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ABSTRACT

Techniques developed for the study of time series, point processes

and marked point processes can suggest corresponding techniques for each

other and common techniques can be recognized. In this paper connec-

tions are drawn based on conceptual foundations, basic parameters, ana-

lyses, displays, algorithms, problems, models. The definitions and tech-

niques are brought out by specifc scientific problems. The emphasis is on

the single realization stationary case and on the use of second- and third-

order moments. The tool of stacking, at a particular period, is employed
in several of the examples.

1. INTRODUCTION

This paper is based on the Gold Medal Lecture presented at the Annual
Meeting of the Canadian Statistical Society 6-9 June, 1993 at Acadia Universi-
ty, Wolfville, Nova Scotia. The research was supported in part by the National
Science Foundation Grants DMS-9208683 and DMS-9300002.
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Parallel analyses are often available for time series, point processes

and marked point processes. An intention of this paper is to bring some

of these parallels out. Each topic can learn from the others.

A time series, Y, is a wiggly line, Y(t), -o<t<oo. A point process,

N, is a collection of times, Itj, j=0,i1l,2,. * }. (It will be assumed

that the t1 are distinct.) A marked point process, J, is a collection of

times and associated quantities, marks, {(j, Mj), j=O,±1l,±2,...}. There

are also hybrids such as sampled time series, {Y(rj), j = 0,±1,±2, **

Time series techniques and time series data are common. Point process

techniques appear less common, as do their analyses. Marked point pro-

cess studies appear the rarest, but are under substantial current develop-

ment, particularly for the spatial case. The paper is partly expository,

seeking to bring out connections amongst disparite processes, and partly a

presentation of new techniques and analyses. It will be seen that the

second- and third-order moments can prove to be useful tools with which

to grab onto scientific problems of interest. Estimates of such moments

and corresponding spectra are provided for some particular time series,

point process and marked point process data sets, specifically: ocean tides,

nerve cell firings and earthquake occurrences. Section 4 lists some ana-

lytic methods useful for connecting the processes. Section 5 describes two

current projects: analyzing the tracks of microtubules and the tracks of

seals. The computational details are given in the Appendix.

2. DISPLAYING PROCESS DATA

2.1 Tirne Series Displays

The time-series plot is the most frequently usedform of graphic design.
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Tufte (1983)

With these words Tufte makes clear the dramatic importance of

graphs of time series. He further presents a wide variety of specific exam-

ples. The book by Cleveland (1985) devotes a number of pages to tie

topic. Among the displays Cleveland mentions are: connected, symbol,

connected symbol and vertical line.

The top display of Figure 1 provides a shaded area graph for the sea

height at St. John, New Brunswick. The heights are measured from a par-

ticular level called chart datum. The series is for the Bay of Fundy,

whose tides are the largest in the world, reaching 17 meters in places.

General discussions of the analysis of tides may be found in Morettin and

de Mesquita (1978), Wood (1978) and Forrester (1983) for example.

Examination of Figure 1 suggests a phenomenon of frequency approx-

imately 2 cycles per day. The technique of stacking is convenient for exa-

mining such a circumstance. One places successive segments of a series

above each other. In the bottom display of Figure 1, 24 hour segments

have been stacked starting at times 0, 12, 24, 36, ... hrs. after midnight 31

December, 1990. The times of high tide are lagging slightly each day.

The lag is caused by the fact that it takes the earth approximately 24 hours

52 minutes to rotate from one place beneath the moon back to the same

place.

Stacking is an important display procedure in seismology, see Waters

(1978). It is particularly useful for series with strong periodicity. No data

reduction is involved, all the original values are graphed, hence there are

special opportunities for noticing unusual features. Stacking may be seen

as a graphical forn of the Buys-Ballot table, Buys-Ballot (1847). Suppose
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one has data Y(t), t = 0, 1, 2, * * * . In the Buys-Ballot table, to study

period P, one creates a matrix witi entry Y((i- l)P+j) in row i, column

j. Typically the columns means are computed and examined. A related

table was used in Laplace (1825) to study the relationship of tides to

equinoctal syzygies. The radar memory tube, that was so important in

World War II, see Watson-Watt (1946), can be thought of as a variant.

Whittaker and Robinson (1944) and Brillinger (1974) suggest fonral test

procedures based on Buys-Ballot table values.

2.2 Point Process Displays

There are several common methods for displaying point process data.

These include: points on a line, step function and lines on a line.

Figure 2 presents point process displays derived from some neurophy-

siological data. The top display is a recorded continuous time signal, the

fluctuating voltage within a neuron. Spikes are seen to recur. These

correspond to the times at which the neuron is firing and may be thought

of as a realization of a point process. The middle display is a step func-

tion increasing by 1 at each firing time. The bottom display employs vert-

ical lines to represent the firing times. The data are from the sea hare and

their collection is described in Bryant et al. (1973).

