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NEIGHBOURHOOD 'CORRELATION RATIO' CURVES

Kjell Doksum and Sorana Froda

Abstract

Pearson's nonparametric R-squared, also called the correlation ratio, or eta-squared, is the ratio
of the variance explained by nonparametric regression to the total variance of the response Y.
We obtain a local version i2(z) of this 2 by calibrating the conditional eta-squared obtained by
restricting the explanatory variable X to an interval, [z - h, x + h]. 72(Z) is a local measure of
the explanatory power of X. Nonparametric estimators of v2(z) are introduced and their root-n
distributional convergence to normal distributions is established. We propose a local bandwith
selection procedure for choosing the bandwith b in the nonparametric regression function 4(x) =
E (YIX = 2). The procedure consists in choosing the b which maximizes the local explanatory
power of X. Monte Carlo comparisons of kernel and locally quadratic approaches are presented.
The locally quadratic methods only do better when p(z) has sharp turns. Finally we illustrate our
local procedures by doing a local ANOVA on a real data set.

Key words: local R-squared, nonparametric correlation, kerel regression, local polynomial regression, local ANOVA.

1. Introduction.

For experiments where the relationship between a response variable Y and a covariate X is not
necessarily linear, a very useful measure of the strength of the relationship between X and Y is
Pearson's correlation ratio

9 = Varp(X) = E1 aEo(X)
_ VarY VarY (1)

where p(x) = E [YIX = z] and ao2(X) = Var (YIX = x). The coefficient 2 is based on the ANOVA
decomposition Var Y = Var p(X) + Eoa2(X) and thus gives the fraction of the variability of Y that
can be explained by the regression p(X); in linear models 72 reduces to the usual (Galton-Pearson)
squared correlation

=2 Cov(X,Y)
Var XVar Y

In nonlinear models, which, without loss of generality, can be written as

Y = p(X) + a(X)e, X and e uncorrelated, (1.2)

2 is a better measure of the strength of the relationship between X and Y than p2. In patiCUlar,
there are many models with X and Y strongly related, where p2 = 0 while 2 gives a good measure of
the relationship (see Renyi, 1959; more recently, Doksum and Samarov, 1994, discuss the properties
of 2).

As discussed by Bjerve and Doksum, 1993, and Doksum et al., 1994, there are many studies where
the strength of the relationship between X and Y is different for different values x of the covariate,
and in these cases it is useful to have a local mesure of the strength of the relation. They introduced
as local version of p2

p(2 2= T2()+0(z)/c. (1.3)

with u1 = VarX, and 6(z) = p'(x) = dp(x)/dz.
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However, just as p2 can be zero when X and Y are strongly related, so can p2(z) be zero when X
and Y are strongly related locally. For instance, if Y = 1 + (X - 2)2 + e, then p2(2) = 0, provided
Var c > 0. This happens because p(z) measures the strength of the locally linear relationship between
X and Y. In this paper we consider local versions of the correlation ratio i2 which pick up nonlinear
local dependence between X and Y.

The local squared correlation p2(z) was obtained from the formula

2 __2
=TI2+0,2Ic2?

by replacing the fixed linear model slope 83 with the local counterpart 6x(x) = p'(z), and the fixed
linear model residual variance o2 with the local version a2(z). An alternative approach to local
correlation, which corresponds to the usual approach to local regression, is to use a measure based
on the conditional distribution of Y given X. In this paper we introduce a local correlation measure
based on the conditional version 1co(2) of 72 given X in a neighbourhood of a given covariate value
z of interest. This Y72o(x) can be interpreted as the correlation ratio for a biased sampling plan which
drives the value of 72o(x) towards zero. Therefore we propose to calibrate rR9o(z) and thus correct
for the biased sampling by requiring that our local measure coincide with the usual correlation ratio
in the linear models. The details of the derivation of the calibrated measure 7A(z), which we also
refer to as a local (or neighbourhood) R-squared, are given in Section 2.

Besides providing a local measure of the strength of the relationship between X and Y, estimators
2CA(Z) of 7CA(W) can be used to select the bandwith b(z) for the kernel estimator 'b(z) of the

regression curve p(z). The idea is similar to cross-validation. That is, we consider the estimate
C2A(x) as function of the bandwith b, and we select the value b which maximizes 7CA(Z) In other

words, we view qCA(z) as a measure of the explanatory power of the covariate X in a neighbourhood
of a given z, and we choose b to maximize this explanatory power. This idea is closely related to
minimizing mean squared error, e.g. the supersmoother (Friedman, 1984), the bootstrap smoother
(Hardle and Bowman, 1988), and LOWESS (Cleveland, 1979, Cleveland and Devlin, 1988). The
advantage of our approach is that it links the local regression estimate with an estimate of the local
explanatory power of the covariate.
We study also the asymptotic properties of qC2A(Z). Here we adapt the results of Doksum and

Samarov, 1994, who investigated the asymptotic properties of estimates q2 of the global measure
of explanatory power v9. We give the asymptotic mean squared error of C2A(x) and we find the
asymptotic normal distribution of V/; [N^(z) - 1CA(Z)] I where n is the sample size. We use
Monte-Carlo methods to investigate and compare various estimators based on Nadaraya-Watson
kernel estimators and locally quadratic estimators of p(z).

2. Nonparametric Correlation through Calibration of the
Conditional Correlation Ratio.

Our aim is to develop a measure of the strength of the relationship between X and Y near a
particular value z of the covariate. We start by considering the 'conditional' correlation ratio given
X E Nh(X) = [z - h, z + h], where h is a number which determines the length of the interval on
which the strength of the relationship is to be measured. The law of {XjX E [z - h, z + h]} is given
by (we assume throughout that X has a density f(Z)):

fhz) (z)Phif zE[z- h,zx+h];(.1
0h ) {o otherwise, (2.1)

where Ph = Pr(X E [z - h, z + h]). We consider the conditional i72

?7CO,h(Z) 2
OY,h(Z)
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where p(X) = IE[YIX], a2,h() = Var(P(X)IX E Nh(x)), and aY,h(Z) = Var(YIX e Nh(x)).
Note that r?COQh(z) can be interpreted as the correlation ratio for a biased sampling plan, that is, a
sampling plan where X measurements can only be obtained for X in the interval.

It is easy to see that CO h(Z) iS much smaller than 2 computed for X unrestricted; in fact
Var (p(X)IX E Nh(Z)) tends to zero as h -_ 0, while Var (YIX E Nh(X)) does not (except in trivial
cases). The proposed measure is obtained from rRCO,h(X) via a calibration procedure.

Before we derive the calibrated measure, we state the following result, which follows from (2.1)
by straightforward computing.
Proposition 2.1. The conditional expectation p(x), and the conditional variance, u2(X), are pre-
served under restriction ofX to an interval. That is: let co be fixed and let (Xh, Yh) be of law
{(X, Y)jX E [xo-h, zo + h]}; then, for : E [:o-h, zo + h]:

Phh(:) =IE[yhlXh = z] = POT)
0a2(X) =Var[yhIXh =a] = 2(X)

As a first step in the derivation of the calibrated measure consider the linear model,
Y = a +4e3X + c, (2.2)

with X and c uncorrelated. For this linear case Gulliksen, 1951, ch.11, studied how the regression
and correlation are affected by restricting the values of X. Gulliksen used the term selection on the
basis ofX and pointed out that the regression line of Y on X, given that X is restricted, will not be
affected by a selection based on X. Therefore the regression lines with X restricted and unrestricted
can be assumed to be the same and the two slopes to be equal; that is, in our notation

P (X2 = 7CO,h(.') (X,h ) (2.3)

where 2 h(:) = Var (X X E Nh(Z)). At the same time Gulliksen noted that the residual variances
are the same, i.e., in our notation

u?y (1 _ p2) = oY,h(:) (17-2,h(:)) * (2.4)
Let r22(X) = ¢x h(2)/oJX and write 2CO,h(:) as function of r,2(z) and p2. If we isolate the ratio
0y2(Z)/ 2 in both (2.3) and (2.4)

OUy,h(Z) 1- p2 Y,h(-:) p Th T:)
4 1-7CO,h(X) 4y 7CO,h(c)

we obtain:

17co,h(:) = )+*

In order to define the local measure we make the following point: since in the linear model (2.2)
the local measure should be the correlation coefficient p2 we define the local measure by solving for
2 in (2.5) and letting the calibrated conditional correlation ratio r7c,Y,(x) be equal to the result.
We obtain:

2 A() =CO,h(c) 7CO,h(:)
7CO,h(:) + r (:)(1 - rCO,h(:)) OT h(c)(1 - rh()) + rh2(:) (2.6)

- ,h(T)(1 r-(h)) + T,()Y,h(Z)
The preceding formula (2.6) is our local correlation ratio measure. It is the conditional cormlation

ratio given X E Nh(:), 17C2O,h, calibrated to coincide with the correlation ratio 72 = p2 in linear
models.

As a final remark: in many cases formula (2.6) can be computed explicitly, as function of p(:) and
h (see examples in Section 5 and Appendix). In all cases it can be easily estimated by considering
only data {(Xi,Yi)}i, with Xi in a proper neighbourhood of x (see Section 6).
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3. A Local ANOVA Decomposition

Let 2 = Varp(X) and ao2 = Ea2(X). The classical ANOVA decomposition is: VarY =
u2 + or2 X which leads to the global correlation ratio

0.22
=

_A_)7 a2+CY

We next show that the local correlation ratio qCA,h(Z) is based on a similar but local ANOVA
decomposition.

