a prior n on B, with posterior an. Then E is

consistent at f provided nr{N(f,6)} - 1 almost surely,

for all positive &.

The prior 'k is supported on the class of functions f

such that f(x) depend only on the first k coordinates in x =

(x1,x2,...). Thus, Tk is determined by specifying the joint

distribution of the 2k possible values for f. These are

independent N(0,1) variables; we refer to Ik as "standard

normal." We put prior weight wk on k, so our prior is of the

form
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r = ~4oWk7Wk/ kWk (2.2a)

where

Wk>O for infinitely many k and "k wk < c. (2.2b)
k=O

(If Wk>O for finitely many k, then n would be a conventional

hierarchical normal prior.)

Turn now to the data, which are "balanced" in the sense

of Diaconis & Freedman (1993). At stage n, there are 2"

subjects, indexed by t. Each has a response variable Y(t)

and a covariate sequence E(t). The first n bits of the

covariate sequences cover all possible patterns of length n;

each pattern appears once and only once. The remaining bits

from n+1 onward are generated by coin tossing. Given the

covariates, response variables are independent normals, with

variance 1. The conditional mean response of subject t

depends only on the covariate string for that subject,

through the function f:
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Given the covariates, the response variables are

independent across subjects, normally distributed,

with common variance 1 and E{Y(t) J} = f[E(t)]. (2.3)

This completes the setup. The main theorems can now be

stated.

Theorem 2.1. Suppose the design is balanced, and normal

in the sense of (2.3). Suppose the prior n is hierarchical

in the sense of (2.2), and the Ttk are standard normal. Then

it is consistent at all fEL2.

Let ek be the class of functions f which depend only

on the first k bits of the argument x; these increase with k.

Recall that En' is the posterior given the data at stage n.

Theorem 2.2. Suppose the design is balanced, and normal

in the sense of (2.3). Suppose the prior n is hierarchical,

and the nk are standard normal. If fEek and Wk>O, then

nn (ek} -e 1 almost surely as n -+ D.
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Theorem 2.1 demonstrates consistency, while Theorem 2.2 says

that the Bayesian gets the order of a finite model right,

at least if there is positive prior mass on the right order.

This is a bit surprising, because many selection

algorithms estimate models that are too complex; for

instance, see Breiman & Freedman (1983).

We turn now to improper priors; n1k iS "flat" if the joint

distribution of {e : sECk) is Lebesgue measure on

2k-dimensional Euclidean space. With flat priors,

consistency will obtain only if the weights wk decay at a

very rapid rate, as in (2.4a); condition (2.4b), satisfied if

wk=l/k2 or wk=1/2k or wk=l/k!, ensures inconsistency. (There

is a slight conflict in notation, resolved by context;

sometimes, T stands for 3.14... rather than a prior

measure.)

1 1o
lim sup log k wk < log(2e) (2.4a)
n~ ~ ~ = 2

1 C*1
lim sup wk > - log(2[re) (2.4b)

Theorem 2.3. Suppose the design is balanced, and normal

in the sense of (2.3). Suppose the prior i is hierarchical,

and the Jk are flat. Then n is consistent at all fEL2 if

(2.4a) holds. If (2.4b) holds, it is inconsistent at all fEL2.

Theorem 2.3 will be proved in section 8. Until then,

the 1k will be normal. Flat priors present definitional

problems, to be discussed in section 10.
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3. Proofs: the preliminaries

We will compute the predictive probability density

of the data, under theory k; then the posterior.

Where possible, we follow the notation and arguments in

Diaconis & Freedman (1993). To review briefly, let Ck be

the set of strings of O's and l's of length k. There are 2k

strings sECk. Let C be the set of infinite sequences of

O's and l's, in the product topology and product a-field.

Let A be coin-tossing measure on C . The parameter space e

consists of all L2 functions from C to (-o,); functions

that are equal almost everywhere are identified. We endow e with

the L2 metric and the Borel a-field generated by the balls (2.1).

Of course, 8 is complete separable metric. As previously

defined,

8k is the closed set consisting of all fe8 such that

f(x) depends only on the first k coodinates of xEC . (3.1a)

If fE8k, then

f(X1* .* XkXk+lXk+2...) = e (f), where s=(xl.. .xk)ECk. (3.lb)

The probability nk on 8 concentrates on Gk and makes e
5

independent and N(0,1) as s varies over Ck.
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All random variables are defined on some probability

triple (El, F, P ), where fee. At stage n, we have 2n
f

independent subjects indexed by teCni, with response variables

Y(t) and covariate strings E(t), forming a balanced design

of order n. In particular, (2.3) holds. Furthermore,

i(t)=ti for 1.i.n; for i>n the variables i (t) are

independent, each being 0 or 1 with probability 1/2:

these are the "balance" conditions. Here, Ei(t) is the i

bit in the covariate sequence for subject t. To ease the

notation, we sometimes write Yt for Y(t) or Et for t(t).

As usual, nk can be extended to a probability on exfl,

by the formula.

llk(AXB) = f Pf{B}rk{df}. (3.2)
A

In this formula, A is a measurable subset of e and B is a

measurable subset of D; f-*Pf{B} is measurable because

f

I dPf (3.3)
tE=Cn

is continuous for bounded continuous functions gto

Fix k and n. The response variables Y : tECn have a
t

joint probability density -- the "predictive probability

density" -- with respect to nk. This density will be denoted

Pkn, and viewed as a function of 2n real variables

Yt: tECCn,.
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Lemmna 3.1. For a balanced normal design of order n and the

standard normal prior UIk, the predictive probability density

Pkn may be computed as follows:

a) If k.n, then log pkn = an - bkn - Ckn + qkn.

b) If kon, then log Pk n = log Pnn.

In these formulas,

an= 1 2n,og (1/2Tt) 22 (3.4a)
2 2 tECn t

bkn= 2k (n-k)-log 2 (3.4b)
2

Ckn= 2k~o2°[2 +n-k]3 (3.4c)

n-k
Ckn= 2= 1 (3.4e)

nn-k
2 +12

2 1n- Ckt
2
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Proof. Claim a). Fix k.n. For sECk, let

VS={(Y ,it): tECn and t extends s}.

Each V is a 2 -tuple of pairs of random variables. Recall
5

0 from (3.1). Recall that 7k was extended to 8xfi by (3.2).

