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ABSTRACT

In this paper we consider issues involved in using nonparametric regression and correlation

smoothing methods to analyze a moderately large data set consisting of socioeconomic and perinatal

vital statistics for about 900 geographic regions in California. The issues considered range from theoret-

ical to applied. Some of the theoretical questions considered are: What is the most efficient smoothing

technique? Which technique best handles boundary effects? How do we choose the bandwidth? Some of

the applied questions are: What is a good procedure for describing the relationship between

socioeconomic and health variables? How can we study the nonlinear relationship between a covariate

XI and a response variable Y in the presence of confounding covariates that are also nonlinearly asso-

ciated with Y? After using Monte Carlo simulation to compare boundary corrected Nadaraya-Watson

and Gasser-Miiller kernel estimators with locally linear estimators based on fixed and variable

bandwidths, we conclude that, for our type of data, a suitable smoother is the k-nearest-neighbor ver-

sion of the locally linear estimator with k chosen by crossvalidating on the cental 90% of the covariate

values. In generalized nonparametric additive models, we use nonparametric partial regression and

correlation methods to study the relationship between a response variable and a covariate after correct-

ing for confounding variables.
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LINTRODUCTION

There are a growing number of interesting computer data bases consisting of moderately large to

large data sets. For these data sets it is possible to use nonparametric regression techniques to analyze

local relationships between variables without assuming a particular parametric structure on the joint dis-

tribution of the variables.

In this paper we consider the properties of several statistical regression smoothing techniques with

the aim of choosing one of them to analyze a real data set. The smoothing procedures we consider are

of three varieties: Nadaraya-Watson kemel estimators with and without boundary corrections, Gasser-

Muller kernel estimators with and without boundary corrections, and locally linear smoothers with fixed

bandwidth as well as locally linear smoothers based on k-nearest-neighbors.

For the case of one covariate X, we obtain information on the properties of these techniques by

doing a Monte Carlo study over several models. The models have two different structures for the

regression E(Y IX = x) of Y on X : One is quadratic as in Hall and Wehrly (1991) and the other is

the "bump" model considered by Hirdle (1990) and Gasser, Kneip and K6hler (1991). In addition we

consider symmetric and skew marginal distributions for the covariate X. We find that the locally linear

techniques perform very well. In particular for regions of X where there are no abrupt changes in

E (Y IX = x), a very good choice is the k-nearest-neighbor locally linear technique which consists of

finding the values a and t that minimize

y£[x - (a + 3xj)] Kf -

]

where K(u) = 0.75 (1 - u2) J(lu I c 1) is the Epanechnikov kernel, Ik(x) is the set of indices on the

k-nearest-neighbors to x and 8(k) is the distance from x to its kth nearest neighbor. The estimate of

E(Y IX = x) is now d +1x.

Locally linear methods have been considered by Stone (1977), Cleveland (1979), Muller (1988),

Cleveland and Devlin (1988), among others. Recently their advantages in terms of asymptotic efficiency

and reduced boundary effects have been estabilished by Fan (1992, 1993), and Fan and Gijbels (1992),

among others.
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We consider two different methods for choosing the bandwidth: Cross-validation based on all the

data and cross-validation based on the data corresponding to the centrl 90% of the covariate values.

We find that for the locally linear fixed bandwidth smoother, using 100% is generally preferable, while

for the k-nearest-neighbor linear smoother, the 90% cross-validation rule is preferable.

In addition to j(x) = E (Y IX = x) we use the local regression coefficient 13(x) = '(x ) and the

local correlation coefficient p(x) = 2c2 1 2In* where ca(x) = (Var(Y IX = x) 112 and

a1 = (Var(X))1/2, to explore the relationship between a response Y and a covariate X. We do a

Monte Carlo study of the properties of simple confidence intervals for p(x) and PI(x) and find that pro-

cedures based on the locally linear methods give reasonably accurate confidence intervals for E(jl(x))

and E(,(x)).

For the analysis of the relationship between a response Y and several covariates XI X2, ...I, Xi

we use an additive model and estimators that involve repeated use of univariate smoothers. In this con-

text we introduce nonparametric partial regression and correlation curves and use these concepts to

analyze the Improved Perinatal Outcome Data Management System data set described below using the

response variable infant mortality and the three covariates median family income, percentage house-

holds on public assistance and percentage families with no husbands.

The data set

The Improved Perinatal Outcome Data Management(lPODM) system (maintained at University of

California, Berkeley) provided the data we used for these analyses. The data base consists of perinatal,

socioeconomic, and demographic data for California, aggregated by zip code. The perinatal data are for

the six year period 1982-1987 and are derived from data for individual births published in the State of

California's annual Birth Cohort Files, which encode birth certificate data. The demographic and

socioeconomic data are from the 1980 U.S Census.