Consider the decomposition 4 h (z) = 2 A(z) + a,x h(2) where ,Xh(z)i2 the conditional
expected residual variance of Y given X, when X E Nh(z), that is ayIX,h(T) = E[Var (YhIXh)],
where (Xh, Yh) is distributed as {(X, Y)IX E Nh(z)}. Substituting this decomposition into (2.6),
we obtain

72 (I. __ __ __ _ _3__ _1__ _

nCA,h(-J =h)2 (Z) + rh2(Z)e4IX,h(Z) (3.)1)

The sum in the denominator of (3.1) gives a local ANOVA decomposition of {(X, Y)IX E Nh(X)};
we call the denominator

Dh(2) = Oa,h(Z) + T?(Z)YIX,h(T) (3.2)

the local variability of Y. Under general regularity conditions, r(z)h1, oa2 () _o, and
012 2

Ix, when h - oo. Thus the local ANOVA decomposition tends to the classical
OMVA decomposition.

4. Properties of the Neighbourhood Correlation Ratio.

Assume that X has a density f(z); let 172(Z) = 17h(2 ) and consider its properties.
1) 72(X) < 1;
2) 72(z) is invariant under linear transformations X P-+ a + bX, Y F-. c + dY; this property

follows from the invariance of CO,h(Z) and of r, (c) with respect to scale changes;
3) q2(X)= p2 in the normal bivariate case;
4) If p'(z) is continuous and E(YklX E Nh(z)) __ E(YkIX = Z), k = 1,2, then, as h -_ 0,

72(Z) - p2(Z), with p2(Z) given in (1.3).
5) 72(x) =0 for all x, ifX and Y are independent; indeed, q72?0(z) =0 in this case, while

0YIX,h(X) > 0, except in trivial cases;
6) v72(X) = 1 when Y is a function of X, because 72 (a) = 1 and 41X,h(X) = 0;
7) If the density f(z) > 0, then the equality 72(z) = 1 for all 2 implies that Y is a function

of X;
8) Interchangeability: write qx2,y(x) for 72A,h(Z) as defined in Section 2; then we can define

n2(z, Y) =
'

and obtain a measure where X and Y can be interchanged; we now need to assume that
also Y has a density.

9) If f(z) has infinite support, then, for h - o, r,2(x) 1, and 72 (z) _ 72, with 72 given
in (1.1). If f(z) has as support an interval of length 2L, then, for h -* max(x, L -),
rh2(z) -+1, and ih(Z) __ 2.

10) Converting to a signed correlation ratio: while %r2(z) gives the strength of the rela-
tionship or the variance explained locally, the quantity sign{E (,8(X)IX E [z- h, z + h])}
indicates whether this relationship is positive or negative.

11) Conditioning on a probability interval. Instead of conditioning on the fixed width
interval Nh(X) = [z - h, x + h], we could condition on the fixed probability interval I6(x) =
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[Zp.6,xp+6], where p = F(x) and :z denotes the quantile F'1(q). Since X E I6(Z) is
equivalent to F(X) E [p -6, p + 6], and since U = F(X) has a uniform U[O, 1] distribution,
we are thus conditioning on a uniform variable. Properties 1)-10) hold as before. In
addition, note that i2(X) is invariant under one-to-one transformations of X.

Remark 4.1. Tarter and Lock, 1991, Chapter 8, have proposed 97T(z) - 1-u2(X)/a4 as local
version of Y2 = 1 - Ea2(X)/Y. Note, however, that this measure is not necessarily positive in
heteroscedastic models. For instance, take Y = ca+iX+Xc, where X and c are independent, E c = 0,
and assumeft = 0. Then, since 42 = 62aX2 +E [X2],21, 4(x) is negative for x such that X2 > IE [X2].
In homoscedastic models Y = p(X)+c with c and X independent, 7T(X) = 1 _-2/ [Var p/(X) + u2],
and it is no longer local.
Remark 4.2. vh(z) differs from p2(z) in that it involves the local relative variance r,2(X) of X
instead of the global variance 4. We would expect Th2(z) < 1. Here are conditions for this to be the
case. Consider the sequences of inequalities:

X
:o+h 2 +h

I X -

h| fh(x)dx < | (X( Zh)2fh(z)dz
0w-h J :o-h (4. 1)

xo+h
< J (X _ o)2 fh(x)dx < h2,

0s-h

and
J o+h xo+h
I| - Xhlfh(x)dx > min(h/3, Ix- ZhI)fh(x)dx
02to-h 0J-h (4.2)

>
h

fh(X)dX = hIh(xo),
t-cA 1> h/3

where Xh= E [Xh]. Let

Ih(Z-TO) fh(z)dz . (43)
Is-zcgj> h/3

From (4.1) and (4.2) we obtain the following result:

Proposition 4.1. Let X, Xh be as in Proposition 2.1, let Ih(zo) be given by (4.3), and let EXh =
Xh. For X with infinite support, let h < oo, and for X supported in a finite interval of length 2L,
let h < 2L. Then, for any zo, Ih(Zo) > 0, and the following conditions hold:

a) sufficiency:
h<Oxt7 TZO)< 1;

b) necessity:
2(20) < 1 = h < 3c /Ih(xo).

In the uniform U[0, 1] case, rh2(Xo) < 4h2 for all xo, and rh2(zo) < 1 if h < 1/2. (for the formula
of rh2(xo) see (6.6).) Actually, in this case, at each zo one can compute rh(zo) with h in one of the
three intervals [0, min(xo, 1-zo)], [min(zo, 1 - zo), max(xo, 1-to)], and [max(zo, 1 - Zo)I 1], and
show that the sufficient condition in Proposition 4.1 is satisfied for all h and to; thus h,?(xo) < 1 for
all h and zo. When X is any other variable, Proposition 4.1 suggests a rule of thumb for choosing h
in practice: one should always consider neighbourhood measures v7c,h(:) with h 2 x, where x
is the estimate of aX.
We now give an example where r^(x) > 1. Suppose that X has a density which equals e on

[0,1], and (1/-1) on [1,1+E]. Then Var(XIX E [0,1]) = 1/12, but aX = VarX O- 0as
c -O 0. It follows that there exists E> 0 such that T2(.5) > 1. In this example X.5 =-xo = .5 and
I.5(.5) = 2(1 - (1 - 1/6)) = 1/3; the 'pathological' behaviour is possible because h2 = (.5)2 > 814
for some > 0, since ax 0 asO -+ 0.
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5. Examples of Neighbourhood Correlation Ratios.

In this section we consider the behaviour of ,2(:) 2nCA,h(Z) for some models which have been
studied in the literature, and we compare v2(z) with p2, q2, and p2(z).
Example 5.1 First consider a simple quadratic model (Hall and Wehrly, 1991),

Y=(X-1/2)2+rc, X U[O,1], e' .'.(0,1),X and c independent.

It is easy to see that

= (z - 1/2)2 + 3r2
while p2 = 0 but 92 is not; more precisely 2 = 1/(1 + 180r2). In the appendix we derive v7(X) for
this model, and in Figure (5.1) we plot 772(x), with h = .3, p2, 92, and p2(x). It appears that v7(X)
is larger than p2(x) in the center and smaller in the tails, which makes sense, because p2(z) behaves
more like (p'(X)]2 and thus is drawn to 0 at z = 1/2, while tending to one for z -_ 0, 1.

Example 5.2 Next consider the 'bump' model (Hirdle, 1991),

Y = 2 - 5X + 5e100(X1/2)2 + re, X U[0, 1], c -A/(0, 1),X and c independent.

In this case the correlation curve is given by

2 25 [1 + 200(x- 1/2)e-1OO(z1/2)2]
= 25 [1 + 200(z - 1/2)e-1 OO(-1/2)2]2 + 12r2

The formula of v2(X) is derived in the appendix. Figure (5.2) gives plots Of 72(X), p2, ,2, and p2(z)
when r2 = 1/4, 1, 4, 16 . This example is interesting because the difference between i72(x) and
p2(X) is very striking. Since the conditional variance T2 is constant, like in the previous example
the behaviour of p2(x) follows quite closely the behaviour of [p'(Z)]2, and therefore is drawn to
0 at the points x1= .309 and x2 = .495 where the derivative p'(z) = 0. On the other hand, at
Xi = 1/2 ± 1/v\, i = 3,4, p"(x) = 0, and p'(z) has an extremum at xi, i = 3,4. This explains
why p2(X,), i = 3, 4 is largest at these values.

The new measure vh(z) shows its strength in this case, because it clearly smoothes out the wild
behaviour of p2(x) by proposing an averaging over intervals of length 2h.

Example 5.3 Finally consider the 'twisted pear' model, of non-constant conditional variance, as
well as non-linear conditional mean (Doksum et al., 1994):

Y = aXe(b-,X) + ( + AX)orc, X _ JA(p, a2), c -.X(O, 1); a, b, c, T, oJ > 0; i, 7, A E R,

with X and c independent. This model represents a situation where the relationship betwen X and
Y is strong for small x, but then tapers off. The correlation curve is

- 2(x) a2e2b-2 (1 _ CX)2
p2(X) = a2e2b-2w (1-CX)2 + T2 (y + Az)2

Figure (5.4) plots ,i2 (z) p2, q2, and p2(z) for a = .1, b = 5, c = .5,7 =1, A = .5, s = 1.2, a = 1/3
and r2 = 1/4, 1, 4, 16 . In this example the difference betwen p2(:) and 72(z) is less important.
This can be explained as follows: unlike the bump model, this is a non-constant conditional variance
model, where the square of p'(z) and the conditional variance are polynomials of same degree,
and therefore p2(x) behaves smoothly. On the other hand, the interpretation of 2 (X) in terms
of calibrated local correlation permits to use estimators which are easy to compute and converge
rapidly, as can be seen in the next section.
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6. Estimation. Asymptotic Results.