Relative to nk, as s ranges over Ck, the pairs

(V ,e ) are independent and. identically distributed. (3.5)

Consequently, the general case in claim a) follows

from the case k=0. The latter is a routine calculation.

Abbreviate m=2n. Let + be the normal density with

mean 0 and variance v. Let exp(x) = e ,

(1l/2') m/,~ exp{-X ( y2 = xt y.' > Pt 2 tEtCn( t )}' Y m tEtCn t

Write * for convolution. Then

PO J'p{ Xt2ECn Y ~)2} 4tE0Cd

= f { exp{- 2 m (y - 0)2} 4i () dO

1/2 * 1]
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2E]1/2
= cx ~ 1+1/m (y)

1 ~~1/2 12
[m +i 2 m}

m

To verify the formula for qon, combine the last display

with p:

2

X (y -y) =y my

teCn t tcCn t

and

1 m
m --=m-.

1 m+1
1+-

m

This completes the proof of claim a), and b) is

routine.

Let nk be the posterior distribution of f, computed

relative to ' k, given the data from a balanced normal design

of order n. Lemma 3.2 computes this posterior for kSn; and

Lemma 3.3 does the job for k>n. Clearly, nk concentrates

on ek, as defined in (3.1).

As a notational principle, the functions defined in

(3.4) will be denoted by capital letters, when evaluated

at {Y } rather than {y }. The following definitions will be
t t

used throughout.
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Definition 3.1. For k.n and sECk, let Y be the average
5

of Y over t such that tECn is an extension of s. For xC
t

_

and WefQ, let Ykn0,w) = Y (w), where sECk gives the first

k bits of x. And let Y(w) = 2 Y (w).
2 tecn t

In other terms, Ykn(X) is obtained by averaging the Yt
such that xj=tj for l1i.k. This function depends, of course,

on w; however, for each sECk, x -+ Ykn(x,w) is constant on

<S>= {xEC : xi=si for l<i.k)

Recall e from (3.1) and dkn from (3.4).
s

Lenmna 3.2. Suppose kln and Ek is standard normal.

According to the posterior nkn, given data from a balanced

normal design of order n, the parameters e are conditionally

independent as s ranges over Ck, and e is normal:
5

E(e |Yt: teCn} = dknY

var(6 I Yt: tECn) = 1 - dkn = 7

Proof. In view of (3.5), only the case k=O needs to be

argued, and this is routine. Relative to no, there is only

one parameter, 0; this is N(O,1). Given 0, the Yt are independent

N(0,1). Abbreviate m=2n, and Y for the mean of the Y's.

Unconditionally, Y is N(Q,1+-). Furthermore, cov(e,Y) = 1
m

and r2(0,Y) = . The balance of the argument is
m+1

omitted. LI
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Remark. If k.n, {Yt: tECn) and {Et tECn} are

independent relative to nk.

Recall that subjects are indexed by tECn, and subject t

has covariate string F(t), with E1(t)=tl 1..,n(t)=tn- If

k>n, there 2k parameters, but only 2n observations:

some parameters are "observed," others are not. More

formally, sECk is observed if there is a t=t eCn with

Ei(t)=si for l.i.k. The set S of observed s is random,

for S depends on the covariates. If k>n,..{Yt: tECCn} and

{it teCn} are conditionally independent relative to nk,

given the set S of observed indices s, and the covariates

Ek+l(t ),***,n(t ) for sES.
5 5

Lemma 3.3. Suppose k>n and uk is standard normal.

According to the posterior nk , given data from a balanced

normal design of order n, the parameters e are independent

as s ranges over Ck, and e3 is normal. If s is unobserved,

e is conditionally N(O,lJ). If s is observed,
5

EfeI Y : tEcCn .
{sYt EC} 2 S

varfe IYt: tECn) = -
s 2
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Turn now to the posterior n , computed relative to the

hierarchical prior n defined in (2.2). The "theory index" k

in (2.2) is a parameter, which has a posterior distribution

relative to n. This will now be computed. Let

w = wkR (3.6)
kn k kn'

following our general notational principles, Rkn is the

predictive density Pkn evaluated at the data {Yt}; see

(3.4). The posterior probability of theory k is

wkn k=O wkn* (3.7)

Then nr is a mixture of the posteriors nkn, with weights

wk; the latter will be called "posterior theory weights."

These (slightly informal) arguments prove

Lemma 3.4. Suppose Tt is a hierarchical prior, and the T[k

are standard normal. Given the data from a balanced normal

design of order n, the posterior is

Co ~~~~~co

n Ek=O kn kn k=O Wkn-

For kSn, the posteriors Ink were computed in Lemma 3.2; for

k>n, these posteriors were computed in Lemma 3.3.
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4. Estimating the posteriors Tkn

The idea of the proof is simple, although details are

quite tedious. We estimate the predictive probabilities

Rkn, and show that the posterior concentrates on k's which

are considerably smaller than n. In that range, the

posteriors 1kn concentrate near their mean functions.

We turn now to rigor. Recall (3.4) and Definition 3.1.

In particular, for k.n and SECk, YS is the average

of Yt over t such that t is an extension of s. And Ykn has

domain C x Q.

Lemma 4.1. Fix k.n. We have data from a balanced normal

design of order n, and a standard normal prior 1tk. For all

WEQ/

'e J'[g(x) - dknYkn(X)] A (dx) =tkn(dg) n k.(3~~~~~~~~~~ C2
Proof. The posterior nkn concentrates on ek, as defined

in (3.1). Then use Lemma 3.2. L

Definition 4.1. Let g be an L2 function on C . Then

g is the average of g(Et) over tECn that extend sECk. The

domain may change to C as follows: gkn(x) = g when

xEC extends s. These functions are random, because they
co

depend on the covariates. To emphasize that dependence,

we may write gkn (X,W). Let
s
be the average over t that

extend s of Ct = Yt f()t
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Lemma 4.1 showed that Ikn concentrated near its mean

function dknYkn. Next, we show that Ykn can be well

approximated by fkn, as in Definition 4.1.

