
Trend Analysis: Time Series and Pomt Process Problems

By

David R. Brillinger

Statistics Department
University of California

Berkeley, CA

Technical Report No. 397
July 1993

*Research supported by National
Science Foundation Grants DMS-9208683 and

DMS-9300002

Department of Statistics
University of California

Berkeley, California 94720

21127t. I
2m. I



Trend Analysis: Time Series and Point Process Problems

David R. Brillinger 1

ABSTRACT
The concern is with trend analysis. The data may be time series or

point process. Parametric, semiparametric and nonparametric models and

procedures are discussed. The problems and techniques are illustrated

with examples taken from hydrology and seismology. There is review as

well as some new analyses and proposals.

KEY WORDS: Biased sampling; earthquakes; floods; linear trend; non-

parametric model; monotonic trend; point process; parametric model; semi-

parametric model; time series; trend.

1. INTRODUCTION
The question of the presence or absence of trend in a time series or

point process commonly arises in hydrological and environmental prob-

lems. Some current papers by statisticians addressing the problem include:

Bloomfield (1992), Bloomfield et al. (1988), Bloomfield and Nychka

(1992), Reinsel and Tiao (1987), Smith (1989). A basic question is: Just

what is a trend? By way of introduction, consider Figure 1. This is a plot

of the time senes of water usage each month for the period 1966 to 1988

in London, Ontario, Canada. Here is a case where it would seem that few

would deny that a trend is present (and also a seasonal effect). Yet setting

down a precise definition is not easy. The concept of trend will be studied

in this paper through examples and models. There will be parallel discus-

sion of the time series and point process cases. There will be review of
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some existing procedures.

Point process data also arise in environmental problems. Consider

Figure 2. It presents the (marked) point process of available data on large

earthquakes in China from 1177 BC to 1976 AD, with the earthquake

magnitudes also indicated. In this case too it would seem that a trend was

present, here in the rate with which earthquakes are occurring. Again it

appears difficult to set down a unique analytic definition.

A specific problem that will be addressed in the paper is whether

there is a trend in the level of the Rio Negro River at Manaus, Brazil.

Figure 3 provides some plots of the data. The top display graphs the time

series of yearly means from 1903 through 1992. The second display

correspondingly graphs the monthly means. Finally, to illustrate the gen-

eral character of the daily values, the bottom display provides daily values

for year 1992. The question of whether, because of deforestration, there is

an an increase in flooding arises, see Stemnberg (1987). An increase is

claimed inevitable, but the present problem is whether or not it has yet

shown itself.

Floods occur on the Rio Negro at Manaus. Their times consitute

point process data. Figure 4 provides the years of floods from 1890

through 1992. The early floods of 1892, 1895, 1898 are those recorded by

Le Cointe, see Steinberg (1987). For the later years a flood is defined as a

river level exceeding 28.5m sometime in the year.

The layout of the paper is as follows. Section 2 comments on the

general problem. Section 3 updates two time series analyses of the Rio

Negro with more recent data. Section 4 studies the point process of
floods. Section 5 reviews a method to handle trends arising from biased

sampling. Section 6 suggests extensions. Section 7 provides some
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general discussion. There is an Appendix that comments on a technical

detail concerning standard error estimation.

One goal of the work is to carry through the various computations

employing a standard statistical package. The package employed was S,
see Becker, Chambers and Wilks (1988). A second intention is to bring

out the contrasting characters of parametric, semiparametric and non-

parametric approaches. The distinction amongst these is: finite dimen-

sional parameter versus finite dimensional parameter plus infinite dimen-

sional versus only infinite dimensional. A third intention is to highlight

some time series and point process similarities and differences.

There are two facets to the problem and discussion. The first is the

question of whether a trend is present. The second is, assuming a trend

present, how does one estimate it? These will be fonnalized through

including a (trend) function, S(t), in the models and asking: Is S(t) con-

stant? What is an estimate of S (t)?

2. ASPECTS OF TREND
There are various ideas associated with the notion of trend. These

include: slow structural change, secular variation, drift, tendency, evolu-

tion, systematic component. Trends may further be: deteriini'stic or sto-

chastic, smooth or jumpy, additive or nonadditive, monotonic, modulating.