An estimator of iCA,h(X) can be defined in a natural way as the sampling equivalent of formula
(2.6). That is: compute first the respective estimates of 3C0 h(X) and of rT(z), and then insert the
resulting sampling values in the first ratio of (2.6). Doksum and Samarov, 1994, have proposed three
consistent estimators of the correlation ratio; in this paper we are using the conditional version of
the estimator that performed best in their Monte Carlo study. That is, we take the sample squared
correlation p2(i(X), Y), where j(x) is the estimated regression curve. Another advantage of this
estimator is that it takes values in the interval[O, 1]. Let (Xj,,, Yj,,) be data ((Xj,Yj) with Xj
belonging to Nh(z) = [z - h, z + h], let nh be the number of Xj in Nh, while 7h and Yh are the
respective means of g(Xj,h) and Yj,,. Then the estimator of 7CO,h(Z) is given by:

2

EO,h(Z) = { j [(X,h) - h] [y1,h -Yh] /nh }
[/i(X,h)-Ph] /flnh X [Yj,h- Yh] /nh (6.1)

Jn [ji(Xi) _ En tki(Xk)] (Yi- Wi 12

l/v' 1-' [j4(Xi) k=j WJL(Xk)]2 W, 1 [Y _ n E ]2 W J

where:

0 otherwise, (6.2)

and wk = Wk/ .n. W,.
In the same way we estimate rh2(x) by:

) Ej (Xw,h - 7h)2 /nh - (Xi _ n=, W,Xk)2 Wi

The proposed estimator of i7CA,h(x) is:

CA,h(2) = 2,h(Z)+T)(1 (6.4)

and it is consistent by the consistency of f o,h(z) d of T^h(z). In Section 7 we present the results
of a simulation study of this estimator.

In situations where the design density of X is chosen to be uniform U(O, 1), let h < 1/2, and
consider the simpler estimator:

IICA,h(z) =COfOh(z) + r'h()(1 - C,h(,))h ' (6.5)

where
+(x+h)2 if zE[O,h]

(2) =rh2(Z) =f 4h2 if z.E [h, 1-h] (6.6)
1(1-x + h)2 if zE [1-h,1 ].

In other words, the estimate of rh2(z) is replaced by its known population value (see Appendix). Note
that rh(x) is non-random.

The asymptotic results of this section can be derived using the approach of Samarov, 1993, and
Doksum and Samarov, 1994. Since z is kept fixed, we shall omit indicating the dependence on x for
the remainder of this section. We start with a common list of assumptions.
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Assumptions.
1) the expectations E{1X14} and E{lY14} are finite;
2) the conditional variance a2(z) is bounded;
3) for fixed io the estimate '(X,i) is a kernel estimate which does not depend on the data

pair (Xi., Yi) (that is, it is a 'leave-one-out' kernel estimate);
4) the kernel is a nonnegative, symmetric, bounded function with compact support, bounded

away from 0 on some neighbourhood of the origin;
5) the bandwith b satisfies b - (n-1/3);
6) p(x) is first order Lipschitz;
7) the density f(z) is positive on (z - e, z + c) for some c > 0.

The first lemma can be proved by modifying the proofs of Doksum and Samarov, 1994.

Lemma 6.1. Let yh = E [YIX E [z-h, 7 + h]], and for i = i, ..., n, let

ei = (Yi -Yh) /OfY,h, Ui = (Yi-p(Xi)) /UY,h (1 - ' COh).

The estimator 3iOh introduced at (6.1) admits the following asymptotic expansion, as n _ oo:

n
v¶ [r)30 C-O h] = n1/2(1 - ,h)E (e2- u?) W, + op(l). (6.7)

*=1

The next result follows from Lemma 6.1 and the delta method.

Proposition 6.2. Assume that X is uniform U(0, 1), and let ;?CA,h be the estimator introduced at
(6.5). Then

V4 V9cA,h -r17A,h] - A(0,MCA),

with
MCA = {7^DX }2 X MCO.

where MCO is the asymptotic variance of jCO, hs and

DA = CO,h +T 7CO,)0
is the squared local variability ofY defined by (3.2).

The following lemma gives an asymptotic expansion of h2 similar to the one for h2.
Lemma 6.3. Let Zh= EXh, and, for i =1,...,n, let Wi, be as in (6.2), and let

di = (Xi - Th)IOX,h, fi = (Xi- EX)/ax .

The estimator Th admits the following asymptotic expansion, as n -+ oo:
n

s/ii [th - r] = hE (d2W - f,2 _ (Wi - Ph)/Ph) + op(1)* (6.8)
i=l

From Lemmas 6.1 and 6.3 we obtain the main result on asymptotic normality.

Proposition 6.4. The estimator defined at (6.4) is asymptoticaRly normal,

1/n 2CA,-% CA,,%h (0, MCA),

with

MCA= { } Mco +{lCOh(D2 O,h) } MT

2{,2(1}..n2 1
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where D' is given by (3.2), MCO is the asymptotic variance of oh, MT is the asymptotic variance
Of rA and MT,CO is the asymptotic covariance ofrhand rCO,h.
Standard errors.

From propositions 6.2 and 6.4 we can obtain expressions for the asymptotic standard deviations
of eC2 andh O,h If we replace the unknown parameters in these expressions with estimates we
get (approximate) standard errors. For i = 1,.. , n, let

Ai = Wi--(W -Ph)/h, Bi = (e^j-U2) Wi, and Ci = Bi-oCh,Aih i
where:

es = (Yi-Yh) /SY,h, s = (Yi - (Xi)) /8Y,h (1-ICO,h)'

n

di= (Xi -Xh)/SX,h, fi = (Xi-)/8sX, Ph =niZI[Xi E [x-h,i+ hi];
i=l

8X h and sYh are the sample variances of Xj,h and Yj,h with j such that Xj E Nh. Then the
(approximate) standard errors of and CA,h are, respectively:

thDh 28B, and r D(1-qh)b;2sc,
where 4 and sA are the respective sample variances of Bi and Ci, i = 1, .. ., n.

7. A Simulation Study. Bandwidth Selection.
In this section we present the results of a Monte-Carlo study. Our purpose is to illustrate the

finite sample size behaviour of the estimator given at (6.4), as well as to propose a simple bandwith
selection procedure, based on the maximization of qh2z) = %2CA,h(X)-
We consider the following models (presented in Section 3): quadratic, bump and twisted-pear,

and for the quadratic and bump regression models we consider both fixed and random designs. For
each of these 5 models we simulated 200 samples of 200 data each; in each data set let the pairs be
(xi, yi), i = 1, ..., 200. For each sample we computed the kernel (Nadaraya-Watson) and the locally
quadratic estimator as well as their leave-one-out counterparts, which differ from the usual ones in
that they do not use the data (zio, y,o), io fixed, in the estimation ofp(x,0). In the locally quadratic
estimates, and in the kernel leave-one out estimate, at sample points Xi where the regular formula
failed to work because Nh(x) did not contain enough points, we replaced '(xi) by the average
[yi-i + ysi+l]/2 (assuming the Z's have been ordered.) Such cases ocurred less than 1% of the time
for sample size 200 and larger. We used the tricube kernel function, suggested by Cleveland, 1979,
i.e. K(t) = [1-_jt3]3 I(jtj < 1).
A first set of results are on the comparison of six estimators of i7 (z) : three are based on kernel type

regression-smoothers, and three are based on locally quadratic type regression-smoothers. Here is a
brief description on how the estimates are obtained: for each type of smoother we compute rCA h(Z)
in three ways: first we insert in (6.1) '(x) as given by the usual smoother ('all in' estimates), second
we insert i(x) as given by the leave-one-out smoother ('one out' estimates), and a last estimate
qC2A,h(Z) is obtained as the average of the first two jA,&(x) estimates ('average' estimates, as
suggested by Doksum and Samarov, 1994). The estimates are computed at points X with x =
ZgjI j = 1,..., m, where X9j , j = 1,..., m are grid points (m = 50 in our examples). The grid
points are of the form F1I(i/m) , i = 1, . . ., m, where F(z) is the distribution function ofX; thus the
grid points are equally spaced when X is uniform. In particular, in the fixed design case with n = 200
data points and m = 50 grid-points, the latter are xj = j/n , j = 4k +I, k = 0, ..., K = [(n - 1)/4].