For tECn, let at be real. As is easily verified,

k
EECk[ n1k Z {at: t extends 8}] is monotone

nondecreasing in k, for O<k.n. (4.1)

The following are immediate; calculations are relative

to P

As t ranges over Cni the pairs (Yti ) are
t

independent. (4.2a)

Ct = Yt-f(E ) is N(O,1). (4.2b)

{C :tECn} is independent of {i :tECn}. (4.2c)
t t

Corollary 4.1. Fix kin. Wi th a balanced normal design of

order n,

,Ykn (X,W) fkn(X1W)] n(dX) Pkf(dw) n-k-
Q C 2

co

Proof. Clearly, Ykn(x) - fkn(X) = C , where s is the

first k bits of x. Then

f (Ykn(x,W) - fkn(x,w)] (dx) = se-Ck CS (4.3)
c

Now use (4.2). 0
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Proposition 4.1. Fix A > 2 and 6 > 0. For Pf-almost

all W, for all sufficiently large n, for all k < n - A log n,

(Ykn(X,W) - fkn(X,W)12 \(dx)l 62.

co

Proof. Use (4.1) with a = Yt - f(Et) to see that only

the maximal k in the given range needs to be considered. For

that k, use Chebychev's inequality, with Corollary 4.1 to estimate

the variance; the Borel-Cantelli lemma completes the proof. z

Proposition 4.1 shows that Ykn(*,w) fkn(*,W) 0O

in L2 as n -+ 0, uniformly in k < n - A log n, for almost

all w. We need a similar but weaker estimate for k < n-B,

as given in Proposition 4.2. Indeed, convergence to 0 cannot be
IB

obtained: when k = n-B, there are only 2 terms in

each average Y (w): SECk. Lemma 4.2 is nearly standard;
5

only the case d=1 needs to be verified, and that follows by

considering the Laplace transform.

Lemma 4.2. Let m and d be positive integers. For

i=l,...,m, let Xi2 be independent x2 variables, with d degrees of

freedom. Fix E>O. There is a p = p (E) < 1 such that

Pr{IXm (Xi2 - d)I > mdE }< pmd
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Proposition 4.2. Fix 8 > 0. There is a B = B(s) < c so

large that for Pf-almost all w, for all sufficiently large n,

for all k < n - B,

A\kn(W) = f [Ykn(X,W) - fkn(X,W) A (dX) <

C

Proof. Again, we need only prove this for k = n-B;

see (4.1). With that choice of k, Akn is distributed as

n-B

(2~ X12]/

the X12 being independent x2 variables with 1 degree of freedom

see (4.2) and (4.3). Fix e > 0; fix B so large that

-B
2 (1 + E) <

Then use Lemma 4.2: for Pf-almost all w, for all sufficiently

large n,

Akn(W) < 2 (1 + E)/2n 2 (1 + E < L

Let g be an L2 function on C . By definition,

gk(s) = Jg(sw)A (dw) and gk(x)=gk(x1...xk). (4.4)

Co

These are deterministic functions on Ck and C , respectively;

gk(x) is well defined for all x, even though g tnay only be

defined almost everywhere. By the usual martingale theorems,
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CD
gk - g almost everywhere and in L2 as k -+ CC, relative to A . (4.5a)

If j<k, then fgj2 < fgkY unless gj=gk. (4.5b)

The next step is to show that fkn can be well approximated

by fk. We begin with a version of the strong law.

Recall that Pf makes the Et independent as t ranges

over Cn. Furthermore, if teC,, then E (t)=ti for 1<i<n;

for i>n the Ei(t) are independent, each taking the values 0 or 1 with

probability 1/2 each. The t are independent but not

identically distributed. Indeed,

C*
The P -law of i is just the A -law of x,

f t
given that x E t> = {xECCxi=ti for l<i<n}. (4.6)

Theorem 4.1. Suppose h is a measurable function on C
C*

CD
If h is Ll with respect to A , then

2ntECrh(tC
)h J h(x) A (dx)

csC*
as n -D c, wi th Pf-probability 1.

Proof. This is proved by a standard truncation argument,

as in (Feller, Vol. I, 3rd. ed., p.247). In more detail,

let h'=h provided JhJ<2n, else let h'=0; the dependence

on n is not shown. We claim

Pf-almost surely, for all sufficiently large n,

for all tECn, h'(Et) = h( t). (4.7)
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Indeed, the Pf-probability of the complementary event is

at most

teCnpft>h(t)I > 2n}

= EtX CAC{nh(x)I > 2 n xi=ti for l.i<n}
tco

= 2" A {I h(x)I > 2n",

where the first equality holds by (4.6). Now

"n 22"n Ich(x) > 2n
co

2- m n A 12m Ih(x)I < 2m*1}

Xm0 m2n2 k{2m < Ih(x) I 2m2l}

< 2 1 1 2m Ac{2m < Ih(x)|I 2m+1}
m=3.

< 2 { IhI dAx < CO

C

The Borel Cantelli lemma completes the proof of (4.7).

co

For teCn, let m = 2" J h'dX , where <t> is

the set of xeC with xj=tj for 1<i<n. By (4.6),

m= h'(Et)dPf. By dominated convergence,

lx=tC fI h dA h dA as n - co. (4.8)

0 0co co

We claim

21 EtEC[h'(F ) - m J 0 as n - co, P -almost surely. (4.9)
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To prove (4.9), fix e>o and use (4.6):

Pf{ J#k1 C [h'(it) - m] > e}

1 1
-

E 44n

1 1

< -
1

1 1
=:7 2_

tE-Cnvar{h' (it) }

ItECCn h(Yt)2 dPf

XtEC2Cnf h' (x) 2 (dx)

EtEC J h(X)2 A (dx)
I|h(x) 1<2n}

Furthermore,

k Ijh(x)2 A(dx) = A + B,n=l1 {E-CIh(x)lj22n}

where

A = En 2n [h(x)2 A (dx) < Con=l 2" j lh(x)lj.i}

and

CD 1 ;n
n=l 2" '=1 h(x)2 A(dx)

{2 <jh(x)j12m}
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We now estimate B, as follows:

BEXlE I h(x)2 A (dx)
m=1 n=m2"Jr-

{2<mh(x) 1.2m}

< 2 X 1 [ h(x)2 A (dx)

{2m-i<Ih(x)1<2m}

< 2 Ih(x) I A (dx) < co

The Borel Cantelli lemma completes the proof of (4.9).

Relations (4.7-9) prove the theorem.

Remark. Let Wn = : teCn)}, a set of 2n random
t

variables. The joint distribution of Wn, as n varies, does

not matter in Theorem 4.1.

We return to the idea of approximating fkn by fk; on the

former, see Definition 4.1; the latter is defined in (4.4).