A variety of approaches to trend analysis are available. These include:

black box versus conceptual, descriptive versus model-based, time-side

versus frequency-side, nonparametric versus semiparametric versus

parametric.

Many authors have discussed the concept of trend. Perhaps the most

substantial is that of Harvey (1989), Section 6.1.1. In the end even he is

unable to be unequivocal and quotes Caimcross, "A trend, is a trend, is a
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trend ... " Recent papers considering the topic include: Cox (81), Dagum
and Dagum (1988), Granger (1988), Sims (1989), El-Shaarawi and Nicu-

lescu (1992), Phillips (1991), Milbrodt (1992), Garcia-Ferrer and Del

Hoya (1992). There is also a broad literature concerned with seasonal

adjustment. That work typically addresses the problem of trend estimation

at the same time. One reference is Kitagawa and Gersch (1984). An

example of a specific technique is the procedure sabl, see Becker et al.

(1988). A related problem is detecting change. Recent general references

to that topic include Pettitt (1989), Lombard (1989) and Tang and McLeod

(1992).

3. TIME SERIES APPROACHES
A common method of analyzing time series data is via moment

parameters. In the stationary case the autocovariance function

c1y(u) = cov {YQ+u),Y(t)}
u = 0, ±1, ,... is a basic parameter. It may be estimated by

T = 1 T-iu I
cyy(u) IT [Y(t+u)-Y][Y(t)-Y] (1)

T t=O
with Y the mean of the data vaules Y(t), t = 0, ..., T-1. Trend can show

itself in the values of the sample autocorrelation function cT (u )Ic (0)

being near 1 for small u. In this connection see Figures 5 and 6. These

are based on the Rio Negro data. Figure 5 graphs the annual maximum,

mean and minimum temperatures. The horizontal dashed lines give the

respective overall averages. Figure 6 provides the estimated autocovari-

ance curves defined by (1) and approximate ±2 standard error limits

(assuming white noise). Examination of the values at small lags, u, does

not suggest the presence of a trend. The graph with the greatest sugges-

tion of an effect is the minimum. This may be associated with the higher
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than average values of that series from 1970 on.

Generally, likelihood based approaches may be anticipated to be more

efficient than moment based in analyzing time series data. The likelihood

may be set up through a family of conditional distributions, eg. via expres-

sions for the

Prob {y < Y(t+l) < y+dy lHt)
Ht = {Y(s), s <t) being the history of the process. This is particularly

simple in the case that the process Y(t) is Gaussian.

Likelihood-type analyses may also be set up via Fourier inference.

For example, consider the model

Y(t) = a + Pt + E(t) (2)
t = 0, ±1, ±2, ... with E(t) a 0-mean, stationary, mixing time series.

The hypothesis of no trend is now , = 0. To study this hypothesis first

denote the power spectrum of E (t ) by

f EE(X) = 2 cEE(u) eLiXu
-00 < X < oo. Consider then the Founrer transform values

T-1
E E(t) exp{-2irijt/T}
t=O

for j = 1,...,J . Under broad conditions, see Good (1963), Akaike (1964),

Duncan and Jones (1966), Hannan (1967), Brilinger (1973), these are

approximately independent and satisfy a central limit theorem. In particu-

lar the variate £j is asymptotically normal with mean 0 and variance

2rcT f EE(2irj/T). Further for J finite, the values e1, *.a , ,j are asymp-

totically independent. Taking the Fourier transform of each side of the

model (2) gives

yi =f3j + (j row
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forj=1, J where

T-1
I= t exp{-2itijt/T}

t=O
is the Fourier transform of the trend. The step forward here is that the

model (3) is basically a simple linear of regression with independent nor-

mal errors. Assuming fEE(2ij/T) fEE(O), classical regression results

are available. For example, the estimates

Ji= Re{lyyyj I £iy 12}
and

& = 27TfEE(0)= 2yj -

2J-1~
.are approximately independent normal and chi-squared respectively. For

the hypothesis [0= 0, of no trend,. a test statistic is

52y, Pj 12/td
It is distributed approximately as a Student's t with 2J-1 degrees of free-

dom under the null hypothesis. (The approach is essentially equivalent to

the Whittle (1954) gaussian estimation procedure taking the Ie 12 to be

independent exponentials.)