2. A COMPARISON OF SMOOTHERS IN TERMS OF BOUNDARY EFFECTS

Let Y be a real-valued response variable whose distribution depends on a real-valued covariate

X. Then the regression of Y on X = x is defined as
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p(x)=E(YIX =x).
The curve 1(x) gives the mean relationship between Y and X at X = x and is the fundamental

parametric curve in most parametric regression analysis. When the density f (x) of the predictor vari-

able X has bounded support, kernel smoothers such as the Nadaraya-Watson and Gasser-Muiler estima-

tors are known to suffer from "edge effects" at points near the boundaries of the distribution of X. Bias,

in particular, can increase substantially, unless '(x) 0O near the boundary; variance is also likely to

increase, since in general fewer data points are used in this region. These boundary effects persist even

when f (x) does not have bounded support, since for x close to the extreme order statistics x(j) and

x(n), there will be very few data points on one side of x to average over. Various modifications have

been proposed to reduce such edge effects, including special asymmetric boundary kernels, as well as

linear combinations of kernels with differing bandwidths, based on the jackknife. We compare three

classes of estimators that are insensitive to boundary effects, and find that a locally-linear estimator is

particularly efficient

All three belong to the more general class of linear smoothers. Suppose that (X1,Y0),.....

(X.,Yt) is a random sample of pairs with each (Xi,Yi) distributed as X,Y. The different estimators

(smoothers) can all be written in the form

l(x) = F2wi(x)Yi (2.1)

where wi(x) are weights that depend on the {Xi } only. The weights are large for indices i such that

Xi is "close" to x, and small otherwise.

2.1 Boundary modified and reflexive Nadaraya-Watson smoothers

The basic Nadaraya-Watson estimator is of the form (2.1) with

wi(x) = K h jI Kdh-] (2.2)

where h = hn-O as n.-+oo and K is a kernel function with K(t) 0O, K(-t)=K(t), and

2(t)dt < co. For instance, the Epanechnikov kemel is given by

K(u) = 0.75(1 - u2)I(Iu l< 1). (2.3)
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We will consider the same boundary modified Nadaraya-Watson estimates as in Hall and Wehrly

(1991). Suppose the {Xi ) have support [a,b]. For x E [a,a+h ]U[b-h ,b], the estimate based on

(2.1) and (2.2) with kemel (2.3) is typically severely biased. The bias is reduced for x E [a ,a+h ] if

the kemel (2.3) is replaced on this interval by the boundary kernel

Kq(u) = (c u+c2)K(u )I (-I.u .q) (2A)

where q = (x-a )h, and c 1 and C2 are the solutions to

q q
J K(u )dul= aad uKq(u)du =O.

See Rice (1984). A similar boundary kemel Kq is defined for x E [b-h ,b ].

Finally a boundary bandwidth is used. That is, in (2.2), with K replaced by Kq near the boun-

daries, h is replaced by

2h-(x-a) if a < x < a+h
h(x)= h ifa+h<x<b-h (2.5)

2h{b-x) if b -h <x <b.

Leave-one-out cross-validation is used to select h. See Hall and Wehrly (1991).

A second Nadaraya-Watson type estimator considered by Hall and Wehrly consists of using a

reflection method to generate a set of pseudo-observations beyond the boundaries a and b. The

Nadaraya-Watson estimator is computed using the original data and the pseudo-observations. See Hall

and Wehrly (1991).

2.2 Boundary modified and reflexive Gasser-Muller smoothers

We now consider the fixed covariate case where we condition on the ordered [xi ) and write

Yi = g(xi) +a(x5)Ei, i = 1.,n,x<x2<- - n (2.6)
where o(x) = Var(Y IX = x) and e-...,e are independently distributed with mean 0 and variance 1.

Since we can define ei = [Yj-j.(x )]/a(xj), the formulation (2.6) does not involve a reduction in gen-

erality. See Bhatacharya (1974). The Gasser-MWller estimator (1979, 1984) is of the form (2.1) with

wi(x)=- [Wf XSi w X-Si-]] (2.7)
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x

where W(x) = JK(t)dt is an integrated kernel and si = (xi + xi+1)/2, i = 1....,n-1, s0 = xl,

and sn = x". The Gasser-Mijiler estimator was originally proposed for the fixed design case, but is also

appropriate in the random design case, Mack and Muiler (1988).

A boundary version of the Gasser-Muller estimator is obtained by replacing K with Kq, given by

(2.4), near the boundaries, and h with h (x), given by (2.5). Finally, a reflexive version of the Gasser-

Muller estimator is obtained by applying the Gasser-Miller smoother to pseudo-data generated by a

reflection method. See Hall and Wehrly (1991).

2.3 Locally linear smoothers

Fan (1992) shows that locally-linear smoothers are less subject to boundary effects than non-

modified Nadaraya-Watson and Gasser-MIller estimates. The locally-linear smoothers are defined as

follows. Consider p grid points along the x-axis. Let xo denote any of the grid points, and let

y = a (xo) + b (xo)x be the weighted least squares line computed from the data (x I,y)y., (x,,yn)
with weights w1.,w, where w, = K((x0-)xi)h). The estimate 1(x0) is a(x0) + b(xO)x0. Values

of a and b are found at each of the grid points, and the curve II(-) is completed using standard

software to "connect the dots".