Proposition 4.3. For P -almost all w, as n - c,
if

r 2
max [ffkn(X,w) - fk(x)) A (dx) - 0.

0.k.n 'C

Proof. Use (4.1) with a = Y - fn(t), to see the max is
t t

attained for k=n. Write Bll for the L2 norm relative

to A . Fix 8>0. Using (4.5), choose j so large that

lIf-gtl'<, where g=fj depends only on the first j bits of x.
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We claim

gnn(x,w) = gn(x) for all xEC and all wen,

provided n>j. (4.10)

The only difficulty here is the notation. Fix x. Let

t=(xi...xn)eCn. The left hand side of (4.10) is

g(t (w)), by Definition 4.1. By the balance conditions,

t (w) = xi...xnele2... where es = 0 or 1 depending on w.

However, g(x) = fj(x) only depends on the first j bits of x,

by (4.4). So, the left hand side of (4.10) boils down to

fj(xl...xj). For future reference,

gnn(x,w) = fj(x) for all xEC
c

and all wEnT,

provided n>j. (4.11)

The right hand side of (4.10) is E {glxl.. .x,}, the
A

expectation being taken relative to A , by definition (4.4).

However, g=fj only depends on xi... xj. So, the right hand

side of (4.10) is also fj(xi...xj). This completes the proof

of (4.10).

For all w and all n>j,

lIfnn(-/w) -fn(-)

< Ilfnn(-,W) - gnn(.,w)11
+ llgnn(*,,W) gn(*)I1

+ llgn() - fn(-)I. (4.12)
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The middle term on the right of (4.12) vanishes, by (4.10).

The last term may be recognized as lIfj(*) - fn(') I, whose

limit as n-*< is less than 6, by construction. The square

of the first term, by Definition 4.1 and (4.11), is

12
2n tECn t j t

whose P -almost sure limit as n-* is by Theorem 4.1

I [f(x) - fj(x)2 A (dx) <6
C

again by construction. In short, for Pf-almost all w,

lim sup lIfnn(-w) - fn(-)II < 26. (4.13)

Corollary 4. 2. Fix 6 > 0. There is a B = B (6) < c so

large that for Pf-almost all w, for all sufficiently large n,

for all k < n - B,

a) J Ykn(x,w) - fk(X)1 A (dx) <

C

b) -[dknYkn(X,W) fk (X)]2 A (dx) <62

Proof. Claim a) is immediate from Propositions 4.2 and 4.3.

Then b) follows. Indeed, dkn is uniformly close to 1

by definition (3.4); and ffk 2 < ff2 by (4.4).
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Corollary 4.3. Fix 8 > 0. There is a B = B(s) < D so

large that for Pf-almost all w, for all sufficiently large n,

for all k < n - B, 'nkn{N(fktS)} > 1-6; the 6-ball N was

defined in (2.1).

This is immediate from Lemma 4.1 and Corollary 4.2b, by the

triangle inequality. Corollary 4.3 completes our discussion of

the posteriors nkn, and we turn to the posterior theory

weights Wkn.
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5. Estimating the theory weights Wkn

As we will show, the posterior theory weights wkn

tend to concentrate on theories k with k < n - B.

The wkn are computed from the predictive probability

densities Rkn, see (3.6); the Rkn in turn are driven by

the quadratic Qkn, see (3.4): according to our notation,

Rkn iS just Pkn, with {Yt} in place of {yt}; likewise

for Qkn and qkn. The first lemma is useful, if superficial.

Lenmna 5.1. Suppose g and h are L2 functions. Then

hIllgI2 - iihl12l S lg - hil x [211hil + ig - hill.

Lenuna 5.2. Fix 8 > 0. There is a B = B () < co so

large that for Pf-almost all w, for all sufficiently

large n, for all k . n-B,

a) |i|Ykn (-,w|2 fffk2l < 8.

b) jQkn(w) - Idkn2 ,ffk2 < 82n.2

Proof. Only claim a) needs to be argued. By Lemma 5.1 and

(4.5),
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IIYkn(*,W) - fk2II

< IIYkn(-,W) - fkB X [211f11 + IIYkn(-,W) - fkLI.

Finally, IIYkn(*,w) - fkll is small, by Corollary 4.2.

We must now consider theories with indices near n.

Lemma 5.3. Fix j=O,1,... Let k = n-j. Let

-2
-kn(W) = LY (W)() 2T seCksB

For P -almost all w,

r 2 e
-kn (W) J f (X) A (dx) + as .J~~~~~~~~

C

Proof. Recall Definition 4.1. Then

y =f +
s s s

where the terms on the right are independent and C is

N(0,1/2j): see (4.2). Then Ekn may be rewritten as

FJ kfl(x,-) A (dx) + 4 s + 1 S (5.1)fknXCk7ss 2- ESeCkCsC
Co



38

In view of Lemma 5.1 and Proposition 4.3, the first term

in (5.1) is I fk(x)2 + o(l), almost surely. But jfk2 = ff2 + o(l),

by (4.5). By Lemma 4.2, the last term in (5.1) converges to 1/2

almost surely.

Given the covariates, the middle term in (5.1) is normal

with conditional mean 0 and conditional variance

4 1~- - 2 4 1
-
2 4 1 2

2j secks 2 seCks 2 2 tEC (t)

the equality holds because n = j+k, and the inequality holds

by (4.1). Consequently, the middle term in (5.1) has

unconditional mean 0, and unconditional variance bounded

above by 4ff2/2n; it tends to 0 almost surely, by Chebychev and

Borel-Cantelli. L

Lemma 5.4. Let j=1,2,

a) j(2J+1)/2J increases with j.

b) (j/2J) log 2 > 1/(2J+1).

Proof. Claim a). Fix j. We must show that

2J+1 + 1 2J + 1
(j+1) 2J+1 > 2i

which boils down to 2J+' + 1 > j.

Claim b). By a), the case j=1 is critical; but

log 2 > 2/3. L
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Lemma 5.5. Fix j=O,l, ... Let k = n-j. For Pf-almost

all w,

rim sup 2 [Qkn(W) - bkn - Ckn] < f (X) A (dx).
n-+co2Jni)

Proof. The notation is defined in (3.4). To begin with,

by Lemma 5.3,

Qn 1 CYS(w)222J+1 XsECkE 24 1 (f2 +7

The case j=O. Now

1 2 1n2Qkn/2n - ff2 + _, bkn = 0, and 2Ckn/2 = log 2.
2 f 4

But log 2 > 1/4.