The first set of tables contain summary statistics concerning the estimated MISE of the six
estimators of TqA(Z) where, for each sample, the estimated MISE is given by:

m
MISE = E2 [v3~A,h(zi) - CA,h(z')] /m,

i=1
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where m is the number of grid points. The length of the interval is taken as 2h, where h = .3,
which, in all three cases, is the approximate value of the standard deviation a,i of X; the bandwith
is b = .22 t .70i. The results are presented in Table 1. Before any comment on the results we would
like to note that in this context a sample size of only 200 is quite modest. In spite of this relatively
small sample size, we found that all estimators perform very well in all models, with the exception of
the twisted pear model of large T, (i.e. r = 2 and r = 4), where the performance is slightly less good.
This has to be expected, since in this model the conditional variance is non-constant, and a much
larger sample size might be needed. (For example, when T= 2, at x = 1.5 the conditional variance is
u2(1.5) %: 7.1.) In most cases the 'all-in' versions perform best (i.e. have lowest mean and/or median
MISE) in their class (kernel or locally quadratic). For the bump model with r = .5 and r = 1 the
locally quadratic estimators perform much better than their kernel counterparts. In view of these
results we decided to plot the median, 5% and 95% quantile estimated curves as given by kernel 'all
in'-and locally quadratic 'all in' estimates. Each curve is obtained by computing, respectively, the
median, 5%, and 95% quantile of the 200 estimated values at each of the 50 grid points. The 5%
and 95% curves are called envelope curves by Hall and Wehrly, 1991. In all three models, the data
were generated for the random design. We took only two values of r in the bump and twisted pear
models: one small, r = .5, and one moderately large, r = 2. The results are given in Figures (7.1),
(7.2), and (7.3). Figure (7.2) shows a dramatic improvement by the locally quadratic over the kernel
estimate in the bump model. In the other two models the difference is not pronounced.

Next we propose and study bandwith selection by maximizing qh(z) at selected values of x. For
h = .3 we studied bandwith selection at typical quantiles zc, with q: .25, .5, and .75. The idea is to
compute qh2(x) as function of the bandwith b, where b is the bandwith used in i(X), and to choose b
which maximizes jh2(x). That is, we choose the b which locally maximizes the empirical explanatory
power of the explanatory variable. The global version of this strategy has been proposed by Doksum
and Samarov, 1994. In our study we simulated ms = 200 samples of size 200 each, and we chose
the bandwith b, which maximized 92.3(z) in each sample, over 25 equally spaced values b in [.06, .3].
Because of overfitting, only leave-one-out regression smoothers make sense in bandwith selection,
and thus our selection was done by maximizing the corresponding 92Y(z). In order to assess the
quality of the bandwith selection procedure we computed summary statistics across 200 samples of
the sample values ii(x,) (both 'all-in' and 'leave-one-out' regression-smoothers), and of the sample
values i^7 -(xq) ('all-in', 'leave-one-out', and 'average' estimators).

Table 2 gives the median and quartiles of the selected bandwith for each regression model and
both types of regression smoothers. Note that our procedure selects a larger bandwith for the locally
quadratic estimate than for the kernel estimate. This makes sense, because the kernel estimate fits
a constant locally, and for larger bandwidth the resulting estimate is less correlated with data which
are generated from a curved regression. For the twisted pear model, where the curvature is small,
b is most often chosen as the maximum possible value (i.e. b = h = 0.3), while for the bump
model, where the curvature is high, a much smaller bandwidth is chosen. For the kernel estimate
the smallest possible value 0.06 is chosen in most cases.

For 23(zx) (q = .25, .5, and .75 ) based on our bandwidth selection rule we give median, quartiles
and mean squared error (MSE), as well as the true q2(z) value, which can be compared with the
median of i(). Th statistics are listed in Table 3; for economy we chose to report only the
results for two values of T, .5 and 2, in the bump and twisted pear model. All estimators perform
extremely well; among locally quadratic estimators the 'average' version has the smallest MSE in
most cases, while among kernel estimators the 'all in' version is the best. Surprisingly, overall the
kernel estimators perform slightly better.

Further, in Table 4, we compare the median value of the four regression-smoothers pi(z§) with the
true value p(zX), and we give the Monte-Carlo bias and mean squared error of i(z,), q = .25, .5,
and .75, for our three models under random design. (Again we retain only two values of r, .5 and
2.) From Table 4 it appears that the estimators don't perform well in the bump model at X.5 = .5,
with the kernel estimate turning in the poorest performance. This can be explained by the 'wild'
behaviour of p(x) around z = .5: at x = .495 the regression function has a maximum (the 'bump'),
while at x = .5707 its second derivative is 0, and the function changes concavity. This suggests that
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both estimation and choice of an optimal bandwith at x = .5 might require more data. Therefore,
we decided to repeat the procedure with ms = 200 samples of increased sample size, n = 400. With
this new sample size, both bias and MSE were reduced in an important way (from half to a third)
but we decided to report here only the results based on the same sample size for all three models.

8. A Data Example.

Finally we illustrated the behaviour of the neighbourhood correlation ratio estimates on a real
data set. The data are from the Family Expenditure Survey, 1968-1983; scatter plots of this data
set can be found in Hairdle, 1991, Figure 2.1 and Figure 2.2. The data are: (X, Y), where Y is the
expenditure for food, and X is the net income of n = 7125 households. By inspecting the scatter
plots one can infer that this data set is a typical example of a 'twisted pear' model data set. In our
estimation we used the same kernel as in the simulation study, and we computed the six estimators
presented in Section 7, at m = 100 grid points X(i,),j = 1,...,100 with lj = [(j/101)n]. (x(k)
denotes the ordered k-th observation). The results for the 'all-in', 'one-out', and 'average' vesions
were extremely close (at least two decimals, except for the last few grid points in the right tail).
Therefore, in Figure 8.1, we plotted the 'all-in' version only, kernel and locally quadratic. The curves
exhibit the expected behaviour, as they decrease steadily from 85% to very low values. In Table 5
we give the local ANOVA decomposition proposed in Section 3, at six selected quantiles of this data
set, i.e. at z.1, x.25, X.5, Z.75, and x.Z. We also give the corresponding values of i2(x), here labeled
as the local R-squared.

9. Appendix.
In the first half of this section we present some details of the derivation of ,72 (T) = q2A,h() for

the three models considered in Section 5.

1. Quadratic model.
Let h < 1/2, and take h < z < 1 - h; then: a2,(x) = (4/45)h4 + (4/3)(x - 1/2)2h2, rh(X) =

12(h2/3), while the expected conditional variance is constant, u2IX h(Z) = '2. Thus we obtain:

2(X) 15(x- 1/2)2 + h2 60 2 - 60z + 4h2 + 15
77h 15(z - 1/2)2 + h2 + 45u2 = 60x2- 60x + 4h2 + 15 + 180a2

For 0 < z < h, r2(z) - (x + h)2 and the neighbourhood correlation ratio is

2 16(x + h)2 - 30(x + h) + 15
7h(X --

16(x + h)2- 30(z + h) + 15 + 180o2

Similar computing gives rh2(x) = (1 - z+ h)2 and

2 = 16(1-x+h)2-30(1-z+h)+157h( ) 16(1-z+ h)2-30(1-x + h) + 15 + 180o2
for 1 > x > (1 - h). We can easily check that the function vh(X) is continuous on [0,1]; it attains
its maximum at 2 = 0,1, while its minimum value is h2/(h2 + 450!2), and is attained at z = 1/2.
2. Bump model.

Like in the previous example, for h < z < (1- h), r2(x) = 12(h12/3), and the expected conditional
variance is constant, 4YIX,h(X) = u2. We need to compute

Vh = Var [-5(X- 1/2) + 5e-100(X-1/2)21X e [z-h, z + h]] (9.1)

Let z = 10(x- 1/2) and 6 = 10h; then, ifX is uniform U[z - h, x+ h], the variable Z = 10(X - 1/2)
is uniform U[z - 6, z + 6], and (9.1) can be obtained from the simpler formula:

V6 = 25Var (-Z10 + eZ) =25 {VarZ/100-(1/5)E[(Z-EZ)e-Z +Var . (9.2)
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In order to compute V6 we need to consider three cases: -(5 -6) S z < (5 - 6), z - 6 < -5, and
z +6 > 5.
We obtain, if-(5-6) < z < (5-6) (or (z + 6) S 5, (z-6) > -5):

62 5 _,2.i) -zbV6=jj.. 46 -] +2e-/W7{Zt(V(z + 6)) - Z(V2(z - 6))
(9.3)

+25 {$46{t(2(z + 6)) - *(2(z - 6))} - 4{-(Vj(z + 6)) - j(/(z -)2

In a similar way we obtain, when z is such that z -6 < -5:

j6 ( 612 54 2(z + b + 5) [e

r2zt ( ( )) ( }(9.4)
+ 25 2( +6 + 5) {N(2(z + 6)) - $(-10)}

(z + 6+ 5)2 \W(V(z + 6))-

and for z such that z + 6 > 5:

- (5- + b)2 5 [ 2 1e2V6 =
12 .4 2(5- z +6) - 2]

5 z -6 + 5 V7{r4(5V2-) - $(s/2(z - 6))}
vl'-7 (9.5)

+ 25 _1_{(10) - $(2(z -6))}12(5 - z +6b)
(5- :z+ 6)2 {'(5v2) - 4Z(V2(z -))

Finally, in V6 = f(z, 6), as given by (9.3), (9.4), and (9.5), replace z by 1O(x - 1/2) and 6 by lOh,
and obtain the variance Vh. The correlation ratio curve is i7(h) - Vh/ (Vh + r,r2), and it is plotted
in Figure (5.2), together with p2(x), p2 and i2.

3. Twisted pear model
We compute first

Vh = Var (p(X)IX E [x - h, x + h]) = a2e2bVar [Xe-cx IX E [x- h, x + h]] . (9.6)

Let Ph be the probability ofX E [x - h, x + h], i.e.