In addition, we consider locally-linear k-nearest-neighbor (knn) estimators. In this variant of the

locally-linear smoother, the global bandwidth h is replaced by the variable local bandwidth h(x0),

given by the distance between xo and its kth nearest neighbor.

Finally, for each variant, we consider two cross-validation procedures for selecting the bandwidth,

one using all the data, and the other using only the subset corresponding to the central 90% of the

values of X.

2.4 Results

To facilitate comparison between the three classes of smoothers, we checked the performance of

the two locally-linear methods using the same simulation set-up employed by Hall and Wehrly with the

boundary-modified and reflexive Nadaraya-Watson and Gasser-Miiller methods. The simulation model

is given by yi = (xi-1/2)2 + c,, i = 1......,100, where the (e.i are iid normal with mean 0 and
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standard deviation 0.1. For the random- design case 400 data sets were generated with the [Xi}

iid U[0,1]; for each of these data sets i(x) was calculated at 101 evenly spaced grid points on [0,1].

For the fixed design case another 400 data sets were generated, each with

xi = (i-1/2)/100, i=1,....,100; for these simulations jl(x) was calculated at the design points. Thus

we ran 8 sets of calculations, one for each combination of locally-linear smoother and cross-validation

method, using the same set of random normal errors (ei) and, where applicable, the same random

(Xi), in each of the 8 combinations. We calculated estimates of mean integrated squared error (MISE)

according to formulas given by Hall and Wehrly, along with the summary statistics given in their Table

2. Here we append our results to theirs:

Table 1

Summary Statistics for Estimated MISE, by Smoothing Method
400 Simulations, Uniform X-distribution

Standard Interquartile
Mean Median deviation range

Random design
N-W .097 .085 .063 .059
N-WB .285 .064 3.816 .067
N-WR .087 .064 .118 .062
G-M .087 .067 .072 .068
G-MB .098 .077 .074 .073
G-MR .083 .065 .066 .066
LL100 .074 .058 .064 .061
LL90 .071 .059 .056 .060
LLknn100 .087 .073 .062 .067
LLknn9O .076 .059 .059 .067

Fixed design
N-W .079 .070 .046 .051
N-WB .066 .056 .049 .047
N-WR .062 .053 .046 .043
G-M .059 .052 .039 .042
G-MB .062 .052 .042 .046
G-MR .058 .049 .040 .041

Note: N-W is the uni

LL100 .062 .049
LL90 .064 .050
LLknnlO0 .080 .065
LLknn9O .068 .054

modified Nadaraya-Watson estimator,

.048 .053

.048 .055

.055 .064

.052 .053

N-WB is Nadaraya-Watson with boundary

kemel, and N-WR is Nadaraya-Watson with reflected data; and similarly for the Gasser-Muller (G-M)

estimator. LLIOO is the locally-linear estimator with cross-validation using 100% of the data, while
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LL90 is the same estimator with cross-validation using 90% of the data; LLknnlO0 and LLknn90 refer

to corresponding implementations of the locally-linear variant with knn bandwidth. All locally-linear

methods use the Epanechnikov kernel (2.3)

The simulation results suggest that the locally-linear methods are quite competitive in both the

random and the fixed design cases. In addition, we see that while the performance of the fixed-

bandwidth locally-linear smoother is essentially the same with either cross-validation method, the knn

version does considerably better if the data-fraction is found using cross-validation on only 90% of the

data points.

Overall, our conclusion from this table is that fixed bandwidth locally-linear method with

bandwidth chosen using all the data is highly efficient. It is very simple, easy to compute and handles

the boundary problem as well as the boundary adjusted and reflexive N-W and G-M procedures. With

cross-validation using 90% of the data, the knn variant is also competitive; simulations reported below

show that in some situations it may outperform the fixed-bandwidth version.

Envelope Curves

We also summarize our results using percentile curves as in Hall and Wehrly (1991). At each

grid point ti, we compute the median, 5th and 95th percentiles of the 400 simulated values of A(ti).
The results are given in Figures 1 and 2. Comparing the median fits with the true regression functions

suggests that the differences in bias are trivial; likewise variance in the border region is similar whether

90% or 100% of the data is used to select bandwidth or data fraction. The plots are consistent with Fan

and Gijbel's(1992) theoretical demonstration that the bias of locally-linear methods does not increase

substantially in the boundary region, and that the variance of the locally-linear estimates in this region

is comparable to that of other methods with similarly limited bias. In terms of envelope curves, the

fixed-bandwidth locally-linear method with cross validation using all the data performs as well as or

better than the competitors, given this simulation set-up. Note dtat the knn variant, which has the virtue

of adapting bandwidth to local differences in the density of the predictor, would not be expected to out-

perform the fixed-bandwidth variant in either the equispaced fixed desip or the uniform random case.
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However, the plots suggest that the knn version is slightly less biased in the interior of the data, with

either cross-validation method.