The case j>O. Now k=n-j, 2bkn/2n = (j/2J) log 2, Ckn>O,

and the result follows from Lemma 5.4b. L

We are close to proving Theorem 2.1. The next

lemma establishes that early theories become implausible,

as the data come in. Recall that Rkn is the predictive

density evaluated at {Yt}.

Lemma 5. 6. Fix j, k with j < k and fj ;e fk. Then

RJn/Rkn -+ 0 as n -+ co, Pf-almost surely.
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Proof. Fix 6 with 0 < 6 < (ffk2 _ ,ffj2)/10: see (4.5).

By Lemma 5.2, for almost all w, for all sufficiently large n,

Qjn(w) < (-djnffj2 + 6)2 and Qkn(W) > (2dknfk - )2.

Because din -e 1 as n - c for i = j or k, for all large n,

Qjn(w) < (iffJ2 + 26)2n and Qkn(W) > ( ffk2 - 26)2 .
22

SO Qkn (W) Qjn (W) > 62n for n large. On the other hand,

bkn - bn = O(n) and Ckn - CJn = o(1) as n -+ 0. The upshot:

log Rk n - log Rjn -+ co as n -+ 0: see (3.4). 1

Recall the hierarchical prior n from (2.2). Given the

data, the posterior probability on theory j is 'nn{j}, as

computed in (3.7).

Corollary 5.1. Fix j, k with j < k, fj P fk, and Wk > 0.

Then n j}/n n (k} -+ O as n -+ 0c, pf-almost surely.

Lemma 5.6 showed that early theories become untenable;

lemma 5.7 shows that theories n, n-1, ... and so forth are

also quite implausible, a posteriori.

Lemma 5.7. Fix j=0,l,... For any k, fixed but

sufficiently large, R I/Rk n 0 as n -+ c,
n-j,n k,n

P -almost surely.if

Proof. By Lemma 5.5, there is a small positive E = E(j) such

that for all sufficiently large n, for almost all w,
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Q (w) - b - c
n-,n n-,n n-J,n

1 nr 1C

< -22 f(x) A (dx) - E ].
2

co

By (4.5), we can fix a large k with

ff > ff2- -. (5.2)

By Lemma 5.2, for all sufficiently large n, for almost all w,

Qk,n (w) > 2 [J f(x) A(dx) - -F]

Co

this uses lim dkn = 1. As before,n-4CD

b + c = O(n) as n D0
k,n k,n

so log R (w) - log R (w) > -c2" for n large enough;k,n n-j,n 4

see (3.4). LI

Corollary 5.2. Fix B < c. For any k sufficiently large,

Tt n (j: j 2 Bn-B}/'tn {k] -+ 0 as n -+ co, Pf-almost surely.

Proof. This is immediate from Lemma 5.7, with Lemma 3.1b

to handle j > n.

If f is "finitary," that is, f=fk for some k, then weight

concentrates on the minimal k with f=fk and Wk>O; that

case will be handled in the next section. Otherwise,

the posterior weight on any particular k tends to 0.
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The proof of Theorem 2.1, if f is not finitary

We are now ready to prove Theorem 2.1, under the side

condition

f fj for no j. (5.3)

Fix j. There is a k>j such that wk>O and fk fJ. This

uses (5.3), (4.5), and the assumption (2.2) that Wk>O for

arbitrarily large k. Theories in the range 0 to j become

unlikely relative to theory k, by Corollary 5.1. Furthermore,

theories in the range [n-B, co) become unlikely by Corollary 5.2.

In short, posterior mass concentrates on theories k with j < k <

n-B, where j and B are any large positive integers. For k in

that range, 1kn concentrates near fk by Corollary 4.3; and fk is

close to f. The L2 metric is used throughout.

This completes the proof of Theorem 2.1 under the side

condition (5.3). Lemma (3.10) in (Diaconis and

Freedman, 1993) can be used to get bounds.
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6. Finitary f

Suppose f = fk for some k; let ko be the least such k.

We must prove Theorems 2.1 and 2.2. Let ki be the least

k.ko with Wk>O; then fk=f. If j<ko, then n(i{j}/n{ki} b 0

as n , Pf-almost surely, by Corollary 5.1; if ko.j<ki, then

nn{j} = 0. Theorem 2.1 follows, by Corollary 4.3 and Corollary 5.2.

However, posterior mass does not drift towards larger and

larger theories.

Theorem 2.2 follows from Corollary 5.2 and the next result.

Proposition 6.1. For any B sufficiently large,

'nn{j: k1 < j < n-B}/Rnn{ki} 0

as n - c, P -almost surely.
f

The proof of Proposition 6.1 is deferred. Only the case

kl= 0 needs to be argued: we can assume that

wo>0 and f=c, a constant. (6.1)

Since f=c,

Qkn = -dkn 2nC + 2c XkCt+ -kn} (6.2)

where

n-k- 2
.knX=EEC 2 Cs (6.3)kn Se-Ck 5.

and C is the average of Ct = Yt f(it) over tECn that

extend sECk. In particular, by (4.2),
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%..kn iS X with 2k degrees of freedom. (6.4)

The next lemma is elementary; also see (5.17) in Diaconis

& Freedman (1993). The notation is laid out in (3.4).

Lemma 6.1.

a) Fix n. Then k -+ dkn is monotone decreasing

for k=O,1,...,n.

b) Fix n. Then k -+ 2k (n-k) is monotone increasing

for k=O, 1, . . ,n-2.

c) Fix k. Then Ckn/bkn -+ 0 as n - w.

Recall =kn from (6.3).

Lemnma 6.2. Fix e>O. Let B=2/E. Almost surely, for all

sufficiently large n, Wkn < E2k (n-k) for all ksn-B.