Ph = e(tP)2/242dz = -J s+ - - - h);

further let F = e(&cP+C2a2/2), Z = Xe-eX, and w = -p. We obtain:

E [ZIX E [z - h, z + h]] = { [e-(w+cUah)2/272 -

+ co}2) + ) -

h)
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and also:

IFrZ2IXrhh11 F2'c202[Z2IXE[Z-h, +h]] Ph x

{ ° [(w + 2ca2 - h)e-(w+2c-h)2/2e _ (w + 2co2 + h)e(

+ (u2 + (p-2Co22)2) [z(W+2C2 +h ) (w +2co2-h)]

+ 2o(p -2co2) -(w+2c2-h)2/22 _- e-(w+2cdf2+h)2/2q2] }

The expected conditional variance, a2r2E ( + AX)2, is:

Dh = { t )(w+h ) +h))( +A)°]21

+ 2(7 + Ap)A [e-(w-h)2/202 _e-(w+h)2/202]

+ = [(w - h)e(w_h)2 /2V2 (w + h)e_(w+h)2/2J52

where w = -P.
Finally, the factor rh(x) is given by: (EX2 - (]EXh)2) /u2, where:

IEX Ph +
[e

(w-h)2/20,2e_ (w+h)2/202]}
and

EX2 = 2{Ph(2 +ji1) + [e(w-h)2/2a2 C(w+h)2/20,]

+ a [:(ws- h)e(w h)2/2e2 - (w + h)e-(w+h)2/2U2] }

The neighbourhood correlation ratio is given by vi2(x) = Vh/ (Vh + rh2Dh) . Figure (5.3) gives v7(X)
for a = .1, b = 5, c = .5, =1,A=.5, p=1.2, u = 1/3 and r2 = 1/4, 1, 4, 16 .

In the second part of this section we give the proofs of Proposition 6.2, Lemma 6.3, and Proposition
6.4.
Proof of Proposition 6.2. Consider the function of t, g(t) = t/[t + rh2(1 - t)], with derivative:
g'(t) hr2/[t + r(1- t)]2. Since rh is fixed, CsAh = g(CO,h), and W'CA,h = g(CO,h). By Lemma
6.1, the estimator VjCO,h is asymptotically normal. The result now follows by applying the delta
method (e.g. see Bickel and Doksum, 1991) to

vn- [g(q2 O,h) - g(172O,h)] *

Proof of Lemma 6.3. Consider the function h(t, u, v) = t/uv at a,b, c, where:
n n n

a =Z (Xi-;)2Wi/nZ (Xi-zh)2 Wi/n- Wi (h- Xh) /n="a,-a2 ,
i=1 i=l i=l
n n

b= (X,-7)2/n= (Xi-EX)2 /n-(EX-_)2 /n = b-b2-
n

c=E Wi/n,
t=1
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and therefore a/bc= r2. Let

a=~{ " [Xi-zh]2 Wi} 2
n

b=E{'=1[X'-EX]}2 4
b =E

n

C =IE w5} Ph,n

and compute the Taylor expansion of the function h(t, u, v) around (a, b, c), i.e. at the point where
h(a, b, c) =a/bc = t,2. This gives

a a 1 - \a a

~ = b + (a- a) ( b2 -(-C 2

b+ 1 2b- b2 ac_

where a, b, and c are random and such that a bPh4h, b - 4, and 3 P Ph. The term

/;r-a2s +b2-i] - 1wii=W(zh h)21+6(EXT2 a-

of the expansion (9.7) can be incorporated into the op(l) term. The variables

V(a1-a), (ia) -b) , and / (c-c),

are asymptotically normal by the central limit theorem; therefore they are bounded in probability.
Hence, if wve replace a, 6, and c with their limiting values, the difference beteween this new value of
o/ui (Th- T ,)and the one given by (9.7) is op(l). We obtain:

7.h2_h)=*oji{Z(xi-h)2wi..nPh4,h} Pi2

- ;; (X,-- X -n } 4Ph (9.8)

o/ii~ ~ b{ b2Ph}a + p1

The result follows after reducing the terms and letting T, =h o /X2 in (9.8). o
Proof of Proposition 6.4. Consider the function: g(u, v) = u/[u + (1-u)v], with partial deriva-
tives: eg/ou= v/[u (1- )v]2, anog/odv =-u(1- u)/[u+ (1- u)v]2. The bivaiate distribution
of

- [r'a,-a(C,hVn-1- b, an-Xf- -
-ctT)

is asymptotically bivariate normal, because, for any real At, 7,

[A V (h2a ,hth CO,h)+g7eb (97 i Th2)] =
nnn-l/2Z {A(1 - r 02h) [e? _uX]W ,+ 7TR [dw-f,-(Wi-Ph)/Ph] } + op(l),
i=l
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by Lemmas 6.1 and 6.3. The result follows from standard asymptotic theory (e.g. Serfling, 1980),
applied to the transformation

V7 ['7CA,h 72CA,h] = V/i; [ - g(qCoh, Th)] . °
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Tables

In all tables Ke stands for 'kernel', and LQ stands for 'locally quadratic'. All results are for 200
Monte-Carlo samples of size 200 each, from the indicated model.

TABLE 1: MISE summary statistics for the six estimates of
the neighbourhood correlation ratio with h = .3.

TABLE 1A: Quadratic model with r = .1.

Fixed design
ESTIMATOR MEAN MEDIAN SD IQR
Ke: all in 0.006820 0.005468 0.005061 0.005087
Ke: one out 0.010802 0.008172 0.009658 0.010597
Ke: average 0.008193 0.006035 0.006857 0.007105
LQ: al in 0.006706 0.005317 0.005197 0.005116
LQ: one out 0.011954 0.008589 0.010828 0.010188
LQ: average 0.007678 0.005620 0.006503 0.006062

Random design
ESTIMATOR MEAN MEDIAN SD IQR
Ke: all in 0.007163 0.005504 0.005376 0.006877
Ke: one out 0.011108 0.007715 0.010886 0.007597
Ke: average 0.008499 0.006276 0.007661 0.006214
LQ: all in 0.007060 0.005846 0.004657 0.005750
LQ: one out 0.012167 0.007940 0.012442 0.009188
LQ: average 0.007939 0.005766 0.007139 0.006454

TABLE 1B: Bump model with 4 values of T.

T = .5, Fixed design
ESTIMATOR MEAN MEDIAN SD IQR
Ke: all in 0.013658 0.011456 0.008729 0.012211
Ke: one out 0.019975 0.017133 0.012016 0.017717
Ke: average 0.016642 0.014189 0.010284 0.014901
LQ: all in 0.000375 0.000228 0.000398 0.000336
LQ: one out 0.000907 0.000510 0.001140 0.000915
LQ: average 0.000587 0.000313 0.000717 0.000561

T = .5, Random design
ESTIMATOR MEAN MEDIAN SD IQR
Ke: all in 0.007875 0.006896 0.004768 0.006013
Ke: one out 0.013901 0.012023 0.008742 0.013351
Ke: average 0.009256 0.007869 0.005979 0.008782
LQ: all in 0.007269 0.007074 0.003900 0.005097
LQ: one out 0.017588 0.016199 0.010054 0.013568
LQ: average 0.009651 0.008743 0.005684 0.007175
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T = 1, Fixed design
ESTIMATOR MEAN MEDIAN SD IQR
Ke: all in 0.015565 0.011495 0.011768 0.017106
Ke: one out 0.027955 0.027405 0.016031 0.026048
Ke: average 0.020839 0.018702 0.013387 0.021911
LQ: all in 0.003716 0.002457 0.004380 0.002801
LQ: one out 0.011462 0.006355 0.012590 0.013520
LQ: average 0.006283 0.003141 0.007544 0.006247

r = 1, Random design
ESTIMATOR MEAN MEDIAN SD IQR
Ke: al in 0.015763 0.011897 0.011743 0.015916
Ke: one out 0.026859 0.025767 0.015484 0.025794
Ke: average 0.020415 0.018048 0.012998 0.020522
LQ: all in 0.004203 0.002963 0.003887 0.003590
LQ: one out 0.012724 0.008165 0.011714 0.015798
LQ: average 0.007016 0.004392 0.006586 0.008116

r = 2, Fixed design
ESTIMATOR MEAN MEDIAN SD IQR
Ke: all in 0.013744 0.012537 0.007166 0.009806
Ke: one out 0.024261 0.022548 0.012865 0.017658
Ke: average 0.015887 0.014367 0.008467 0.011121
LQ: all in 0.011728 0.010058 0.007543 0.009680
LQ: one out 0.018528 0.017188 0.009591 0.012744
LQ: average 0.010256 0.008661 0.006247 0.007743

r = 2, Random design
ESTIMATOR MEAN MEDIAN SD IQR
Ke: all in 0.014765 0.012636 0.008797 0.009437
Ke: one out 0.026038 0.023061 0.015036 0.018043
Ke: average 0.017162 0.014840 0.014047 0.011644
LQ: all in 0.011530 0.009427 0.006762 0.008259
LQ: one out 0.018903 0.016971 0.010474 0.012619
LQ: average 0.010237 0.008618 0.006415 0.007494

r = 4, Fixed design
ESTIMATOR MEAN MEDIAN SD IQR
Ke: all in 0.014793 0.011429 0.0116792 0.011263
Ke: one out 0.032218 0.027173 0.021286 0.028196
Ke: average 0.016158 0.013998 0.010333 0.011391
LQ: all in 0.023829 0.018587 0.016436 0.019553
LQ: one out 0.024995 0.019356 0.018167 0.023686
LQ: average 0.015431 0.012828 0.010547 0.013190

r = 4, Random design
ESTIMATOR MEAN MEDIAN SD IQR
Ke: all in 0.015844 0.013029 0.010491 0.013578
Ke: one out 0.036157 0.029098 0.025788 0.032586
Ke: average 0.018093 0.015806 0.011661 0.013785
LQ: all in 0.021341 0.017443 0.014352 0.018423
LQ: one out 0.029426 0.023928 0.022321 0.026688
LQ: average 0.016163 |0.014216 0.010167 | 0.012603
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TABLE 1C: Twisted pear model with 4 values of r: Random design