Figure 3 also presents spike train data, this for another neuron of the

sea hare. The top display shows firing occurring in bursts. In order to

better understand the structure of this data, a stacked plot is prepared.
This is the bottom display of the figure. Each line starts with the time of

the first spike of a burst. The other spikes of the burst then follow across

the line. The display, in this case, brings out some nonstationarity in the

data - the bursts are decreasing slowly in duration.
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Cox and Lewis (1964), page 14, plot the column means of a Buys-

Ballot table for point process data. A test procedure is given in Brilhinger

(1974).

2.3 Hybrid Process Displays

In the case that the marks, of a marked point process, are real-valued,

the process is known as a jump process or cumulative process. The reali-

zations may then be represented by lines along a line. An example is the

top display of Figure 4. This graphs the times and magnitudes of earth-

quakes of magnitude 5.0 or greater in California, from 1932 to mid 1992.

A second method of display is via a cumulative function, summing up

the mark values to time t. The bottom display presents such a plot for a

quantity proportional to the amount of energy released in an earthquake

exp{M ), M the magnitude. The dashed line is provided to allow some

assessment of the stationarity of the process. A third plotting procedure,

suggested by Bartlett (1967), is to plot fixed length lines with slopes

related to the mark values.

Figure 5 presents the earthquake data stacked by year. The times are

the centers of the points. The circles relate to the size of the event, with

the scale indicated. Various researchers have conjectured that a yearly

periodicity exists in the occurrence of earthquakes, see Davison (1928) and

Katsumura (1985) for example. Figure 5 does not suggest the presence of

such an effect.

3. STATIONARY INCREMENT PROCESSES

In this section some specific processes are discussed. In the cases

emphasized each is a process wi'th stationary increments.



- 6 -

X (.) is called a process with stationary increments if the following
holds: X(t), -oo<t<oo, t is a random process such that the joint distribu-

tion of the increments X(t+bl,)-X(t+al),, X(t+bk)-X(t+ak) does

not depend on t for any al < b1, * * , ak < bk and k =1, 2, 3,

The basic ideas are due to Kolmogorov and may be found pp. 551-559 in

Doob (1953). There exists a statistical calculus for such processes, see

Brillinger (1972).

A stationary time series Y corresponds to a stationary increment pro-

cess, X, via

t

X(t) = f Y(u) du (3.1)
0

A point process, N, corresponds to a stationary increment process in

which all the increments N(t+b)-N(t+a), a < b, are non-negative
integers specifically, N(t+b )-N(t+a) = # ftj I t+a <j<t.+b }. One can

write

t

X(t) =dN(u)
0

A marked point process, J, with real-valued marks, may be represented
via JI(t) = M and there is the correspondence

t

X(t) =dJ(u)
0

The case of principal concern of the paper will be the stationary one.

Then E {dKX(t)) = cxdt with Cx the mean. For simplicity suppose CX to

be 0. One then defines the autocovariance measure, Cxx, via

E(dX(t+u)dX(t) =dCxx(u)dt (3.2)
and the third cumulant measure, Cxxx, via
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E Id(t-+u)dX(t+v)dX(t)} =dCx(u,v)dt (3.3)
The process, X, has a spectral representation

itXX(t)=|ex Zx (3.4)
with Z a random function such that

E {dZ (X)dZ (p)} = 8(X+g)fx (X)d d (3.5)
and

E {dZ (X)dZ (p)dZ (v) I = 8(X+g+v)fx (%I)d Xdv (3.6)
8(.) being the Dirac delta function and fxx, fxxx the power spectrum and

bispectrum respectively. The spectra themselves may be generalized func-

tions containing Dirac deltas.

3.1 The Time Series Case

Consider a zero mean stationary time series Y(t), -oo<t<co. Follow-

ing (3.1-3.3) the autocovariance function is given by

E{Y(t+u)Y(t)} = d Cxx(u) = cyy(u) (3.7)

and the third-order cumulant function by

E{Y(t+u)Y(t+v)Y(t)) = a -Cyxxy(u,v) = c (u,v) (3.8)
Au av

The spectral representation is

Y(t) = J eitdZ(X)
with Z satisfying (3.5) and (3.6).