Proof. Let n' = log n. Consider first the k with n' < k <

n-B. Then E22k(n-k) 2 2k+1, because n-k 2 B. By Lemma 4.2

and (6.4), for p < 1,

co n-B 2
x1 Pf { kn > 2kX (6.5)n=1 k=n,' f n=1 k=n'

Of course, 2 k.+1 >2 k+i Thus,

2k 2n' nlog 2

k=n' < p /(l-p) =p

and the sum in (6.5) is finite.
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Consider next the k with k < n'. Now 2k nlog 2; and

2k(n-k) 2 n, the value at k=O, by Lemma 6.1b. Let n* be the

greatest integer with n<nlog 2* We have

P ({kkn > E2k(n-k)) < Pr{X
2

> en}
f n

= O(n*/n2) = O(nlog 2/n2

by Chebychev's inequality: var{X(} = 2n*, and E{Xn} =

n= o(n). Then

n1 (&1P{kn > En) < En n'PrlX > en}Xnl Lk=l f n=1 n'tw n

< Const. (log n)n g /nn=l

< 0.

The Borel Cantelli lemma completes the proof. L

The next result is easily proved using Chebychev's

inequality; of course, much better estimates are available.

Lemma 6.3. Let S tECnct Fix >O. For

all sufficiently large n, for Pf-almost all w,

| Sn (aJ) | < 2n£-

Corollary 6.1. Fix E>O. For all sufficiently large

n, for all j<n, for P -almost all w, jSn(W)1/(2 +1) < ebjn.3 ~f-
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Lemma 6.4. Fix E with 0 < E < 1/10. Let B = 2/e.

Condition (6.1) is in force. Almost surely, for all

sufficiently large n, for all j with 1 < j < n-B,

log Rj n - log Ri n < -n/20.

Proof. We evaluate log Rjn - log Rin by Lemma 3.1, as

bin jn + Cin - CJn + Qjn - Qln < A + B + C + D,

where

A = (1 + E)bin - bin

B = -(djn - din)2nc2

c = 2 (d-n 1) - (dn - 1) ]2cSn

D = 2din dj1n-2din 1 n;

Cin was estimated by Lemma 6.1c, -CJn < 0 was dropped,

and Q was evaluated by (6.2).

Now B can be dropped; indeed, B < 0 by Lemma 6.la. In C,
n-i 1

1 - din = 1/(2 + 1) for i = 1 or j. In D, - 2dln 'ln < 0

can be dropped.
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The upper bound becomes

(1 + E)b1n - bin

+ ICIISnI/(2n+ 1)

+ ICIISn1/(2n-1 + 1)

+ -djin in-

The two terms involving Sn can be bounded above using Corollary 6.1;

the last term can be bounded above, using Lemma 6.2, to get

(Ebjn)/(log 2) < 2Ebjn. We have an upper bound for

log Rjn - log Rln of

(1 + 2e)bIn - (1 - 3E)bJn

< (1 + 2E)bln - (1 - 3E)b2n

by Lemma 6.lb. Now use (3.4b) to get an upper bound of the form

(log 2)[(-1 + 8e)n + 6].

Proposition 6.1 is an immediate consequence.
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7. Possible generalizations

According to our priors Ik, the 2k possible values e
5

for f were independent N(0,1) variables. Of course, N(kt,2) would

suffice. Furthermore, the problem can be broken down and handled

separately on each of the 2k pieces in Ck. In other words,

according to nj, the mean and variance of e can depend on

S1,...,Sk, provided j>k. Presumably, some sort of limiting

argument is feasible, so that moderately general prior

means and variances can be accomodated. Other possible

generalizations are discussed in Diaconis &

Freedman (1995). For example, the 6 might be taken

as independent, with densities subject to uniform boundedness

and smoothness conditions, as well as decay rates at ±o.

Another promising class of priors Uk is given by Ylvisaker

(1987); these have some built-in smoothness.
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8. Flat priors

Recall that ltk iS "flat" if the joint distribution of

{ e SE:Ck) is Lebesgue measure on 2k-dimensional Euclidean
5

space. We prove Theorem 2.3 by showing how to modify

previous arguments. The predictive density, evaluated at the

data, may be computed for k.n as

log Rkn = An - bkn + Ck + Qkn/ (8.1)

where (as before)

A 2nlog(1/2n) - t 2 (8.2a)

bkn= 2 2k(n-k)log 2. (8.2b)2

With flat priors,

ck = - 2 log 2n, (8.2c)2

1 12 s (8.2d)
22 SECk s

Although Rnn = 1, the representation (8.1) is more convenient

for present purposes.

For k>n, there is a definitional problem, since Rkn must

be infinite on sets of positive Lebesgue measure. For

instance, take k=O and n=l; suppose the first bit in x is 0.

There are two parameters, e0 and e1, both subject to Lebesgue

measure; the first is observed, the second unobserved. The

"predictive measure" or "marginal measure" of {YEA} is
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1 2
- -(Y-eo)

- e 2 dy deo de1 = c.
CO co JA ^f2-

Since this predictive measure assigns infinite mass to any

set of positive Lebesgue measure, the usual disintegrations

(and definitions of conditional measures) do not make

much sense. See section 10 below.

The simplest way around this definitional issue is

to treat each design as a separate inference problem with

its own prior. (Recall that the "objective" part of the

model does not require any particular specification of

joint distributions across n.) At stage n, the prior puts

weight wk on theory k<n, and weight 0 on theory k>n. For

theory n, we can keep the weight at wn, or set it to

Xkn Wk; the latter seems to make the algebra a little

easier. Thus, our convention is the following:

With flat priors, at stage n, the prior weight on

theory k<n remains Wk; the prior weight on theory k>n

is set to 0; the prior weight on theory n is set to

Xkn Wk- (8.3)

We could also allow the Bayesian to ignore unobserved

parameters when calculating predictive distributions and

posteriors: the posterior distribution of an unobserved

parameter stays flat. Arguments and results are essentially

unchanged. Also see section 10. Related papers that use

improper priors include Kohn & Ansley (1987) and Wahba (1990).
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We now estimate Qkn; bounds are organized to prove the

inconsistency result, but are modified later to make the

consistency arguments.

Lemma 8.1. Suppose the design is balanced, and normal

in the sense of (2.3). Suppose the prior i is hierarchical,

and the uk are flat. For any small positive 6, there is

a B finite but so large that for Pf-almost all w, for all

sufficiently large n,

a) Qkn(W) < - 2" (ff2 + 6) + - 2k for k=0,1,...,n-1,n.
2 2

2. 12b) Qkn (W) > - 2" (ff2 - 6) + 2k for B < k < n.
2 2

Proof. Fix 6>0. Use Lemma 5.2 for k.n-B, and Lemma 5.3

for k>n-B. L

Lemma 8.2. Let

Okn = -bkn + Ck + 2k /2 = -2 {(k-n)log 2 + log 2u + 1}.
2

Then

a) akn < 0 for k=0,1,...,n-5.

b) akn > 0 for k=n-4,...,n.