Skew X-distribution

We also consider the case where the (Xi) have a skew distribution, rater than being symmetri-

cally distributed on [0,11. In the random design case, the [Xi) are iid with density

_3(1-x)2 , x e [0,1]
fO (x) = o, otherwise.

In other respects the model is as before. In the fixed design case,

xi = F-'[(i-1/2)/1l00], i = 1,...,100, where F(x) = 3(1_t2)dt = 1-(l-x)3, 0 < x . 1. With

both designs, ,u(x) is estimated at the grid points illOO < max{xi); note that in the fixed design,

max(xi) 1_(1-99.5/100)1/3 = 0.829. MISE is estimated by the average squared error at these grid

points. As with the uniform design case, we calculated estimates of MISE on each of 400 Monte Carlo

runs for 8 combinations of locally-linear smoother and cross-validation method. Summary statistics for

these values are given in Table 2.

Table 2

Summary Statistics for Estimated MISE, by Smoothing Method
400 Simulations, Skew X-distribution

Standard lnterquartile
Mean Median deviation range

Random design
LL100 .092 .061 .091 .081
LL90 .100 .065 .094 .095
LLknnlO0 .124 .098 .097 .098
LLknn9O .121 .091 .104 .100

Fixed design
LL100 .109 .078 .100 .107
LL90 .110 .079 .103 .107
LLknnlOO .131 .103 .096 .099
LLknn9O .144 .121 .102 .120

These results strongly suggest that given Hall and Wehrly's quadratic regression function, the

locally-linear method with fixed bandwidth performs better than the knn variant when the predictor dis-
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tribution is skew. There is not much difference between the two cross-validation methods, but cross-

validation based on 100% of the data performs a little better. Surprisingly, estimated MISE is smaller

with the random predictor distrbution. However, since the grid points at which M1SE is estimated are

different for the two cases, they are not directly comparable.

Envelope Curves.

We also give, in Figures 3 and 4, the envelope curves for the skew design. They graphically show

how the knn methods are biased in the region where the {xi I are sparse. In this region the variable

bandwidth h (xo) is large, and the distribution of the (xi ) included in the window

[xo-h (xo), xo+h (xo)] is highly asymmetric. In short the knn fits in this region are strongly influenced

by points at the left edge of the window; at the same time, there are relatively few points in its center.

In such situations the knn method is biased toward linearity. In contrast, the locally-linear methods

with fixed width are remarkably unbiased in this region. The outer envelope curves show that both

methods are highly variable where the {xi } are sparse.

Simulations Using Variants of Hdrdle's Bump Model

In addition to the variants of Hall and Wehrly's model with quadratic mean function, we also

consider the "bump" model used in several contexts by Hardle (1990). For this model the regression

function is given by g(x ) = 1-x+exp (-200(x -c)2). We reset c from 1/2 to 1/3, moving the bump to

the left, so that in the skew designs there is enough data in the region of the nonlinearity. The error

distribution is iid Normal, as in Hardle as well as Hall and Wehrly. But in this case the value of

(C2(x) = 0.12 used in their simulations results in such noisy estimates that we reset this parameter as

well, using values 0.05 and 0.025. We also restict our aUention to the fixed predictor distributions and

to LL100 and LLknn90, since these estimators did consistently better with Hall and Wehrly's model.

The results of these simulations, each using 400 Monte Carlo samples, are given in Table 3.
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Table 3
Summary Statistics for Estimated MISE

Uniform and Skew Fixed Variants of Hardle's 'Bump' Model
By Error Variance and Smoothing Method

Standard Interquartile
Mean Median Deviation Range

;2(X) = 0.052
Uniform Fixed Design
LL100 .067 .063 .024 .023
LLknn9O .088 .088 .018 .023

Skew Fixed Design
LL100 .454 .453 .044 .056
LLknn9O .068 .064 .028 .036

02(x) = 0.0252
Uniform Fixed Design
LL100 .020 .020 .005 .006
LLknn9O .022 .022 .004 .005

Skew Fixed Design
LL100 A27 A28 .018 .024
LLknn9O .020 .019 .007 .008

These results show that the locally-linear method with fixed bandwidth performs somewhat better

than the knn method in the uniform fixed design case, while in the skew fixed design case it performs

considerably worse. As with Hall and Wehrly's simulation set-up, the knn adaptation would not be

expected to help with a uniform random or equispaced fixed design. However, with a skew X-

distribution, its potential value is demonstrated. Clearly this method narrows the bandwidth in the

region of the bump, as required, and widens it where the data are sparse, on the right. At the same

time, this result clearly depends on the shape of HSrdle's regression function, which is linear where the

data are sparse. This is precisely where the knn smoother is biased toward linearity. Envelope curves

are given in Figures 5 and 6. The curves confinn that while both estimators perform essentially the

same in the uniform fixed design, the knn method does much better in the skew fixed design. Taken

together with the results using the skew variant of Hall and Wehrly's set-up, Table 3 suggests that the

choice between the fixed-bandwidth and knn methods depends substantially on the unknown quantity we

wish to estimate.
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3. REGRESSION, STANDARD DEVIATION AND CORRELATION CURVES