The autocovariance function (3.7) provides a measure of the depen-

dence of values of the series lag u time units apart. An estimate is pro-

vided in Figure 6 for the St. John tidal series. The data are for the time

period 1 January to 31 March, 1991. There are T = 2160 observations in

all. The top left panel is an initial segment of the series. The autocovari-
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ance estimate here shows strong periodicity. The power spectrum of (3.5)

is particularly useful in making inferences concerning periodicities and

developing predictors. An estimate of a flattened version is given in the

bottom display of Figure 6. Peaks are seen to stand out. The presence of

periodic components in tidal series is basic and ascribed to the effects of

the moon and the sun. A pertinent model is provided by

K
Y(t) =g+ PkCos (Okt +4k) + £(t) (3.9)

k=1
with the Ok uniform, Ok, 41, k.l, independent and with £ a stationary

noise series with smooth spectrum f ex. The power spectrum of Y is then

2

fw(x) = E -4[8(x-Ok) + 8(X+cOk)] + f (k) (3.10)
k4

If for example o3 = w1+2, 03 = 01+92' then the bispectrum has a term

8PlP2P38(XO-l)8(-O)2) (3.11)

Wood (1978) lists various estimates of tidal frequencies. The model

(3.9) was fit to the St. John data by least squares employing the K = 26

frequencies of the final column of Figure 43 Wood (1978). The right

hand column of Figure 6 graphs the results. The residuals are much

smaller. (Their standard error is .165 meters. The original standard error

was 2.192 m.) The autocovariance estimate of the residuals and a flattened

power spectrum are also given. Some things remain to be accounted for,

there remain clear peaks with structure about them.

In nonGaussian circumstances and situations where a basic process

has been transformed in a nonlinear fashion, the third order cumulant

function, cm(u,v), and bispectrum, fyyy(X,g), of (3.8) and (3.6) are of

importance. For example squaring pIcos(co4t+41) + p2cos(ca2t+42) of

(3.9) leads to p3Cos(co3tS33) with o3 = j+o.~2 and 03 = 01+02 and the
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bispectrum term (3.11).

Figure 7 top presents estimates of the third moment function (3.8) for
the original series and for the residuals from the least squares fit. Positive

contours are graphed with a solid line, negative with a dashed line. The

third-order cumulant estimate of the original data suggests periodicity and

asymmetry. The structure in the case of the residuals is not apparent. The

bottom displays of the figure provides estimates of

min(p /f e(wt), p2 /If (o2) p3/Ife(o)} (3.12)

as a function Of (Xh, c)2), where 03 = (014-I2 This parameter is meant to

examine the hypothesis that hannonic components at frequencies
(o 2 o3lo2 are all present, see Brillinger (1980). Further details are in

the Appendix. Graphed are the values significant at the 1% level. There

is clear structure present in the original series and much of the structure

remains in the residuals. There are strong suggestions of nonlinear
interactions.

Cartwright (1969) discusses the generation of nonlinear interactons in

tidal series. Marone and de Mesquita (1993) are concerned with estimat-

ing the bispectrum removing lower order information.

3.2 The Point Process Case

Suppose that the point process N is described via times

x, j = 0, ±1, ±2, * A step function description is provided by
N(t) = # j I 0 < .j< t ). There are other useful representations for a

point process. A representation that suggests immediate extensions of

corresponding time series procedures is

Y(t) = d (t) = 8(t-5) (3.13)
dt



with dN (t)ldt a symbolic derivative of the process. This is an extension

of the line plot of Figure 2 with the lines now having infinite height.

From the representation (3.13) one sees, for example, that a linear filtering

is given by

a (t-u )Y(u )du = a (t-tj)
with a (.) the impulse response of the filter. It can be convenient to con-

sider a point process as a function of intervals, with N (I) counting the

number of points in the interval 1. Then one has

N(I)= 1 =dN(t)
'r1e I I

and N is seen to be a counting measure on the line.

One basic parameter of a stationary point process is the rate, PN,
given by

Prob {dN(t) = 11 = pNdt = E{dV(t))
for small dt. A second is the autointensity function, hNN (u ) given by

Prob(dN(t+u)= 1 I point at t) =hNN(u)du, u .0 (3.14)
The autointensity is a more primitive concept than an autocovariance being

based on a probability. It is a direct measure of the chance of a further

point occuring u time units after an existing point.

Figure 8 presents an estimate hNN(u) for each of two data sets. The

top panels give illustrative segments of the data. The left hand column

corresponds to a sea hare neuron firing regularly. The right column refers

to the bursting neuron of Figure 3. The middle panels give the estimated

autointensities. Complex periodic behavior is apparent in the pacemaker
case. The autointensity estimate in the bursting case has a broad peak at a

lag of about 25 seconds, presumably corresponding to the spacings of the
bursts. The bottom panels provide estimates of the power spectra, fNN(),
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and bring out periodicities in an alternate fashion. The pacemaker firing is

seen to have a complex structure not readily apparent in the basic data.

The firing in the bursting case is seen to have a structure suggesting har-

monics in the frequency domain.