C) Ann =- 2" log 2ne.
2

Remark. k -+ akn is convex, monotone decreasing for

k=0,1,...,n-6, and montone increasing for k=n-6,...,n-1,n.
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Corollary 8.1. For any small positive 6, for Pf-almost
all w, for all sufficiently large n, for all k . n-5,

log Rkn(W) - log Rnn (w) < - - 2"(log22e - 26).
2

Proof. For kEn-5,

n'2"(ff2 +8log Rkn(W) < + 6) + akn + An
2

c1 2"(ff2 + 6) + An;
2

the first inequality comes from Lemma 8.1a and the definitions;

the second, from Lemma 8.2a. On the other hand, by Lemma 8.2bc,

log Rnn(W) >' 2(n(f2 - 6) + nn + An.

Corollary 8.2. With data from a balanced normal

design of order n, a hierarchical prior, and flat 1k,

along subsequences of n for which

2ln log Wk->w log 2re,2i lglk=n Wk

posterior mass concentrates on theories k with k > n-4,

almost surely. Convention (8.3) is in force, so k . n.
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Proof. Fix 8>0 so that for all sufficiently large n in the

subsequence,

Xk Wk > exp{- 2 2'(1og 2ne - 36)J. (8.4)

The total posterior weight on theories 0 through n-5 is

by Corollary 8.1 at most

(Xkwk)exp{- 2 2"'(log 2ne - 28)}Rnn(w).

The total posterior weight on theories k with k2n is by

(8.4) at least

exp{- 2n(log 2ne - 3T)}Rnn(W).

Comparing the last two displays completes the proof. L

If k 2 n-4, there are at most 24 observations per

parameter, so the posterior remains diffuse, and there is

inconsistency. Lemmas 8.3-4 and (8.5) make this precise, and

complete the proof of the inconsistency assertion in

Theorem 2.3. Clearly,

If k.n, tkn is a proper probability measure, making
n-k

{O seCk} independent N(Y ,1/2 ).(8.5)
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The next result applies a bit more generally. To state

it, let Pr be a joint distribution for { s: sECk), making

them independent N(p ,a2); the p. may be any real numbers.
5 5

We can view Pr as a probability distribution on hGL2, as

follows: Pr concentrates on ek, the set of h that

depend only on the first k bits of x; and the Pr law of

{h(sxk*lxk+2...): sECk} is just the Pr law of {e : sCCk}.

If geL2, the "6-ball" N(g,8) around g was defined in (2.1).

Lemma 8.3. Pr{N(g,8)} is maximized when g is piecewise

constant, being p. on x that extend s.

Proof. The leading special case is k-O and y2=1. Let U

be N(p,1). Then

Pr{N(g,6)} = Prf [U-g(x)J2 A (dx) < 82}.

Of course

f(U-g)2 = (U_fg)2 + [(g _ fg)2J

is minimized when g-c, and then

f(U_g) 2= (U-c)2

is stochastically smallest when c=E(U).
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Lemma 8.4. Fix 8>0 with 2<1/2 . If n-BSk.n, the

lkn-mass of any s-ball tends to 0 as n -+ aD.

Proof. Let E be x2 with 2k degrees of freedom. By (8.4-5),

posterior mass in question is bounded above by Pr{... 22n} <

Pr{- < 2k/2} because 622n < 2k,2 Then use Lemma 4.2.

In particular, theories in the range [n-4,n] cannot have

posteriors concentrated near the true f-- or anywhere else,

for that matter. This completes the proof of inconsistency,

and we now sketch the argument for consistency.

Fix k. For any 8>0, for all sufficiently large n,

almost surely,

log Rkn(w) > - 2" (ffk2 - -) + A, (8.6)
2 2

This is obvious from (8.1) and Lemma 5.2. Recall akn from

Lemma 8.2. Let

j 2 n-j,n =a (-j log 2 + log 2re). (8.7)

This is negative for j > 5; see Lemma 8.2a. Fix B with 5 <

B < *. Then fix 6 > O so small that aj < -28 for 5 j . B;

choose k so large that wk>O and ffk2 > ff2 - 8/2.
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We claim that almost surely, for all sufficiently

large n,

theories in the range [n-B,n-5] are negligible a

posteriori, relative to theory k. (8.8)

Indeed, theories in the range [n-B,n-5] have total posterior

weight bounded above (almost surely, for all sufficiently

large n) by

(xiw0)exp{2nE (Jff2 + 8) - 2i] + An}; (8.9)

see Lemma 8.la, and use the definition of the a's. On the other

hand, theory k has posterior weight bounded below by

wk exp{2n[(ff2 - B)] + An}; (8.10)

see (8.6). Comparing (8.9-10) proves (8.8).

Use condition (2.4a) to choose 6>0 so that, for all

sufficiently large n,

n w < exp{-2n[2 log 2ne + 32b]}. (8.11)

Choose k so large that Wk>0 and ffk2 > ff2 - 6/2, for the

new 6. Recall (8.3). We claim

theory n is negligible a posteriori, relative

to theory k. (8.12)
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Indeed, Qnn, was bounded in Lemma 8.1. So, the total posterior

weight on theory n is bounded above by

(X. w)exi2n[2(ff2 + 6) + 2 log 2re] + An}

< exp{2n[I(,ff2 + j) - 326] + An}. (8.13)

Compare (8.13) with (8.10)-- based on the new 8-- to

prove (8.12). The factor of 32 is quite generous here,

but will be needed below.

With the same 8 and k, we claim

for j=1,2,3,4, theory n-j is negligible a posteriori,

relative to theory k. (8.14)

Indeed,

wn-j < xi:n j w; < exp{-2 nJ[ log 2ie + 32S]}.
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The posterior weight on theory n-j is bounded above by

w . ex T2 I(ff2
n-j

+ 6) + ax.] + An}

< ex42n[ (ff2 + 8) + ax* _ 11( log 2ne + 328)] + An}

exp{2[n(ff2 + 6) - 328)] + An}

< exp{2 [l(ff2 + 8) - 28)] + An}

because cj <cao/2j < (log 2ne)/2j+', see (8.7); and 2J < 16.