In linear statistical inference, regression coefficients, error standard deviations and correlation

coefficients are the key parameters of interest. In nonlinear situations, the regression coefficient is

replaced by the regression coefficient curve:

P(x) = dj±(x)ldx,
which gives the rate of change in the conditional mean of Y as x changes. The error standard deviation

is replaced by the conditional standard deviation curve:

c5(x)= (Var(Y IX = X))1'/,
and the correlation coefficient is replaced by the correlation curve:

p(X)=

where a, is the standard deviation of X. p(x) is a standardized version of the regression coefficient

curve 5(x). It combines the local rate of change [(x) with the local standard deviation a(x) to form

an invariant local measure of the strength of the relationship between X and Y near X = x which coin-

cides with the Pearson correlation coefficient p in linear models. See Bjerve and Doksum (1993) and

Doksum, Blyth, Bradlow, Meng and Zhao (1993).

3.1 Estimating local correlation

Estimating p(x) is straightforward using locally-linear smoothers. In particular, we set

5(x) = b (x), the slope of the local weighted least squares line at x, as defined in section 2.3; and esti-

mate the local variance by the fitted values of a second locally-linear smooth of the squared residuals

{(yi-g(xi))2). Both slope and variance are estimated at the same grid points as fi. and by the same

smoothing method, but using potentially different bandwidths. Then p(x) is computed by "plugging in"

these component estimates.

We tried several cross-validation techniques for estimating p(x) and found that none were satis-

factory for the sample sizes and models considered in Section 2 (cf. Muler, Stadtmiiller and Schmidt

(1987)). In the real data example we look both to cross-validation and our sense of plausible smooth-

ness to choose the smoothing parameter k.
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4. POINTWISE CONFIDENCE INTERVALS USING LOCALLY LINEAR SMOOTHERS

With all 4 locally-linear smoothers, 11(x) = j;w,(x)Y,, where the twi(x)) are weights depend-

ing only on x and Xi (and on the smoothing method). Expressions for the locally-linear slope esti-

mates follow that same pattern. Conditional on the (xi ), pointwise standard errors for the locally-linear

estimates of mean and slope are immediate. For instance, se (Jl(x)) = 4Ew,2(x)&(xj). These stan-

dard errors are estimated by "plugging in" the locally-linear estimates of the conditional variance.

We used Monte Carlo trials with the variants of Hall and Wehrly's quadratic simulation model to

estimate the coverage probabilities for the resulting pointwise confidence intervals at 3 points over the

range of x, both before and after correction for bias. In particular, we estimated the coverage probabil-

ities of the biased pointwise 95% confidence intervals

[f1(x)-1.96 se (1(x)), 1(x )+1.96 se (j(x))]
by the average of I [lt,(X) I < 1.96] over Monte Carlo samples, where

tV(x) = [1(x )-(x)]/se(f1(x)). Likewise, the coverage probability of the unbiased interval

[1(x )-(EA(x )-(x ))-1.96 se (1(x)), A(x )-(E1(x )-(x ))+1.96 se (1(x))]
was estimated by the average of I [ It* (x) I < 1.96], where t* (x) = [ft(x)-Ef(x )]/se (1(x)). With a

simulation model, E1(x) = wj(x)g(xj) is straightforward to compute. Coverage probabilities of the

biased and unbiased intervals for (x) = W'(x) were estimated by the same strategy. Similarly, we

attempted to quantify the effect of estimating 92(x) on our confidence intervals by recomputing

estimated coverage probabilities using the same series of simulated data sets, but substituting the true

variance for the estimates.

The results of 400 Monte Carlo runs with the 4 variants of Hall and Wehrly's model are summar-

ized in Table 4. For each design, cross-validated smoother, and location, four estimates are given:

those in the first row are not corrected for the bias in 11(x), while those in the second have been

corrected for this source of error; similarly, the figures in parentheses result from recomputing these

biased and unbiased estimates using the known variance. The same cross validation rules (as indicated

in the table) were used for ±(x) and P(x).
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Table 4
Estimated Coverage Probabilities (%) of 95% Confidence Intervals for Mean and Slope

by Simulation Design, Smoothing Method, and Location, in 400 Simulations

Design x x

Smoothing Method 0.25 0.50 0.75 0.25 0.50 0.75
Random Uniform
LL100 86(87) 86(88) 86(88) 92(95) 93(95) 92(93)