The autocovariance density of a stationary point process, N, at lag u,

qNN(u ), is given by

cov {dN(t+u ), dAV(t)) = [8(u )pN + qNN(u )]dtdu
while the third-order cumulant density is given by

E{[dN(t+ul)-pNdt] [dN(t+2)-pNdt] [dN(t)-PNdt]} =

qNNN(u 1,U2)dtdu du2 (3.15)
for u 1, u2, 0 distinct.

Estirnates of (3.15) for the pacemaker and bursting cases are given in

Figure 9, top row. Positive contours are graphed with a solid line, nega-

tive ones with a dashed line. The periodic behaviors of Figure 8 show

themselves in an altemate form. The bottom row of Figure 9 gives an

estimate of the quantity (3.12), graphing points significant at the 1% level.

There is a cluster at (1.40,.95) in the pacemaker case that might not have

been suspected. The sum frequency, 2.35, is apparent in the peridogram.

The burst statistic likewise shows some interesting structure.

3.3 Hybrid Cases

Conlsider a marked point process case with real-valued marks. Reali-

zations of the process have the form {(Ij, Mj), j = O, ±1, ±2, * * * J. A

representation for the process, as a generalized ordinary time series, is pro-

vided by

dJ(t)Y(O dt m ( ,j
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As a function of intervals J may be written

J(I)= Mj
£j I

and is seen to correspond to a discrete measure on the line. The autoco-

variance density at lag u , qNN (u ), of the process is given by

cov {dJ(t+u), dJ(t)) = [&(u)Cj + cJj(u)]dtdu
A hybrid process is provided by a sampled ordinary time series,

{Y(rj )}. This can be represented via d (t) = Y(t)dN (t), N being the pro-

cess of sampling times. This J will have stationary increments when, for

example, the processes Y and N are stationary and independent. A

discrete time series corresponds to j= j. The spectral representation of

J involves

dZj (X) = JdZy(Xg)dZN (9)
a relationship from which expressions for various spectra may be obtained.

Figure 10 presents the initial stretch of the California earthquake data

and of the corresponding point process of times. The second row left,

presents an estimate of cjj (u). Below is an estimate of the power spec-

trum, fjj. Approximate 95% marginal confidence intervals are indicated.

No special structure is apparent.

An estimate of the tiird-order cumulant density is graphed in the top

left of Figure 1 1. The bispectrum fiii is given by

cum (dZj,(X), dZj(g), dZj(v)) = B(X+J+v)fj,j(X, p)dkd dv
and the bicoherence by

lfj, (X, p) 12 / f, (X,)fjj(.)fjj(X+j±)
Values significantly different from 0 at the 1% level are graphed in the

bottom left of Figure 1 1.
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A question that arises when dealing with marked point processes is:

are the series of marks, {M1 I and the inherent point process, N -{1j },

independent of each other? This question may be addressed via a second-

order moment analysis.

First some definitions pertinent to the bivariate case. The crosscovari-

ance density at lag u, CjN (u), between the jump process J and its inherent

point process, N, is given by

cov {dJ(t+u), dN)}(t = cJN(u)dtdu
for u . 0. Suppose that the marks Mj= Y(j) correspond to sampled

values of a zero mean stationary series Y. In the case that Y and N are

independent CjN will be identically 0. So too will the cross-spectrum,

fjN, given by

E {dZj (X) dZN(.)I = 8(X+p)fjN (X)d Xd St
Figure 10, middle right, graphs an estimate of cjN (u) for the California

earthquake data. The values fluctuate about 0. The sampling properties of

an estimate of the coherence, IRjN() 12= IfIN( 121 ()fNN() are

simpler, hence this is the statistic employed to assess the independence.

An estimate is graphed in Figure 10 bottom right. There is some evidence

against independence, 21 points out of 128 exceed the 95% null point .

The third-order joint cumulant density may also be used to address the

hypothesis of independence. It is given by

cum {dJ(t+u), dN(t+v), dN(t)) = cJNN(u,v)dtdudv
for u, v, 0 distinct. It will be 0 in the case of Y independent of N. An

estimate is given in Figure 1 1 top right. The crossbispectrum fINN simi-

larly will be 0 in the case of independence. An estimate based on the

corresponding crossbicoherence is graphed in Figure 11. The points plot-

ted are bifrequencies (%,,) where the bicoherence estimate is significantly
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different from 0 at the 1 % level. There are many. A comparison of the

two bicoherences of Figure 1 1 shows many more significant points in the

JNN case. This goes along with the process (J,N,N) being more nonnor-

mal.

Vere-Jones (1970) discussed point and marked point processes associ-

ated with earthquakes. The theory of point processes and marked point

processes is presented in Daley and Vere-Jones (1988).