The two-sided prob-values obtained for the three series of Figure 5,

with J = 9 and T = 90 here are: for the mean 8.36%, for the maximum

23.14% and for the minimum 3.01%. For the minimum, the value is note-

able. Examination of the time series plot of the minimum in Figure 7, as

indicated earlier, does suggest a rise during the later years. The results

presented here update those of Brillinger (1988). This approach extends

directly to a trend S (t I 0) including a finite dimensional parameter 0.

The analysis provided here developed directly from central limit

theorem results. These are standard for mixing (or short memory)

processes possessing moments. There has been recent consideration of the
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long-memory case, see Yajima (1989). The distribution of the regression

estimates is altered, Yajima (1991).

The model just considered was semipararnetric, involving a parametric

trend, a + ,Bt and a smooth error spectrum fEE(k). Consideration now

turns to some fully nonparametric models. Consider the model

Y(t) = S(t) + E(t) (4)
assuming S(t) to be smooth. In tiis case S(t) may be estimated by sim-

ply smootliing the data Y(t), t=O,...,T-1. The results of employing a run-

ning mean of 15 are provided in Figure 7. The issue of whether a trend is

present may be addressed by setting a confidence band about the overall

mean level of the series. The figure shows ±2 standard error limits.

These are produced as follows: Suppose a running mean

1 v
()2V+1 V Y(t+v)

is computed. Then, with A (X) = sin((2V+1)AJ2) / (2V+l)sin(d2)

var Y(t)= IA (X) I2EE(X)dX
- 2nfEE(0) / (2V+1)

so fEE(0) needs to be estimated. This may be done as in Briuinger

(1989). First the residual series, E(t) = Y(t) - Y(t), is computed. Then

fEE(O) I(tk) / T11-A( T

for moderate J where IT denotes the periodogram. Again the noteworthy

case is that of the series of minimum values. A simultaneous confidence

band might also be presented. In the case of E(t) white noise such a band

is developed in Bjerve et al. (1985). In the stationary case, results of

Leadbetter et al. (1983) may be employed. Such a band is not presented

here because of concern with the accuracy of the asymptotic results in the
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finite case.

Another type of nonparametric analysis of the Rio Negro data may be

developed as follows. Iet S (t) = E IY (t) I denote the mean level of the

series Y(t) at time t. There are circumstances in which one views that a

trend, here S(t), is necessarily monotonic, see Granger (1988), Brilinger
(1989). One can seek a test statistic that is sensitive to departure from

constant to monotonic mean level. Abelson and Tukey (1963) considered

this problem in the case that the observations were independent. They

sought linear combinations

T-1
£ c(t)Y(t)
t=O

that minimax a correlation coefficient. The values found were

c(t)= t(l--T) (t+l)(1-tT ) (S)
for large T. This function is graphed of Figure 8. It is seen to strongly

contrast the early and late values. The extreme correlation is provided by

a step function with one jump. A standardized test statistic, for stationary
E(t), is provided by

I c(t)Y(t) /27cEE(0) c(t)2 (6)
see Brilinger (1989). Expression (6) involves an estimate of the power

spectrum at frequency 0. The estimate fEE(o) is determined as above.

The (z-)values of the statistic (6) are -.65, 2.10 and 5.11 respectively for

the maximum, mean, minimum. The two-sided prob-values are 51.3%,

3.6% and 0.0% respectively. There is very strong indication of a change

in level of the minimum.

There are some general approaches to estimating "smooth" functions.

One is smoothness priors / penalized log likelihood. For example, one

seeks S (t) to minimize
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, [Y(t)-S(t)]2 + A , [S(t)-2S(t-1)+SS(t 2)]2
t t

The second term here enforces smoothness on S (t). The parameter A may

be estimated by cross-validation, see Gersch (1992) or by Bayesian argu-

ments, see Akaike (1980).