Comparison with (8.10) proves (8.14). Combining (8.8)

with (8.14) shows that posterior mass concentrates on

theories k with k < n-B, and consistency follows as in

the proof of Theorem 2.1.
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9. An example

This section gives an example on flat priors with rapidly

decreasing theory weights; the idea is to show that posterior

mass can accumulate on theory n-i. Suppose Wk=O for odd k

while wk = exp{-C2k} for even k, where C is a positive

constant. Clearly,

'im
1

log [- wkl = -C as even n -
X

= -2C as odd n -+ c.

If C > a° = - log 2ne, there is consistency. If 0 < C < ao,
2

inconsistency obtains. More interesting is this. Suppose

C > 1ao + 1log 2 (9.la)
3 6

C < ao - -log 2. (9.1b)
6

We claim

As odd n - 0, posterior mass concentrates on

theory n-i. (9.2a)

As even n -+ co, posterior mass concentrates on

theory n. (9.2b)
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Only (9.2a) will be argued. Consider the odd n.

Theories kfn-5 are negligible, by Corollary 8.2; theories n-2 and

n-4 have prior mass 0. At stage n, by convention (8.3), theory n

is given prior mass wn1l-wn.3+....; indeed, Wn=wn.2= . .=0.

Thus, only theories n-3, n-1, and n are in contention. The

posterior theory weights can be computed from (3.6) and

(8.1-2), with Lemma 8.1 to estimate their magnitudes.

Let Kn = An + n22ff2. For any 6>0, almost surely, for
2

all sufficiently large odd n,

the posterior weight on theory n-3 is bounded above

n -~~~~~3lo 3by exp{Kn + 2 (C3+6)}, where C3=(-C+ao--log 2)/23. (9.3a)
2

the posterior weight on theory n-i is bounded below

by exp{Kn + 2n(Cl-8)}, where Cl=(-C+ao--log 2)/2. (9.3b)
2

the posterior weight on theory n is

bounded above by 2exp{Kn + 2n(D+8)}, where D=-2C+ao. (9.3c)

The factor of 2 in (9.3c) results from the estimate

E i exp{-C2 2i} < 2exp{-C22m}

which holds because e ° < e /2 when Co > - log 2.
3

It remains only to check that Ci>D and Ci>C3, which follow

from (9.la) and (9.lb), respectively.
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10. A definitional issue with flat priors

You are about to observe independent normal variables X

and Y. Both have variance 1. Theory #1 is that X and Y have

the same mean, 6; there is a flat prior on e. Theory #2 is

that X has mean e and Y has mean 1; there is a flat prior on

the pair (e,4). To adjudicate between the two theories, you

put prior mass .5 on each, observe (X,Y), and compute the

posterior. But now suppose Y is lost. Theory #2 has an

infinite marginal "density" for X; surely, that cannot tip

the balance for theory #2. In this section, we review the

calculus, and suggest a "partial Bayes' rule" convention:

basically, the idea is to ignore Y and the prior on its

parameter. That makes theory #1 and #2 agree on the

observables, as seems sensible: X is N(e,1) and e is

uniform.

Let X be N(e,1) and let Y be N(Q,1). Suppose X and Y are

independent. Let A be Lebesgue measure on the line. A

Baysian might have a flat prior n for (e,4), that is,

R=X2 . Let >L be the joint distribution of (e,i,X,Y):

if A, B, C, D are linear Borel sets, then

.{OeA & qEB & XeC & YED} =

I f[ [ f(x-e)f(y-Q) dx dy de d+. (10.1)
IEB OEA yED xeC
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Of course, the "predictive" or "marginal" law of (X,Y)

relative to p. is A2. Given X and Y, the posterior law of

0,4 is that of two independent N(X,1) and N(Y,1) variables.

Indeed, let Q {d8,d#j be the proposed conditional. By
xy

Fubini's theorem,

Ii{ eA & ICEB & XEC & YED} =

{I Qxy{AxB} p.o{dx,dy} (10.2)
yED xEC

where p.o is the marginal law of X and Y, namely, A2.

The "disintegration" (10.2) makes rigorous the idea of the

posterior.

That much is straightforward. Now suppose that Y is

unobservable. Suddenly, there is a definitional crisis:

the marginal law of X assigns infinite mass to any set of

positive Lebesgue measure. Thus, it seems impossible to

define the posterior distribution of e,j given X by means

of the usual disintegration formulas. For related calculations,

see Eaton (1992).

There is a natural convention to make:

1) The predictive law of X is uniform, and

2) The posterior law of 0,Q given X is this: e is N(X,1),

4 is uniform, and the two are independent.
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With these conventions, the inconsistency results

of sections 8 and 9 go through; only minor changes are

needed in the arguments. Eliminating the weights on

complex theories (k of order n or larger) tends to speed

up the rate of convergence for proper priors; eliminating

the prior mass beyond n-5 does wonders even for flat-prior

Bayesians. Thus, the convention followed in section 8 seems

more favorable to the Bayesians than the convention proposed

here; even so, inconsistency is the result.
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11. Bayesian regression, splines and wavelets

This section sketches a heuristic connection between our

results and those in Cox (1993), via wavelet theory. Let

{fjk: k=1,2,...,2J} index the Haar wavelet functions of

level j. Our covariates take values in coin-tossing space,

which is, of course, isomorphic to the unit interval. Thus,

our prior can in principle be viewed as the distribution of

j=0 Xk=1 XJkfJk.

Each XJk is a mixture of normal variates with mean 0, and the

XJk are uncorrelated. We may consider replacing XJk by ZJk,

where the ZJk are independent, normal, and var ZJk = var XJk;

the latter depends on j not k. Now,

x0 E-x ZJkfJkj=0 k=l

defines a prior of the kind studied by Cox.

This connection is interesting, but somewhat formal--

because the law of {ZJk} is quite differerent from the law

of {XJk). In particular, we do not see how to derive our

results from his-- or his from ours. Nor do we see how do

derive consistency and inconsistency results of the kind we

have previously demonstrated from wavelet theory. Cox's
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main result shows that, in his setup, Bayesian confidence

sets do not have good frequentist coverage probability, but

that does not establish inconsistency in our sense, because

the distance from the posterior mean to the true parameter' is

not bounded from below. Likewise, his estimates do not imply

consistency, at least directly. However, calculations like those

in his paper should establish consistency, at least in his 22

setup. For more discussion, see Diaconis and Freedman (1997).
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