A question related to the present context is: assuming Y and N

independent, how does one estimate cy and fw? One answer is given in

Brillinger (1972). Some results of applying the technique are given in

Moore et al. (1987).

4. CONNECTIONS

There are several methods for relating time series, point and marked

point processes and techniques. Advantages of employing these include:

computing programs available for one type may be used with the others,

models and theoretical results may be transferred, and generally further

insight and understanding may be obtained.

A point process on the line may be studied via ordinary time series

methods through picking a small cell width 8 and setting up the discrete

time series

Y(t) = N(t,t+S] (4.1)
for t = 0, +8, ±28, ***. This 0-1 series may be fed to either moment or

likelihood based techniques. For example the second-order moments are

connected via

Cfl(u) =pN(er Ithe)+ + qNN(u)i2
for small S. The power spectrum of the discrete series (4.1) is given by



- 15 -

x co 2icj 2j2fy(O = 4(sinSm )2 i (X+-I2fNN (X+

References include Vere-Jones and Davies (1966), Lewis (1970), Guttorp

(1986).

The use of 0-1 series for point process likelihoods occurs in Bril-

linger and Segundo (1979) and Berman and Turner (1992). When the

model is correct, the likelihood approach may be anticipated to be the

more efficient. However the moment approach has the advantage of being

broadly applicable and of having the same foim for distinct types of

proceses. Indeed if one moves to the frequency domain, the moment pro-

cedures are essentially the same for time series, point processes and

marked point processes.

A discrete time series, Y(t), t=0,±1,±2, , may be set up as a

planar point process via the correspondence Y(t) -o (t,,Y(t)). A marked

point process, with marks in RP, may similarly be considered a point pro-

cess lying in RP +1 ffirough the expedient of simply viewing (@, Mj) as a

point in RP+1. One reference is Kafr (1976).

A jump process, J, may be associated with a time series in continuous

time through the correspondence

Y(t) = f a(t-u)dJ(u)
see Priestley (1963), Jowett and Vere-Jones (1972). The spectra are

related by

fX..X(l sk-l)

A (1)*** A (Xk-l(X1+ +kk-l)fJJ(X1, * * k-1)

on which estimates may be based. The 0-1 time series above corresponds

to a (.) a boxcar function of width 8. Hence A (X) = 2(sin X8/2)/X, which
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is approximately 8 for small 8.

Parallel development of the time series and point process cases is pro-

vided in Brillinger (1978).

5. TWO CURRENT PROBLEMS

5.1 Cell Motion

Consideration turns to studying the movement of biological objects.

Vale (1993) comments that "Understanding the mechanism by which bio-

logical motors work has been one of the great puzzles in biophysics for

the last century ...". The specific question that will be considered here is

whether such motors produce step-wise movement with abrupt displace-

ments or is the movement diffusion-like?

In the experiments to be studied a motor (kinesin) was attatched to a

small bead. In the presence of adenosine triphosphate (ATh) the bead is

transported along a microtubule. The location of the bead may be fol-

lowed by means of a special microscope. At issue is whether the motion

of the bead is smooth or jumpy.

Figure 12 shows data for two cases based on material extracted from

the bovine brain. Details of the data collection are given in Malik et al.

(1993). A microscope with nanometer precision and millisecond temporal

resolution is employed in following the motion. The data as measured is a

track in the plane, see Figure 12 top. In case 1023 the tubule is rocking

substantially from side to side, motion that may be due to the vibration of

the microscope. In case 1639 the motion is more nearly confined to a

line. The data were rotated to obtain motion in the parallel and perpendic-

ular directions. The parallel motions, X, are given in the second row of
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Figure 12. The figure also gives the histograms of the step sizes,

X(t+1)-X(t). There is no spike standing out in either, corresponding to

some common jump size.

A model that may be considered is the following. Let X (t) be the

position, as a function of time, of the bead along the line of movement.

Suppose that the bead jumps a distance a at the times rj of a point pro-

cess N and that there is an associated noise process E. Here a

corresponds to the distance between successive kinesin binding sites on

the microtubule. It is about 8 nm. Write

X(t)= + aV(t) + E(t)
This model involves both a time series and a point process and naturally

leads to a process with stationary increments. In the case that a is small

and the rate of the point process high, the particle will appear to be

diffusing.

Supposing the processes N and E to have stationary increments The

expected value of X (t) is p + apNt, where PN is the rate of the process

N. The velocity with which the particle is moving is apN and this will

change with the experiment, but a wiRl be constant across experiments.