A state space approach is an alternate way to proceed, see Harvey

(1989), Section 2.3.2 . Here, for example one assumes a random "slope",

S (t), evolving in accord with

Sl(t) = Sl(t-1) + £1(t)
with S (t) of (4) then given by

S(t) = S(t-1) + S1(t-1) + e(t)
If s and el are identically 0 then S (t) = a+pt as already discussed.

Alternatively, the hypothesis of no trend corresponds to S I(t) identically

0.

Fully parametric models that have been used in trend analysis include:

ARIMA, state space, and polynomial in t plus ARMA, see for example,

Harvey (1989). There is a frequency-side variant of the moving window

technique, see Brillinger and Hatanaka (1969). A Fourier approach is

employed by Kunsch (1986) to distinguish monotonic trend from long-
range dependence.

4. POINT PROCESS APPROACHES
There is a moment based approach to the analysis of point process

data. An important moment parameter is the autointensity function. Sup-

pose that N(t) counts the number of points in the interval [O,t) of the pro-

cess and let dIV(t) be one if there is a point in the small interval [t,t+dt)
and zero otherwise. In the stationary case one defines the autointensity,

hNy(u), at lag u via
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hNN(u) du = Prob{dN(t+u) = 1 1 event at t }
This parameter is analagous to the autocovariance function, but it has a

much more direct interpretation. If the points

0 . 1 < T2 < ... < tN(T) <T of the process N are available, then

hNN (u ) may be estimated by
hkN(u) =#{Ik -trj - u I <b} 2bN(T)

for small binwidth b. This estimate is essentially the histogram of the

available tk-j.

Figure 4 provides the point process of floods for the Rio Negro for

the period 1890 to 1992. Figure 9 provides the corresponding estimated

autointensity function. Also included are approximate ±2 standard error

limits. Values at lag u near 0 provide little evidence for trend.

As is the case for time series, likelihood approaches may be expected

to be more efficient if the assumptions are satisfied. In the point process

case the likelihood is developed from the conditional intensity function

Prob{dN(t)=1 1Ht}
where Ht gives the history of the process, (N(s), s <t) Snyder (1975)

and Ogata and Katsure (1986) are pertinent references.

Sometimes time series procedures may be employed to analyse point

process data. Specifically a time series may be set up corresponding to

the point process. Let b denote a small interval size. Define the 0-1 time

senes Nt to be 1 if there is a point in the interval [t ,t+b ) and to be 0 oth-

erwise for t = 0, +b, ±2b, - - - . Now one can develop a probit type

analysis, for example by setting

=t - Prob{Nt = 1 HtI
with Ht = {N,, s <t I and then assuming for example
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where 1D is the normal cumulative. The likelihood is

, [Nt log irt + (1-Nt) log(l-nt)]
The model is of autoregressive-type. In the case that S(t) is parametric,

eg. S(t) = a+ft, references to such models include: Cox (1970), Bril-

linger and Segundo (1979), Kaufmann (1987), Zeger and Qaqish (1988).

The Appendix contains an indication of the theory involved. A state space

form could also be developed.

The table below presents the results of fitting the model (7) with

S (t) = a+(3t by the procedure glm of Chambers and Hastie (1992).

estimate s.e.

a -.9aZJ 7.;34U

-.00187 .00533
a (1) .469 .350

a (2) .153 .358

a (3) -.090 .370

a (4) .273 .362

a (5) -.090 .371

There is no real indication of trend, ((3 . 0), or of time lags being neces-

sary, provided by this analysis.

The "trend" function S (t) of (7) could also be nonparametric, eg. sim-

ply assumed smooth. Estimation can then be via a runnig window tech-

nique. Figure 10 presents the result of such an analysis. The top two

displays are the results of fitting the model (7) with no lagged values of

Nt. The bottom two displays include U = 5 lagged values. The estimates

of the a (u) were insubstantial in this last case. These computations were
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carried out via the procedure gam of Chambers and Hastie (1992).