93(95) 94(93) 93(94) 93(95) 93(95) 92(94)
LL90 88(89) 88(89) 88(90) 92(95) 94(95) 91(92)

93(95) 93(93) 92(94) 93(94) 95(96) 92(94)
LLknnlOO 89(92) 87(88) 89(90) 88(89) 93(95) 86(87)

92(95) 92(92) 93(94) 93(94) 93(95) 92(93)
LLknn90 91(94) 91(92) 90(92) 91(93) 93(95) 90(91)

92(95) 93(94) 93(94) 93(94) 93(95) 92(94)
Fixed Uniform
LL100 87(89) 87(90) 87(89) 93(94) 91(94) 90(93)

93(95) 95(96) 91(93) 93(95) 91(94) 91(94)
LL90 88(89) 88(91) 89(90) 92(95) 92(94) 92(94)

93(96) 94(96) 92(94) 92(95) 92(94) 92(94)
LLknnlO0 92(94) 91(92) 89(92) 90(91) 93(95) 90(92)

94(96) 94(96) 92(94) 93(95) 93(95) 94(95)
LLknn9O 92(95) 93(94) 91(93) 93(96) 94(96) 91(93)

93(95) 94(96) 93(95) 94(96) 94(96) 92(93)
Random Skew
LL100 80(81) 88(91) 78(92) 92(92) 81(84) 71(90)

95(95) 90(93) 77(93) 94(96) 92(94) 77(95)
LL90 85(85) 88(91) 77(93) 93(93) 85(87) 75(95)

94(95) 89(93) 77(93) 95(96) 91(94) 77(97)
LLknnlO0 89(90) 84(84) 77(77) 92(93) 63(67) 35(36)

94(96) 92(93) 90(94) 93(94) 93(93) 89(90)
LLknn9O 85(88) 85(87) 73(74) 92(93) 67(69) 37(38)

93(95) 91(93) 90(94) 92(94) 93(95) 90(92)
Fixed Skew
LL100 81(82) 89(92) 74(93) 92(93) 81(85) 71(90)

94(95) 91(93) 73(93) 94(95) 92(94) 74(96)
LL90 86(86) 90(92) 75(93) 92(94) 84(86) 78(93)

93(95) 89(92) 75(93) 94(95) 89(93) 80(96)
LLknnIO0 90(91) 83(87) 70(76) 92(94) 67(68) 36(39)

95(97) 92(94) 90(94) 93(94) 94(95) 90(94)
LLknn9O 85(87) 86(89) 65(66) 92(93) 61(62) 31(33)

94(95) 92(94) 89(94) 93(94) 92(94) 90(94)

For the uniform designs, the estimated coverage probabilities of the uncorrected intervals using

estimated variance are 2-9 percentage points too low for t(x), and 1-9 points low for ,8(x). On aver-

age the coverage probabilities for the slope are closer to 95%. Correction for bias in 11(x) reduces the

shortfall by at least half, with smaller improvements resulting from substitution of known for estimated
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variance. These improvements are comparable for all four smoothers.

For the skew designs, however, the picture is more complex. Most obviously, the estimated cov-

erage probabilities of the totally uncorrected intervals, both for mean and slope, are much too low at x

= 0.75, and still far from satisfactory at x = 0.50; and in the case of the slope confidence intervals, the

shortfall is worse with the knn methods than with their fixed bandwidth counterparts. At these points,

where the data are sparse, most of the deficit with the knn smoothers results from the bias in g(x),

whereas with the fixed bandwidth methods most comes from estimating c2(x). Envelope plots shown

in Figures 3 and 4 show the first kind of bias clearly; likewise envelope plots of fixed bandwidth esti-

mates of c&(x) (not shown) demonstrate the second. The knn estimators of variance are also biased

low, but less severely. However, these results may depend on the fact that with this simulation Q1(x) is

curved, whereas a2(x) is linear (in fact, constant): the point being that where the data are sparse the

knn estimates are more strongly biased towards linearity than the fixed bandwidth results.

These results suggest that our simply-computed confidence intervals for mean and slope have rea-

sonable coverage probabilities in regions where the data are sufficiently dense, but perform poorly when

this condition does not hold. In addition, they suggest that the knn smoother may be better suited to

the estimation of variance, which is commonly modeled more simply than the mean, slope, or local

correlation: but for these functions, on which we are reluctant to impose simple models, the fixed

bandwidth method may often be better suited.

Note that the bias correction used here is only computable in Monte Carlo trials where 1±(x) is

known. However, our bias corrected results apply to confidence intervals for E(pt(x)) and E(O(x))
rather than p(x) and P(x). This is consistent with the "descriptive" approach to statistics where estima-

tors estimate what they estimate rather than a predetermined population parameter (c.f. Bickel and Leh-

mann (1975)). For example, in this approach the fact that the sample median may be a biased estimate

of the population mean is not of concern. In our case this descriptive approach is appropriate when

E(J1(x)) and E(1(x)) reflect interesting aspects of the relationship between a response Y and a covari-

ate X.
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5. ADDITIVE MODELS AND PARTIAL CORRELATION CURVES

Let Y be a real valued response variable whose distribution depends on a real valued vector

X = (X1X2.,-X). Then the regression of Y on X = x is defined as

p(x) = E(Y IX = x).