For N and E independent, the power spectrum of X is

fxx(-)= a2fNN(X) +fEE(X)
If N is a renewal process, with interevent distribution having characteristic

function 4, then

fNN(X) 2n; 1 _ O) 2

see expression (2.11.43) in Brillinger (1978) and the rate of N will be

PN = 1/E where p is the mean of the interevent distribution. In the case

that the interjump time, 'j+1-Tj, is constant, and v denotes the velocity of
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movement, the power spectrum is

yfi(X_2ltV Qn
i v a

a function seen to depend on dv.

To address the issue of the size of a, a procedure sensitive to

periodic-type behaviour was employed. If the points occur in an approxi-

mately regular fashion, there will be peaks in the spectrum that will stand

out. Suppose that the interevent density has the form g (x/0)/O for a scale

parameter 0. The parameter 0 will describe the velocity of the bead in a

particular experiment, the larger 0 the smaller the velocity. The spectrum

fNN will be a function of OX. So instead of plotting versus X one plots
versus stepsize = velocityl. This allows the results of separate experi-

ments to be combined. It is further noted that studies of the noise, when

the microtubule is not stimulated to move, show the spectrum, f EE, to be

smooth.

Figure 13 shows results of both simulations and data analyses.

Renewal processes with interevent times gamma, of coefficient of variation

.2, were simulated. The top left display is an example of part of one of

the step functions. Next the step size was taken to be 8 nm and actual

noise records added on. The top right provides the results of estimating

the power spectrum from the simulations, flattening at the low frequency

end, transforming the abcissa to velocity/frequency and averaging the

results of 14 runs. A peak stands out at the 8 nanometer position, with a

prob-value of .009 . The procedure may now be considered validated in a

sense. The bottom two displays correspond to applying the same steps to

the parallel and perpendicular motions of 14 actual experiments. In these

two cases the prob-values of the largest peaks were .120 and .176 . There
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is no strong evidence for motion in jumps.

5.2 Seal Diving

Marine ecologists are concerned with the navigation, foraging and

spatial-temporal use of the underwater habitat by marine mammals. Ques-

tions arise like: How are they moving? What are they doing? How are

they interacting? The principal type of data that these scientists have

worked with is depth as a function of time, (such as the bottom display of

Figure 15 below), hence for example they have been unable to estimate

velocity and there have been problems of identifying other quantities of

interest. Recently three dimensional data have started to become available.

Figure 14 displays the track of a ringed seal as recorded in the Bar-

row Strait, NWT. The four figures correspond to viewpoints rotated 90

degrees from each other. This type of display is particularly effective

when viewed spinning in real time.

The animal was in the wild moving under ice from a breathing hole

and retuming. The seal had a sonic tag. Four hydrophones were placed

at known locations allowing the estimation of the seal's track, see for

example Wartzok et al. (1992). There is measurement error in the esti-

mates of position and the time points are unequally spaced (hence one has

marked point process data).

Figure 15 shows the individual X(t),Y(t),Z(t) series. These traces

bring out additional features of the data, for example that the seal stopped

moving for a period. The X and Y traces show the track to be jumpy and

indeed this was apparent in Figure 14. These jumps can be due to meas-

urement error. They are seen to occur at the same places in the X and Y

traces. As a first step towards more complicated analyses an "improved"
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estimate of the track is needed. This is a problem of robust-resistant

smoothing, with the twist that the dependent quantity is vector-valued,
hence available procedures such as loess, see Becker et al. (1988), cannot

be used. Figure 16 presents the results of univariate smoothing, but pool-

ing the residuals together to estimate the scale. One sees a plausible track

for the animal. The depth trace, Z, was not smoothed because it appeared

sufficiently regular already.

Another interesting aspect of these series is that they are tied down,

the seal returns to its initial position. Also the surface and bottom fonr

special barriers. These things must be taken note of in analytic models.

6. DISCUSSION AND SUMMARY

In her functioning, Nature appears to make use of each of time series,

point processes and marked point processes. This work has sought to

bring out some parallel definitions and methods for these concepts. The

models and techniques employed are mainly nonparametric and moment

based. Another aspect has been the illustration of both time-side and

frequency-side analyses. Generally speaking the (approximate) sampling

properties are simpler in the frequency domain.

Various displays were presented for each data type. In particular the

tool of stacking has been highlighted as being of use in some particular

circumstances.

A new statistic (A.6) has been employed in the study of discrete com-

ponents in a bispectrum. The statistic has advantages over the biperiodo-

gram for the biperiodogram will be large in amplitude when any of the

frequency components involved is large. The statistic (A.6) standardizes

for this.
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Analyses were provided of data taken from five fields: oceanography,

neurophysiology, seismology, biophysics and ecology. In all studies it is

good practice to ask: "What is the question?" Questions going along with

the examples of this paper include:

1. Tides. How to predict? The analyses presented were in part directed at

understanding if an existing model was satisfactory.