In the smooth case one might altenatively estimate S(t) via a penal-

ized log likelihood such as

[Nt log ;t + (I-Nt) log (1-;t)] + A E [S(t)-2S(t-l)+S(t-2)]2
t t

The second tenr imparts the smoothness to S (t).

In summary, in a search for trends parametric, nonparametric and

semiparametric analyses are available for the analysis of point process data

as was also the case for time series. Further parametric analyses to con-

sider include: renewal, autoregressive-like and state space. The non-

parametric include: penalized likelihood and locally weighted parametric.

The semiparametric include: thinned (see next section), modulated and

those with systematic component. Lewis and Robinson (1973), Pruscha

(1988), Gamernan (1992), Ogata and Katsura (1986) are pertinent refer-

ences to other work.

5. BIASED SAMPLING
Figure 2 provides the historical record of large earthquakes in China

from 1177 BC to 1976 AD. The top left panel of Figure 1 1 gives the run-

ning rate of events based on the available data, for the years 1000 AD to

1976 AD employing a window of width 50 years. The trend of Figure 2

remains apparent. It appears that the rate of events has been increasing
fairly steadily, i.e. that a trend is present. It is difficult to think that such a

substantial change is actually real. Other explanations need to be sought.
On reflection, the data are the events that have been recorded. In the

early years the information would have been passed on in irregular
manners, particularly until printing was commonly available. In Lee and

Brillinger (1979) a conceptual model was built to handle this circumstance.



- 13 -

It would seem that the chance of an earthquake making its way into

the record would depend on the population (able to take note of it) and the

stage of development of society. Ibid these two are handled by defining

probability functions. Consideration is restricted to the data from 1000

AD on. The advent of printing occurred in the 10th century and became

widespread in the 15th, hence one component of the probability function is

taken to be

j(t) = 0.1 at t = 1000
- 1.0 at t = 1500

The second component is a function of population taken to be

2(t ) = mini I - [S(t)-P(t))/S]/3, 1)
with P (t) the taxation census in year t and S = 50 million. The overall

probability of an earthquake makimg its way into the record is then taken

as

7 =(t) I(t *2(t
This function may be employed to correct for the biased sampling that has

taken place. The graph on the top right of Figure 11 provides the i(t)
employed. (The dip after 1600 relates to wars and dynasty change.)

Suppose the actual point process of earthquake occurences is M (t).
Then the observed point process N(t) can be viewed as the result of thin-

ning M(t) with i(t) giving the probability that an event that occurred on

date t is actually included in the data set. The rate of the process N(t) at

time t is then E{dN(t))ldt = l(t)pM where PM is the rate of the back-

ground stationary process M(t). The bottom left figure is the "corrected"

fonn of the top left figure, obtained by weighting inversely to t(t). The

curve now has a more stationary appearance. Finally a "corrected" autoin-

tensity is given in Figure 1 1 bottom right, computed as in ibid. . There is
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a suggestion of clustering of events.

The above technique is furthed developed and extended in Guttorp
and Thompson (1991). Alternately assuming the basic process is homo-

geneous Poisson, for example, a likelihood analysis may be developed, see

Veneziano and Van Dyck (1987).

6. EXTENSIONS
Extensions are available to various situations and sometimes some-

thing new appears. In particular, in the case of vector-valued series, ran-

dom effect models become appropriate (see Shumway (1971), Brilinger

(73), Bloomfield et al. (83)), with the trend able to be viewed as a com-

mon component. Point processes and time series are particular cases of

processes with stationary increments, so too are marked point processes.

So the theory of processes with stationary increments can suggest

appropriate techniques for either time series or point processes. One can

consider extensions to other data types, such as marked point processes

with ordinal-valued marks. One needs models to include covariates. (The

variate t is a covariate in the discussion of trend in the nonstationary

case.) One can consider spatial (eg. Cressie (1986)) or spatial-temporal

cases. One can consider nonlinear systems.

7. DISCUSSION
The paper has presented some corresponding techniques for trend

analysis in the time series and point process cases. The techniques may

be classified as: parametric, semiparametric and nonparametric. Con-

cepetual models are important. Some form of constancy seems necessary.