T= .5

ESTIMATOR MEAN MEDIAN SD IQR
Ke: all in 0.007875 0.006896 0.004768 0.006013
Ke: one out 0.013901 0.012023 0.008742 0.013351
Ke: average 0.009257 0.007869 0.005979 0.008782
LQ: all in 0.007269 0.007074 0.003900 0.005097
LQ: one out 0.017588 0.016199 0.010053 0.013568
LQ: average 0.009651 0.008743 0.005684 0.007175

-r= I
ESTIMATOR MEAN MEDIAN SD IQR
Ke: allin 0.062117 0.061266 0.0193193 0.026910
Ke: one out 0.089327 0.088774 0.025569 0.036980
Ke: average 0.073185 0.073802 0.021693 0.031833
LQ: all in 0.052484 0.051717 0.0175540 0.024908
LQ: one out 0.097796 0.096689 0.030221 0.040760
LQ: average 0.070997 0.070212 0.022632 0.031515

Tr = 2
ESTIMATOR MEAN MEDIAN SD IQR
Ke: all in 0.205789 0.201882 0.042932 0.057747
Ke: one out 0.272224 0.267878 0.051848 0.079549
Ke: average 0.234277 0.229982 0.045733 0.067330
LQ: all in 0.177301 0.176174 0.039877 0.055587
LQ: one out 0.292462 0.290384 0.055562 0.081236
LQ: average 0.227598 0.228066 0.045644 0.065135

t= 4
ESTIMATOR MEAN MEDIAN SD IQR
Ke: all in 0.452642 0.456105 0.075092 0.099985
Ke: one out 0.561215 0.559499 0.080929 0.105508
Ke: average 0.498667 0.501966 0.071951 0.095692
LQ: all in 0.386171 0.388151 0.074234 0.101836
LQ: one out 0.585855 0.586533 0.085743 0.119263
LQ: average 0.474100 0.480792 0.072205 0.104879
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TABLE 2: Optimal bandwith for estimation at selected quantiles;
Q-1, Q-3 stand for first, third quartile respectively.

Kernel estimate Locally quadratic estimate
Quantile Q-1 Q-3 Median Q-1 | Q-3 Medin
Quadratic model, r = .1

X.25 = .25 0.11 0.24 0.18 0.23 0.30 0.30
z.50 = .50 0.13 0.30 0.27 0.14 0.30 0.27
X.75 = .75 J 0.12 0.21 0.16 0.21 0.30 0.30
Bump model, t = .5

F.25 = .25 0.06 0.08 0.06 0.11 0.14 0.13
X.50 = .50 0.06 0.06 0.06 0.10 0.13 0.12
X.n = .75 J 0.06 0.07 0.06 0.11 j 0.14 0.13
Bump model, r = 1

x.25 = .25 0.06 0.10 0.08 0.13 0.18 0.15
T.5o = .50 0.06 0.09 0.07 0.13 0.17 0.15
Z.75 = .75 0.07 0.10 0.08 0.13 0.175 0.15
Bump model, r = 2
X.25= .25 0.08 0.13 0.105 0.18 0.22 1 0.18
Z.50= .50 0.07 0.11 0.095 0.14 0.21 0.18
*.75 = .75 1 0.08 0.13 0.11 0.15 0.23 1 0.20
Bump model, T = 4

Z.25 =.25 0.08 0.27 0.125 0.10 0.23 0.16
Z.S0= .50 0.09 0.16 0.13 0.14 j 0.27 0.21
x.75 =.75 0.09 0.185 0.14 0.15 0.29 0.23
Twisted pear model, r = .5
Z.25= .975 0.15 0.30 0.255 0.25 1 0.30 0.30
X.50= 1.2 0.15 0.30 0.25 0.245 0.30 0.30
Z.75= 1.425 0.20 0.30 j 0.30 0.26 j 0.30 0.30
Twisted pear model, r = 1
X.25=.975 1 0.17 1 0.30 0.26 1 0.25 0.30 0.30
x.50 = 1.2 0.17 0.30 0.29 0.27 0.30 0.30
Z75 = 1.425 1 0.215 1 0.30 1 0.30 1 0.23 0.30 0.30
Twisted pear model, T = 2

Z.25 =.975 0.155 0.30 0.30 0.21 0.30 0.30
=.50=1.2 0.20 0.30 0.30 0.24 0.30 0.30

Z.75 =1.425 1 0.145 1 0.30 0.30 j 0.13 0.30 0.30
Twisted pear model, r = 4
Z.25= .975 1 0.15 1 0.30 0.30 1 0.16 0.30 0.30
.50 =1.2 . 0.125 0.28 0.30 0.13 0.30 0.30

X.75= 1.425 j 0.15 j 0.30 0.30 0.16 0.30 0.30
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TABLE 3: Summary statistics for the six estimators of
,72(z) at selected quantiles, when locally optimal bandwith is used.

TABLE 3A: Quadratic model with r = .1: Random design.

2 = Z.25 = .25, 2(z) = .649805
Estimator QUARTILE-i1 QUARTILE-3 MEDIAN MSE
Ke: all in 0.620330 0.718005 0.670615 0.006062
Ke: one out 0.619852 0.717863 0.670573 0.006081
Ke: average 0.595503 0.697033 0.646115 0.006744
LQ: all in 0.631910 0.733443 0.688271 0.007038
LQ: one out 0.548988 0.656359 0.603542 0.011895
LQ: average 0.592358 0.693311 0.644465 0.007297

C = :1.5 = .5, 72()= .1667
Estimator QUARTILE-1 QUARTILE-3 MEDIAN MSE
Ke: all in 0.153575 0.298198 0.225532 0.014882
Ke: one out 0.152426 0.298077 0.224311 0.014906
Ke: average 0.120015 0.248605 0.177665 0.008488
LQ: all in 0.172991 0.336235 0.252178 0.022494
LQ: one out 0.053080 0.106245 0.170541 0.008862
LQ: average 0.123571 0.249546 0.182825 0.009102

X = 2.75 = .75, 2(z) = .649805
Estimator QUARTILE-1 QUARTILE-3 MEDIAN MSE
Ke: all in 0.616723 0.716867 0.676719 0.005636
Ke: one out 0.615946 0.716211 0.676538 0.005927
Ke: average 0.587656 0.699163 0.654730 0.005953
LQ: all in 0.633267 0.731651 0.691290 0.006473
LQ: one out 0.539504 0.664291 0.613885 0.009621
LQ: average 0.586948 0.695748 0.654298 0.006129
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TABLE 3B: Bump model with 2 values of r: Random design.

T = .5, := X.25 = .25, Y2(X) = .952615
Estimator QUARTILE-1 QUARTILE-3 MEDIAN MSE
Ke: all in 0.948591 0. 959554 0.954086 0. 000063
Ke: one out 0.948661 0.959507 0.954113 0. 000063
Ke: average 0.944077 0.955714 0.950561 0. 000082
LQ: all in 0.953489 0.964414 0. 958695 0.000089
LQ: one out 0.937501 0.951074 0. 944906 0.000169
LQ: average 0.945289 0.957425 0.951739 0.000074

T = .5, x = .s= .5, n2(T) = .976808
Estimator QUARTILE-1 QUARTILE-3 MEDIAN MSE
Ke: all in 0.974633 0.980510 0.977695 0.000020
Ke: one out 0.974557 0.980508 0.977666 0.000020
Ke: average 0.972383 0.978831 0.976045 0.000025
LQ: all in 0.977591 0.983008 0.980278 0.000028
LQ: one out 0.970473 0.977536 0.974166 0.000040
LQ: average 0.974368 0.980260 0.977158 0.000023

r = .5, Z = X.75 = .75, ,72(z) =.988185
Estimator QUARTILE-1 QUARTILE-3 MEDIAN MSE
Ke: all in 0.987194 0.989505 0.988331 0.000004
Ke: one out 0.987196 0.989492 0.988329 0.000004
Ke: average 0.986065 0.988711 0.987365 0.000005
LQ: all in 0.988617 0.990844 0.989742 0.000005
LQ: one out 0.984531 0.987757 0.986332 0.000011
LQ: average 0.986659 0.989231 0.987982 0.000005

r = 2, z = x.25 = .25, 2(x) = .556832
Estimator QUARTILE-1 QUARTILE-3 MEDIAN MSE
Ke: all in 0.524709 0.642698 0.595189 0.010134
Ke: one out 0.525610 0.642100 0.597163 0.010166
Ke: average 0.469006 0.596860 0.536902 0.010622
LQ: all in 0.555089 0.677809 0.627567 0.011430
LQ: one out 0.375833 0.526572 0.442925 0.026233
LQ: average 0.470169 0.599776 0.536685 0.010950
T= 2, Z = x.= .5, i2(X) =.724696
Estimator QUARTILE-1 QUARTILE-3 MEDIAN MSE
Ke: all in 0.715064 0.771763 0.740538 0.002048
Ke: one out 0.714887 0.771286 0.740195 0.002054
Ke: average 0.688901 0.752252 0.719927 0.002072
LQ: all in 0.732619 0.790789 0.756172 0.002888
LQ: one out 0.652283 0.721688 0.686567 0.004150
LQ: average 0.690500 0.755195 0.723826 0.002022