2. Nerve Firings. How to describe? Description is needed because there

are so many types of behavior.

3. Earthquake Times and Sizes. How to predict? One focus was on

whether magnitudes were related to occurrence times, a second was on the

presence of periodicities.

4. Biological Motors. Is the motion discrete or diffuse? One type of

discrete motion, approximately regular jumping, was examined for via fre-

quency domain techniques.

5. Seal Tracks. How to estimate and display the motion? A spinning
display proved effective and robust resistant smoothing looked promising.

7. FUTURE DIRECTIONS

There are a number of directions in which the work may be extended.

The analyses employed have been based on second- and third-order
moments principally. Extensions can be pursued to higher-order moments

and to likelihood analyses. The existing techniques need to be extended to

include covariates and to handle nonstationarity. The case of trends is dis-

cussed in Brillinger (1993). The marks of a marked point process may be

ordinal, interval, nominal, ranks, vector-valued.

There are interesting analytic problems. For the estimates (A.1),
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(A.2), the question of how to chose the cellwidths 8 and b needs to be

addressed. There has been research on the corresponding question in the

spectrum estimation case, but not the product density cases. The sampling

properties of the flattened spectrum estimate, the statistic (A.6) and of the

argument-transformed estimate of Section 5.1 need to be studied in detail.

Suppose there are tracks of several particles. How is one to model

and describe the way they are interacting? As in the case of Section 5.2

models may be needed to handle the fact that (X(t),Y(t) may be tied

down or bounded. As mentioned above a multivariate version of loess

needs to be developed. So too do other improved estimates of tracks

based on irregularly observed data.

Stacking appears a powerful tool worthy of an in depth study.

The cases of vector-valued processes and series need to be developed.

So too do the spatial, marked spatial and spatial-temporal cases. Some

references to the spatial case include: Hanisch and Stoyan (1979), Isham

(1987), Ogata and Katsura (1988), Stoyan (1984).
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APPENDIX
This section provides some details of the estimates and computations.

Given data, X(t), 0 . t < T, general estimates of the fx..x and Mx x are

indicated in Brillinger (1972) for processes with stationary increments.

If Y denotes the mean of the data Y(t), t = 0, . . , T-1 of a

discrete time series, then an estimate of the autocovariance function is

T 1 T-lulI
CTY(a) I [y(t+U)_]][y(t)_f]

t=O
and of the third cumulant function is

c[yy(u,v) = - £ [Y(t+u)-Y][Y(t+v)-Y][Y(t)-Y]
T£0,t+u t+v T-1
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These appear in Figures 6 and 7.

An estimate of the rate of a point process, N, is pT = N(T)IT, while

an estimate of the autointensity is

hN=# { j-k-u I <b }12bN(T) (A.1)
The estimate (A.1) was introduced in Griffith and Horn (1963) and con-

sidered in Cox (1965). It appears in Figure 8.

Following the discussion of Section 4 an estimate of the third-order
cumulant density at u, v, 0 distinct is given by

qNNN(U ,V) = Cy(U ,V )/83 (A.2)

where Y is the corresponding 0-1 time series based on cells of small

width 8. This appears m Figure 9.

In the marked point process case one can consider the statistic

MjMk = Jf dJ(t)dJ(s) (A.3)
I jTk-Ulab It-s-u b<2

(with j k and t . s) in analogy with (A.2). One bases an estimate of

cov {dJ(t+u ), dN)(t) on

£: M= |JJ dJ(t)dN(s) (A.4)
Icjtk-u I<b It-s -u kab

These appear in Figure 10, having adjusted the marks to mean 0.

In estimating frequency domain parameters it can be convenient to

work with the empirical Fourier transforn

T

dI(X) = J e-idK(t)

In the cases of a discrete time series, a point process, a marked point pro-

cess this becomes

Y(t)e-itx , e~iXjAJ Mie j
t j j

respectively. These satisfy central limit theorems in various circumstances
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allowing approximate distributions of derived statistics to be set down.

A crude estimate of the power spectrum is provided by the periodo-

gram

d1Td(X)12 (A.5)2itT
This appears in Figure 8.

The spectrum (3.10) shows lines superposed on a (smooth) curve. To

make the lines stand out more: the data is tapered prior to Fourier

transforming and the curve is flattened. The flattening was done by apply-

ing a resistant heavy smoother to the log periodogram values to obtain an

estimate of the spectrum, which is then divided out. In a related context

Tukey (1963) suggests dividing the periodogram by the result of a

repeated running median and in a testing situation Chiu (1989) suggests

dividing by trimmed means of periodograms.