Here we assume an additive model for t±(x): that is, for i.i.d vectors (Xi l,...,Xuj,Yi),

Y = a + Xmi(x,) (5.1)
j=l

where the (mj(x)) are smooth functions such tha that expectation of E(mj(X5j)) = 0, and eit..-

are independently distributed with mean 0 and variance 92. The functions (mj(Xj)) are identifiable up

to an arbitrary constant

The constant cc and the functions {mj(-)) can be estimated using the backfitting algorithm of

Friedman and Stuetzle (1981) (c.f. Hastie and Tibshirani (1989)). This algorithn has the following

form. In the initialization, set d =y = n-'1y5, and r5() 0, j = 1,....J. Then each mj(-) is re-
i=1

estimated in turn, with the new value given by a smooth of the adjusted response

Yij = Yi 4--, m k (Xik)
k.j

on the corresponding predictors (xij }. Iteration continues over this cycle of updates from j=1 to J

n J
until changes in RSS = ;[y, - (X,j)]2 are sufficiendy small. Note that while the t'h(O1 are

*=1 j=l

not necessarily unique, the estimated regression surface is. Nonetheless, we found in our application that

the estimated curves corresponding to each predictor were not affected by the order in which the addi-

tive functions were updated in the backfitting algorithm.

The algorithm depends on the assumption of additivity, since if

Yij = yi-a- ;Mk (Xik) = mj(xij) + eik*j

then all the information about mj() is contained in the {(Yij, Xij)). The additive model also allows us

to define a partial regression coefficient curve and a partial local correlation curve. We define the par-



- 17 -

tial regression coefficient curve as

Pi3 (xi) = (X)1aXi = m "(xi)
and the partial correlation curve as

f)yx.(Xj) a, pj(xj)
{a,pp2(X)+2l

pYxi(j
I

=
y{j12X) + c;2}1/2

where aS is the standard deviation of Xj. As in the case of a single covariate, pyx.(xj) is a standard-

ized version of partial regression coefficient curve P,(xj). Also note that

Var(Y IXi) = Var(Y IX) _ a2. This allows us to estimate the partial curves using the techniques for

a single covariate. The partial correlation curve allows us to study the strength of the local relationship

between a response variable and a particular covariate adjusting for other covariates, in the case of-a

homoscedastic additive model (5.1). Unlike the (ii ()), which can only be estimated up to an additive

constant, the partial correlation curves do not depend on the location of the dependent variable.

6. ANALYSIS OF THE IPODM DATA SET USING ADDITIVE MODELS

Description

The data set consists of aggregate vital statistics and measures of infant health for zipcode areas in Cal-

ifornia. In particular, we analyze the relationship of the local infant mortality rate to median family

income, the proportion of families with no husband, and the proportion of households on public assis-

tance; in addition we examine how this relationship differs in urban and rural areas. We define infant

mortality rate as the number of deaths before age 1 per 1000 live births; to ensure the stability of our

results, we limit the analysis to zipcode areas which have at least 150 births. In addition, we classify a

zipcode area as rural if the percentage of nrual population is at least 75%; otherwise we call it urban.

The data used in our analysis consist of 921 observations, 667 of which are for urban areas.

We give summary measures of the 4 variables of interest in Table 5.
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Table 5
Mean and Standard Error of Demographic Measures, by Area

Measure Overall Urban Rural

Infant deaths per 1000 live births 6.75 (0.09) 6.5 (0.09) 7.32 (0.29)
Median family income $21719 (226.85) $22841 (275.80) $17981 (253.96)
Percent households on public assistance 9.77 (0.22) 9.28 (0.27) 11.41 (0.34)
Percent families without husbands 6.36 (0.11) 6.81 (0.14) 5.01 (0.12)

The differences between rural and urban areas with respect to infant morality median family income,

percent of households on public assistance and percent of families without husbands were statistically

significant using a univariate t-test(p-value < 0.01).

Analysis

We used a locally-linear smoother in our analysis of the IPODM data set. Relying on the simula-

tion results we selected the knn variant to estimate the mean, slope and variance functions because the

distributions of our predictors are skewed, and because we did not expect to find sharp nonlinearities in

the tails. For these estimates we set k equal to the maximum of the 90% cross-validated value and the

nearest integer to 0.7n, since smaller values give implausibly rough estimates. In the additive model,

these initial values were used until convergence. Then new values of k were chosen by the same rule

for each adjusted variate at convergence, and final estimates of the (dtj(.)) computed using the new

values of the smoothing parameter.