The estimation of uncertainty is often critical, eg. to address the issue of

whether a trend or change is present. When a trend is "found" there

remains a need for a scientific explanation.



- 15 -

In the end the definition of trend appears to depend on the cir-

cumstance. Trend seems to be an example of what Tukey calls a vague

concept. To quote from Mosteller and Tukey (1977), "Effective data

analysis requires us to understand -vague concepts, concepts that may be

made definite in many ways." This paper has illustrated several ways to

make the concept specific in particular cases, but it is clear that many

cases remain.
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APPENDIX
The standard errors listed in the Table of Section 4, and those later

used to rule out lags when the nonparametric estimate of S (t) is obtained,

are those produced by the programs glm and gam. Justification is needed

for their use in this time series case.

Kaufmann (1987) develops asymptotic properties of the maximum

likelihood estimates of a model (3.2), of which the model (7) with
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S (t) = a+Pt is a particular case. Under regularity conditions Kaufmann

finds the estimates to be asymptotically normal with a particular covari-

ance matrix. Let 7' denote the derivative of ; and set

Z = (1, Nt_1, * , N_U, t), then that covariance matrix is the inverse

of

1zt
t (1 zt)t

Kaufmann remarks that this last becomes a consistent estimate when the

parameters are replaced by their maximum likelihood estimates.

In McCullagh and Nelder (1989) the expression given for the covari-

ance matrix is the inverse of

XtWX
where X is the matrix of exogenous variables and

drt~
W = diag{(Rd ) t (_t)

One quickly checks that the two results are the same with the choice

xt = ztP
One technical difficulty is that not all of Kaufmann ' assumptions are

satisfied in the present case. The conditions of his Corollary 4 do hold

except for the requirement that the exogenous variables, here 1 and t, be

bounded. The corresponding time series results, see Hannan (1979), give
hope that this requirement may be replaced by the sort of assumption Han-

nan makes.
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Figure Legends
Figure 1. Monthly water use, expressed as a daily rate, for London,

Ontario, Canada.

Figure 2. Historical earthquakes in China, by date and magnitude.

Figure 3. The level of the Rio Negro as recorded at Manaus, Brazil daily

since 1903.

Figure 4. Flood years for the Rio Negro at Manaus. The lower graph pro-

vides the cumulative count since 1890.

Figure 5. Plots of the annual maximum, mean, minimum stage as com-

puted from daily values.

Figure 6. Estimated autocovariances of the series of Figure 5. Approximate

±2 white noise standard error limits have been added.

Figure 7. Running means of length 15 years of the three series of Figure
5. The dashed lines give ±2 standard errors.

Figure 8. The Abelson-Tukey coefficients of (5).

Figure 9. The estimated autointensity of the Rio Negro flood point process

of Figure 4.

Figure 10. The top two displays are S(t) and f,t of model (7) with no

lagged N values. The bottom two are the corresponding quantities

when U = 5.

Figure 11. The upper left display is the running rate of recorded events

with a window of 50 years. The upper right is the estimated probabil-

ity function (7). The lower left is the corrected series. The lower

right is the estimated autointensity.



Figure 1: Monthly water use London, Ontario

I I I I

1970 1975 1980 1985

year

Figure 2: Chinese earthquakes 1 1 77 BC - 1976 AD

Il

-500 0 500

200 -

150 -
CU

._V.

100

9

8

7

6

5

1500' 2000-1 000 1 000



,wqo.- - I-C. -, -

1900 1920 1940 1960 1980

year

Monthly means

1900 1920 1940 1960 1980

year

1992, daily values

. 1*t

0~.

0 100 200 30D

day

25

24

23

22

21

20

10

25

20

15

30 -

20 -

1S5

._



Figure 4: Rio Negro floods 1892-1992
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Figure 5: Annual Maximum, Mean, Minimum Stages at Manaus
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Fig1..re 6: Autocovariance yearly means
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Figure 7: Smooth 'trends'
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Figure 8: Abelson-Tukey coefficients
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Figur-e 9: Autointensity Rio Negro floods
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Figure 10: Smooth 'trend'
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Figure 1 1: Naive rate Chinese events 1000-1 976
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