A crosspectral estimate fJN may be computed by breaking a data set

of length T into L segments of length V, computing the crossperiodo-

gram, (27cVf-1dYdj, for each and averaging. The coherence may then be

estimated by ITN121fbNfkN. Likewise a bispectrum estimate may be

obtained by averaging the biperiodograms

1 dV(X)dV(v)dV(X+p)
(2it)2v

The bicoherence may be estimated via

pTa i2 / fTJ T T

Its distribution, in the case that the population value fjjj, is 0 is exponen-

tial with mean V/2iL. See Huber et al. (1971).

In the case of a line in the bispectrum it can be more useful to con-

sider the statistic
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mintlT(X) 1 2 / f T(X)q IIT(g) 1 2 / f T(g)q IIT(X+g) 1 2 /f T(X+g)l
(A.6)

with 1T the penodogram and fT a heavily smoothed resistant estimate of
the power spectrum. The large sample distribution of (A.6) under the null
hypothesis, P1, P2, P3 = 0, is that of

min{el, e2, e3J, min{eI, e2}, e1
where the e's are independent exponentials depending on whether all p's
are 0, two are 0 or just one. The critical value employed is based on the
last.
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Figure legends

Figure 1. A graph of hourly tidal values at St. John, New Brunswick for

the period 1 to 18 January 1991. The lower graph stacks successive

24 hour segments above each other.

Figure 2. Top display is the fluctuating voltage potential within a neuron.

The middle display is a step function increasing by 1 at the time of

each spike in the first display. The bottom display has a vertical line

at the location of each spike. The bottom two provide different

methods of displaying point process data.

Figure 3. The firing of a neuron of the sea hare. The bottom display

presents the times of the firings in each burst relative to the time of

the first firing.

Figure 4. Top display indicates times of earthquakes and associated magni-

tudes. The events are for California, in the period 1932 to mid 1992

and for events of magnitude 5.0 or greater. The bottom display is

proportional to the cumulative energy released by these events.

Figure 5. The events of Figure 4 stacked by year, with circle diameter

indicating magnitude. The circles on the right indicate the correspon-

dence between circle size and magnitude.

Figure 6. St. John tides and residuals. The first column presents statistics

for the tidal series, the second statistics for the residuals of a least

squares fit to the senres. The top displays are initial sections of the

series themselves. The middle row provides estimated autocovariance

functions. The final row provides an estimate of the spectrum with

the continuous component flattened. The dashed line is an approxi-

mate upper 95% confidence level above an estimate of the flattened
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noise spectrum.

Figure 7. Top left is an estimate of the third-order cumulant function for

the St. John tidal data. Negative values are plotted as dashed lines.

Top right provides the same for the residual series. The points

significant at the 1% level of the statistic (A.5) are plotted for the two

series.

Figure 8. The left hand panels give statistics for a neuron firing regularly,
the right hand panels for a second neuron firing in bursts. The middle

displays are estimates of the autointensity (of (3.14)). The bottom

row provides the periodograms (A.5).

Figure 9. The lefthand panels are the estimated cumulant densities, as

estimated from (A.2). Negative contours are plotted as dashed. The

bottom panels are the statistics (A.6) significant at the 1% level.

Figure 10. Analyses of the California earthquake data of Figure 4. The

top displays are the magnitudes and times and just the times respec-

tively. The bottom left is the power spectrum estimate with an

approximate 95% confidence interval set about the mean level. The

bottom right is the estimated coherence with an upper 95% null level.

Figure 1 1. Estimates of third-order cumulant densities for the marked point
process and point process. The bottom two are points of the
estimated bicoherence significant at the 1% level.

Figure 12. Microtubule movement in the case of two experiments. The

top graphs show the actual motion of the bead starting from position
(0,0) in each case. The second row shows the motion, as a function
of time, along the direction of motion, from the upper left to the bot-

tom right corner of the top figures. The final displays are histograms
of the individual steps.
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Figure 13. The top row refers to the results of simulations of a renewal

process, the interevent distributions being gamma of coefficient of

variation .2 and corresponding to an a of 8 nm. The left display is a

stretch from one of the simulations. On the right is the results of

averaging the flattened, frequency transformed, spectra. The bottom

displays are the results of applying the technique described to the

parallel and perpendicular motions respectively. The dashed line is at

the height of the highest ordimate. The significance levels in the three

cases are .009, .120, .176 respectively.

Figure 14. A track of a diving seal viewed from four perspectives rotated

90 degrees from each other. The distances are all in meters.

Figure 15. Plots of X,Y,Z versus time for the data of Figure 14. The

points correspond to the times of measurement.

Figure 16. Robust-resistant smoothing of the X and Y traces of Figure 15.
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Third cumulant pacemaker
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California earthquakes 1932-1992
Marked point process
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2 D track, case 1023
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Renewal step process
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Smoothed X-coordinate
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