In exploratory analyses of the combined rural and urban data we smoothed infant mortality rates

on the three predictors one at a time. The resulting univariate estimates of mean and local correlation

are shown in Figure 7. We found that on average the infant morality rate declines rapidly, from 10.5

to 6.5 per 1000, as median family income increases from less than $10,000 to $20,000, and somewhat

less rapidly thereafter. This nonlinear relationship is reflected in the univanrate local correlation curve,

with somewhat stronger (negative) correlation in the region of lower median family income. The

univariate relationship of infant mortality to the proportion of families with no husband is also non-

linear. there is virtually no relationship among zipcode areas with fewer than 6% of such families, but

a steep rise in the average infant mortality rate, from 6 to 14 per 1000, as the proportion of these fami-
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lies rises to 30%. In contrast, the increase in average infant mortality rate with the proporton of house-

holds on public assistance is almost linear, as both the mean and local correlation functions suggest.

In turn we used an additive model to adjust our estimate of the association of each of these pred-

ictors with the infant mortality rate for the effect of the other two. These results are shown in Figure 8.

In the additive model, the relationship of infant mortality with all three predictors is attenuated, but

qualitatively similar to the result of the univariate smooth. That is, the nonlinearities of both the mean

and local correlation estimates remain, but m' () is "flattened" and 0( ) is closer to 0. Clearly the asso-

ciation of each predictor with the infant mortality rate is to some extent confounded by the other two.

The apparent differences in the width of confidence bands for the additive results are the artifact of

scale.

We also fit univariate and additive models to the subsets of the data corresponding to rural and

urban zipcode areas. Univariate and additive results for the rural areas are shown in Figures 9 and 10

respectively. This subset of the data differs in some respects from the overall picture. In particular, the

local correlation of the infant mortality rate with the proportion of households on public assistance is

weaker for values of the predictor below 20% before adjustment, and everywhere virtually nil after

adjustment. In contrast, the local correlation of the infant mortality rate with the proportion of families

with no husband was somewhat stronger for relatively small and large values of the prdictor, both

before and after adjustment, although the range of the predictor is considerably shorter among the rural

zipcode areas. However, the association of infant mortality with median family income is essentially

the same as in the combined data.

Since the majon'ty of zipcode areas are urban, it is not surprising that results for this subset

strongly resemble the estimates obtained using all the data. These univariate and additive estimates are

shown in Figures 11 and 12 respectively. Only a few slight contrasts are in evidence. The correlation

of the infant mortality rate with median family income is more strongly attenuated in the additive

model among urban zipcode areas than in the combined data. The local correlation of the infant mortal-

ity rate with the proportion of households on public assistance is relatively linear, and suffers less

attenuation in the additive model than with the combined data. Adjustment has the effect on our esti-
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mate of the association of the infant mortality rate with the proportion of families with no husband

among urban zipcode areas of fairly sharply attenuating the univariate result for values of the predictor

smaller than 10%. But these are not large differences. In general, stratification of the data into rral

and urban subsets does not suggest any remarkable interactions of this predictor with the other three.

Clearly, statistical analysis based on ecological data is difficult to interpret. Aggregate zipcode

area statistics are at best indirect measures, both of the conditions of the particular families where infant

mortlity does or does not occur, and of social conditions that might affect this outcome, including the

accessibility and quality of medical care. Nonparametric smoothers are useful tools for exploring the

relationship of these aggregate measures, since parametric forms are not imposed a priori; similarly,

additive models, together with the local correlation measure, enable us to apply nonparametric smooth-

ers in the important context of multiple regression, and thus control for the effect of covariates (includ-

ing nonlinear effects). At the same time statistical inference using these tools is not yet well developed,

so that our statistical methods, like our data, are better suited for generating hypotheses than to testing

them.
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Figure 1: The 5th, 50th and 95th percentile of
400 estimates of m(x). The true curve is represented by a solid line.
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Figure 2: The 5th, 50th and 95th percentile of
400 estimates of m(x). The true curve is represented by a solid line.
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Figure 3: The 5th, 50th and 95th percentile of
400 estimates of m(x). The true curve is represented by a solid line.
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Figure 4: The 5th, 50th and 95th percentile of
400 estimates of m(x). The true curve is represented by a solid line.
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Figure 5: The 5th, 50th and 95th percentile of
400 estimates of m(x). The true curve is represented by a solid line.
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Figure 6: The 5th, 50th and 95th percentile of
400 estimates of m(x). The true curve is represented by a solid line.
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Figure 7: Local regression and correlation
Urban and & Rural areas combined(Univariate model)
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Figure 8: Partial local regression and correlation
Urban and & Rural areas combined(Additive model)
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Figure 9: Local regression and correlation
Rural areas(Univariate model)
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Figure 1 0: Partial local regression and correlation
Rural areas(Additive model)
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Figure 1 1: Local regression and correlation
Urban areas(Univariate model)
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Figure 12: Partial local regression and correlation
Urban areas(Additive model)
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