T = 2,2 = Z.75 = .75, q2(X) = .839413
Estimator QUARTILE-i QUARTILE-3 MEDIAN MSE
Ke: all in 0.833328 0.867229 0.851011 0.000824
IKe: one out 0.833087 0.866744 0.850881 0.000824
|Ke: average 0.821083 0.856125 0.839553 0.000824
LQ: all in 0.843511 0.876334 0.860178 0.001121
LQ: one out 0.800431 0.838808 0.822420 0.001589
LQ: average 0.821693 0.858330 0.841531 0.000885
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TABLE 3C: Twisted pear model with 2 values of r: Random design

7 = .5, x = X.25,= .975, 2(T) = .973326
Estimator QUARTILE-1 QUARTILE-3 MEDIAN MSE
Ke: all in 0.970571 0.976462 0.973632 0.000023
Ke: one out 0.970488 0.976460 0.973626 0.000023
Ke: average 0.969576 0.975849 0.972819 0.000024
LQ: all in 0.971020 0.977257 0.974170 0.000023
LQ: one out 0.967865 0.974023 0.971082 0.000030
LQ: average 0.969471 0.975499 0.972706 0.000024

T = .5, x = x.5 = 1.2, , 2(x) = .945311
Estimator QUARTILE-i QUARTILE-3 MEDIAN MSE
Ke: all in 0.940070 0.953211 0.947849 0.000099
Ke: one out 0.940030 0.953101 0.947841 0.000096
Ke: average 0.938070 0.951774 0.946325 0.000103
LQ: all in 0.941430 0.954624 0.948801 0.000102
LQ: one out 0.935639 0.949536 0.942671 0.000124
LQ: average 0.938372 0.951899 0. 946302 0.000103
r = .5, 2 = X.75 = 1.425, n2(T) = .879342
Estimator QUARTILE-1 QUARTILE-3 MEDIAN MSE
Ke: all in 0.865533 0.899470 0.883435 0.000731
Ke: one out 0.865775 0.899532 0.883706 0.000731
Ke: average 0.861500 0.894867 0.879486 0.000759
LQ: all in 0.867910 0.902555 0.885603 0.000759
LQ: one out 0.852365 0.886716 0.870807 0.000959
LQ: average 0.860937 0.895046 0.878844 0.000781

r = 2, X = 2'.25 = .975, 2(T) .695182
Estimator QUARTILE-1 QUARTILE-3 MEDIAN MSE
Ke: all in 0.673229 0.748298 0.708327 0.004248
Ke: one out 0.673074 0.748246 0.707982 0.004252
Ke: average 0.652206 0.728606 0.693450 0.004593
LQ: all in 0.680261 0.762735 0.719559 0.004539
LQ: one out 0.617446 0.705322 0.664079 0.006790
LQ: average 0.650424 0.730140 0.689360 0.004677
r = 2, x = X.5= 1.2,v 2(x) =.519307
Estimator QUARTILE-1 QUARTILE-3 MEDIAN MSE
Ke: all in 0.471991 0.606067 0.526045 0.010383
Ke: one out 0.472135 0.605244 0.527965 0.010410
Ke: average 0.441966 0.577655 0.495691 0.010584
LQ: all in 0.487593 0.625738 0.539032 0.012027
LQ: one out 0.386342 0.527479 0.449938 0.016534
LQ: average 0.436404 0.570841 0.493195 0.011246

r = 2, x =.75 = 1.425, v72(T) = .312947
Estimator QUARTILE-1 QUARTILE-3 MEDIAN MSE
Ke: all in 0.287338 0.470723 0.381243 0.019513
Ke: one out 0.288768 0.470245 0.381017 0.019513
Ke: average 0.234926 0.418430 0.329591 0.014379
LQ: all in 0.323809 0.496744 0.409405 0.025315
LQ: one out 0.127937 0.312330 0.232509 0.022270
LQ: average 0.233418 -0.409369 10.325515 0.014149
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TABLE 4: Summary statistics of the four regression estimates of p(x)
at selected quantiles, when locally optimal bandwith is used.

TABLE 4A: Quadratic model with r = .1: Random design.

Z = .25 = .25, p(z) = .0625
Ke: all in Ke: one out LQ: all in LQ: one out

BIAS 0.002698 0.003149 -0.001745 -0.001037
Ke: all in Ke: one out LQ: all in LQ: one out

MSE 0.000634 0.006404 0.000868 0.009191
Ke: all in Ke: one out LQ: all in LQ: one out

MEDIAN 0.062950 0.063860 0.059568 0.059760
: = C.50 = .50, P(z) = 0

Ke: all in Ke: one out LQ: all in LQ: one out
BIAS 0.011352 0.011661 0.003246 0.003715

Ke: all in Ke: one out LQ: all in LQ: one out
MSE 0.000370 0.000380 0.000598 0.000675

Ke: all in Ke: one out LQ: all in LQ: one out
MEDIAN 0.010827 0.011550 0.002141 0.001087

X = 2.75 = .75, p(z) = .0625
Ke: all in - Ke: one out LQ: all in LQ: one out

BIAS 0.003581 0.004051 -0.002930 -0.002372
Ke: all in Ke: one out LQ: all in LQ: one out

MSE 0.000644 0.000661 0.000916 0.000948
Ke: all in Ke: one out LQ: all in LQ: one out

MEDIAN 0.067264 0.067901 0.061420 0.615163
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TABLE 4B: Buimp model with 2 values of r: Random design.

= .5, x = X.25 = .25, p(x) = .759652
Ke: all in Ke: one out LQ: all in LQ: one out

BIAS 0.037695 0.035737 0.026432 0.021225
Ke: all in Ke: one out LQ: al in LQ: one out

MSE 0.028846 0.029800 0.039242 0.043323
Ke: all in Ke: one out LQ: all in LQ: one out

MEDIAN 0.783411 0.784975 0.789445 0.780731
T = .5, Z = Z.50 = .50, p(z) = 4.5

Ke: all in Ke: one out LQ: all in LQ: one out
BIAS -0.783227 -0.795204 -0.587847 -0.581178

Ke: all in Ke: one out LQ: all in LQ: one out
MSE 1.083560 1.101290 0.884804 0.883123

Ke: all in Ke: one out LQ: all in LQ: one out
MEDIAN 3.96858 3.93787 4.15900 4.15410
= .5, x = Z*75 = .75, p(z) = -1.74035

Ke: all in Ke: one out LQ: all in LQ: one out
BIAS 0.047746 0.052182 0.038087 0.045441

Ke: all in Ke: one out LQ: all in LQ: one out
MSE 0.070804 0.072878 0.073207 0.073207

Ke: all in Ke: one out LQ: all in LQ: one out
MEDIAN -1.73321 -1.73425 -1.73669 -1.73166

T = 2, z = Z.25 = .25, p(x) = .759652
Ke: all in Ke: one out LQ: all in LQ: one out

BIAS 0.107724 0.110239 0.078950 0.085267
Ke: all in Ke: one out LQ: all in LQ: one out

MSE 0.190957 0.184770 0.395841 0.389043
Ke: all in Ke: one out LQ: all in LQ: one out

MEDIAN 0.866162 0.865024 0.832112 0.807872
r = 2, X = x.50 = .50, p(x) = 1.3

Ke: all in Ke: one out LQ: all in LQ: one out
BIAS -0.935395 -0.961065 -0.508853 -0.517577

Ke: all in Ke: one out LQ: all in LQ: one out
MSE 1.285460 1.312490 0.867072 0.858126

Ke: all in Ke: one out LQ: all in LQ: one out
MEDIAN 3.59658 3.58374 4.09616 4.10285

t = 2, X = X,75 = .75, p(x) = -1.74035
Ke: all in Ke: one out LQ: all in LQ: one out

BIAS 0.031500 0.038765 -0.059067 -0.053529
Ke: all in Ke: one out LQ: all in LQ: one out

MSE 0.186880 0.199263 0.296997 0.337206
Ke: all in Ke: one out LQ: all in LQ: one out

MEDIAN -1.74458 -1.76303 -1.81677 -1.84207
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TABLE 4C: Twisted pear model with 2 values of r: Random design.

T = .5, = x =25 .975, p(z) = 8.88786
Ke: all in Ke: one out LQ: all in LQ: one out

BIAS 0.050393 0.050803 0.005239 0.004391
Ke: all in Ke: one out LQ: all in LQ: one out

MSE 0.026681 0.026972 0.021943 0.022458
Ke: all in Ke: one out LQ: all in LQ: one out

MEDIAN 8.94356 8.94599 8.90458 8.90946
r = .5, 2 = z.5 = 1.2, p(z) = 9.7741

Ke: all in Ke: one out LQ: all in LQ: one out
BIAS -0.019417 -0.019365 0.000504 0.000732

Ke: all in Ke: one out LQ: all in LQ: one out
MSE 0.011420 0.011636 0.011103 0.011720

Ke: all in Ke: one out LQ: aU in LQ: one out
MEDIAN 9.75436 9.75629 9.77467 9.77272

T = .5, X = X.75 = 1.425, p(x) = 10.3714
Ke: all in Ke: one out LQ: all in LQ: one out

BIAS -0.066721 -0.671324 -0.007192 -0.006001
Ke: all in Ke: one out LQ: all in LQ: one out

MSE 0.013544 0.013811 0.008750 0.009075
Ke: all in Ke: one out LQ: all in LQ: one out

MEDIAN 10.3097 10.3094 10.3666 10.3657

r = 2,X = .25 =.975,p() = 8.88786
Ke: all in Ke: one out LQ: all in LQ: one out

BIAS 0.053911 0.055003 0.008825 0.011237
Ke: all in Ke: one out LQ: all in LQ: one out

MSE 0.056107 0.053890 0.088241 0.083588
Ke: all in Ke: one out LQ: all in LQ: one out

MEDIAN 8.93182 8.95260 8.87963 8.73920
r = 2, x =x.50 = 1.2, p(z) = 9.7741

Ke: all in Ke: one out LQ: all in LQ: one out
BIAS -0.034182 -0.035970 -0.012300 -0.015072

Ke: all in Ke: one out LQ: all in LQ: one out
MSE 0.032061 0.032730 0.049492 0.054732

Ke: all in Ke: one out LQ: all in LQ: one out
MEDIAN 9.72745 9.73415 9.75888 9.76606

r = 2, X = X.75 = 1.425, p(z) = 10.3714
Ke: all in Ke: one out LQ: all in LQ: one out

BIAS -0.062849 -0.061583 j-0.004470 -0.000552
Ke: all in Ke: one out LQ: all in LQ: one out

MSE 0.047155 0.046177 0.075682 0.076252
Ke: all in Ke: one out LQ: all in LQ: one out

MEDIAN 10.2959 10.2882 | 10.3788 10.3626
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TABLE 5:
Local ANOVA decomposition and local R-squared at 6 selected quantiles,

for 4 estimates of the neighbourhood correlation ratio with h = ax.
The data set is Y = food expenditure versus X = income for n = 7125 households,
Family Expenditure Survey, 1968-1983. The variances are given in 106 units.

Zr = .

ESTIMATOR Explained Residual Total J Local R-sq.
Ke: all in 5.06 1.09 6.15 0.82
Ke: one out 5.05 1.09 6.15 0.82
LQ: all in 5.18 1.08 6.26 0.83
LQ: one out 5.16 1.08 6.24 0.83

X = 2.25

ESTIMATOR Explained Residual Total Local R-sq.
Ke: all in 6.56 2.12 8.68 0.76
Ke: one out 6.55 2.12 8.67 0.76
LQ: all in 6.66 2.09 8.76 0.76
LQ: one out 6.65 2.10 8.75 0.76

: = 2.5

ESTIMATOR Explained Residual Total Local R-sq.
Ke: all in 6.38 3.73 10.11 0.63
Ke: one out 6.37 3.73 10.10 0.63
LQ: all in 6.42 3.72 10.14 0.63
LQ: one out 6.40 3.72 10.12 0.63

X = X.75
ESTIMATOR Explained Residual Total Local R-sq.
Ke: all in 3.17 4.21 7.38 0.43
Ke: one out 3.15 4.22 7.36 0.43
LQ: all in 3.18 4.21 7.39 0.43
LQ: one out 3.13 4.22 7.35 0.43

x = x.9
ESTIMATOR Explained Residual Total Local R-sq.
Ke: all in 2.42 5.66 8.07 0.30
Ke: one out 2.35 5.67 8.02 0.29
LQ: all in 2.43 5.65 8.08 0.30
LQ: one out 2.32 5.68 8.00 0.29

26



0.2

I

I

I

I

i I
I :

--

CD CD

O P1) O A)
I I I I

UCf ) U) C4)
0.0D.0

OO%0Xfk

0
Cl,

0.0

CD
A)

.0

0.4 0.6 0.8

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

0

0

°) _

:06ob -

CSM

CD
Un

0

0.

A)

ID

C/)

.0
Q.r0)
cn
0

p)
CD

C)
0
CD

0)
Cl

a
_.

404

mo.

0
0t
CD

ow

a

CD

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I I

I
I
I
I
I
I
I



0.0 02 0.4 0.6 0.8 1.0

S D
0.0 0.2 0.4 0.6 0.8 1.0

!D ?I

I ~ ~ . ... ... .0. 0

.

I ' I

.0

0.0 0.2 0.4 0.6 0.8 1.0

0N).I

0

0
0) I

0

o

0

0

0

0

b

o

b)

I-
0

0

0.
C)
0-

E
C)
0
Cr
0

Ur)

.0

a

*IR
0
0

Co

C)

0

C)

0.

c

C)

ETO
0'

9

PC

.0

C0.0.
0

0

-0

-44

0.0 0.2 OA 0.6 0. 1.0

~~~~~.....................

...............I I\

I , \'I
LI ,I

5555,.

p .
0

C0

o

iD

tD

0

b

N%)

N;b

b

b

! : I'HI IIII
I I

as-

PZ
0

0.

V

cn

C)
C0

00.

CD

0CL

0

0
CD-4

0

C)

C).
Ln0~

C')
L0

C)
0

C)
0)
0

0

CD
II

CDn
U,
0
C,I
0.
0
A)
.)

n

CL

0.

Cr
P)

C)
0CD-
a
0

0
q

CD
a
0
co

0

CD-

T
I
I
I
I
I

-T-

I

I



C le
co

(Ni
c
0

0

0.

o

cI.

a
0

a0 0

8
0 i
0

O0 80 9-0 I'0 l0 00

cr CZ
If
cis~~~~~~~

'C4

'a

cmJ
N
co

Cs
0

c
0

0*0
2

0

cn.
n

a
CD0

0
*0

0
V.

U*a

o*
a

CCS

O 909T0 Pe0 [0 0T0

io t

q
C%

C

d

a

O3& 0 9T0 P0 z0 010

v-

11
(Id

I-
(i

C)

cn

0
Cu

Ct

60
I..
0

ci

~a0

C)
'a
U
0
-J

0
la

cn)
0*

n

-o

ci,

C')

cn,

Cu

0-

C0
0

C')

a

3:

0

*0

0
la

LCa
ci,

0)

its

Ul)

I;

.
cni
I-

0

0
'o
i)

0'

Cf)

Ca
00a0
la

0

I < II .- * I

I.I

I I
I I.

Y I
fi I

I I

I I
I I
I I
I I =C

O'L ro0 To P0 Z' 0'O

(a

-1 -

I
I
I
I
I
I

-v

I
I



a3)
a2

C.)(D

CL0

E

w

a

0o 8T0 9-0 V0 Ze0 0T0

A

a

X

()a)

10"I

0-

0

(D

CL0

*Ea
LU

w
Ct

0

-J

Cs

o

0 809T 0 *0 Z-0 0.0

A

a)rcn
0
E
0-o
CZ
c.

if
CZ

0

-C
I-

a)

0~
0

0)

C

w
a)

Q

*2)L

i._1
lL

0

co0

Ca

CS40

a

d
.16



0

co

I1d

to

0

0
oC

0-L 8W0 9'0 YO Z0 0,0

A

0

0co

C,)
aD

0.0g
a,C

ci
11
It

a

Cu

E
C,)w

'ac
O
0
-I

0o

CO

co

0

0- L 80 90T *0 3,0 . 0,0

A

(1)

C,)
0

co

co L 80J9 - - t

0.
I O VO l '0

cg
d

0
d

O0L 8'0 9-0 Y'O Z0 0.0

AA

(n)

:>

0

C)
0

a,

C

0

E
w

CD
a,

0.

a
a
oA

I: I
: I

CD
0

E
0

'a

a

Q

-o0

0.

._

E

02

0
'4-

U)

0

0.
0
U)
C

w
C%4N:
a,
i-.
.2cm

a,
2
Qa,
0L
0

a,

'l
3
w

(oCu
0

*.E

Ca
a,
n
r.
D

Y.

0

o

0

a"

0

A



a
V.:
co

0

a,
(o

0- L 8o 9T0 tO Z'O 0O0

A

O- L 8o 910 Y'O [O 0O0

U1)
a)

=
0
a)
0

*It

0
Cu

w

-j
O0 L 8'0 9,0 tVO Z-0 0'0

A
U)
a1)

az
0a)

V ;
CL

._

0O; >

Cu
CJ

a

0
-j

0. l 8T0 9T0 0 Z'0 00

~~~~~~~~~~~~~~~A

a)

0
_l-1

a)

0.

Cu
I-0
o

a)

Ca

._"
cn

t-

o

.,

',:

10~~~~~~

a
r0)4

0
E
0
'0

0I-

cu

a)

0a)
I-.

0
a)
s
o

0.

cn

0

2

w
c~i
Q

a)

0)CU

U._

. //

U)
a1)=
0
a1)
CL
0
a)
e
LU

LiI=if
4-

0

E
Un

w
LU
C.
a)

o

00

i
8
it

I
.s "'! 0
2 &a,a-,o 2

: I
: I

A



F
CIO
Cu

CL
x
w
So
0*

U.

o co 8 co

ui u~~~~~~~~~~~~~~~~~~~~~~~i

co

'3)" 0C38A
w~~~~~~~~~~~~~~~~~~~~~~~~.

0*

co8

O3 TO8 TO vO 3,0 010 0& 80 910 'O rO 010

Ul-ille U-1^g


