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Abstract

The patch clamp recording technique measures current flowing
through single ion channels in cell membranes and produces very long
time series which must be analyzed statistically. We present back-
ground information on ion channels and the nature of the measure-
ments and then discuss some of our attempts to use density estimation
methods to produce informative statistical summaries.

2



1 Introduction
Ion channels are pores in cell membranes formed by transmembrane proteins.
In certain conformational states of the protein the pore opens, allowing ionic
current to pass across the membrane. There is a large variety of ion channels
whose inter-relationships shape the electrical signals of the neuromuscular
system. In addition to being fundamentally important to the operation of the
neuromuscular system, the involvement of ion channels in various neuromus-
cular disorders provides additional motivation for studying their structure
and function. Hille (1992) provides a broad overview of the current state of
knowledge.

In patch clamp recording, a micropipette is placed against a cell mem-
brane and suction is applied to form a high resistance seal. Current flowing
through ion channels in the tip of the pipette can be recorded. The diameter
of the pipette is typically of the order of one micrometer whereas the diameter
of a channel is of the order 100 Angstroms. The development of this ingenious
methodology, referred to as single-channel patch clamp recording, earned B.
Sakmann and E. Neher the Nobel Prize in Medicine and Physiology.

Such recordings reveal that the current flowing through a single channel
is on the order of picoamperes and that channels randomly alternate between
being open and closed on a time scale of milliseconds. The recordings are
subject to noise and degradation due to such causes as noise in the electronics,
leakage around the seal, baseline drift, lowpass filtering, and finite bandwidth
of the recording apparatus. A good experiment can last several minutes and
with a typical sampling interval of 100 microseconds very large quantities of
data are produced. Various aspects of patch clamp recording are discussed
in Sakmann and Neher (1983).

We have been involved in analyzing data gathered in patch-clamp record-
ings from NMDA receptors in cells in rat hippocampal slices in the laboratory
of Professor David Colquhoun of University College, London (Howe et al.,
1991). The NMDA receptor is an ion channel in the central nervous system
that is activated by glutamate: Glutamate binding enables channel opening.
The NMDA receptor is believed to play an important role in learning.

For illustrative purposes, we will consider in this paper 25 seconds of a
single experiment, sampled with an interval of 50 psec, thus yielding 500,000
points. Figure 1 shows two short segments of the recording, each of length
100 milliseconds (ms). Current is measured in picoamps (pA) and negative
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current corresponds to ionic flow across the membrane. From the figure
we see that the channel alternates between being open and closed and that
when it is open it tends to remain open at a constant conductance level before
closing or making a transition to another conductance level. We note that
the recording also contains long stretches of time during which the channel
is closed, so that the segments in figure 1 should not be viewed as typical
100 ms snapshots of the record. Rather, we chose these segments to exhibit
that there are a number of conductance levels.

Figure 1 about here

In the following sections of this paper we demonstrate how nonparametric
smoothing techn'iques are useful in elucidating the structure of the conduc-
tance levels and the kinetics of the channel in this recording.

2 Identifying Conductance Bands with the
Persistence Function

We first consider the problem of identifying conductance levels. Although
many channels have only one conductance level, it is apparent from figure 1,
and it is well-known, that the NMDA receptor exhibits a much more complex
pattern of activity. Initially, under the assumption that there was a well-
defined, discrete collection of conductance levels, we employed methodology
based on hidden-Markov models (Fredkin and Rice, 1992) to identify those
levels. After considerable experimentation, trying more and more levels, it
became quite clear that the situation was not this simple: there appeared
to be a continuum of conductance levels. This is probably partly due to the
fact that in the recording we are seeing the activity of many channels. The
patch probably encloses a large number of channels; during the course of the
experiment, glutamate binding and dissociation from one receptor produces
an activation, followed by an activation from a different receptor etc. Since
the concentration of glutamate is deliberately quite low, it is rare to see more
than one channel open simultaneously. Even if these receptors are identical
proteins, they may well be located differently in the cell membrane, causing
variation in conductance levels. As will be shown below, it is more accurate to
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describe conductance exhibited in this recording in terms of "bands" rather
than in terms of a small, discrete collection of levels.

It is thus desirable to develop a descriptive measure that identifies con-
ductance bands, if they exist, and that also describes how long a channel
tends to remain open in each band. The estimated one dimensional marginal
density of the process, figure 2, fails to resolve distinct bands and is in any
case incapable of providing information about characteristic time durations.

Figure 2 about here

We have, however, found collections of conditional probability density esti-
mate useful for these purposes. If Xt is a stationary process, with marginal
density f(x) and joint density of Xo, Xt denoted by ft(u, v), we define the
"persistence function":

k(x,t) ft(x ) )

= ft(xlx).

The idea is simply that if the value x is observed merely because of instru-
mental noise, which has a much shorter correlation time than the physical
and chemical processes of interest, the persistence function will be small for
small t, while if x reflects a genuine state of the channel the persistence
function at small t will be large and will decay slowly.

We estimate the persistence function by estimating the corresponding
joint and marginal densities. Rather than use a kernel method directly, it is
much faster to bin the data on a fine grid and then smooth the bin counts
(Scott, 1992). Figures 3 and 4 show estimates of the persistence function
formed in this fashion. The initial grid was 80 x 80, and a kernel w(x) oc (1
x2)2 with bandwidth 0.3 pA was used to smooth the counts. This bandwidth
was chosen interactively to provide a moderate amount of smoothing without
obscuring detail. Each computation took about two minutes on an IBM RS-
6000.

Figures 3 and 4 go about here

Figure 3 shows the persistence function for short times, out to eight ms
and figure 4 shows the function out to 50 ms. The ridge at 0 pA corresponds
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to the channel being closed. The figures reveal the existence of conductance
bands at -1.0, -1.8, -2.3, -2.9 and -3.7 pA, with the longest lived of these
bands at -3.7 pA. Openings at -1.0 pA are comparatively short lived.

3 Measures of Time Dependence
The kinetics of conformational change of the channel protein are reflected
in time dependence in the patch cla;mp recording. Figure 4 shows that the
persistence of the longest lived conductance band is of the order of 25 ms.
However, this measure of time dependence does not take into account transi-
tions between different conductance bands. In this section we describe some
attempts to use smoothing techniques to develop alternative measures of time
dependence.

Figure 5 shows the estimated autocorrelation function of the series-the
standard measure of dependence. According to this measure also, the time
scale of the kinetics is of the order of 25 ms.

Figure 5 goes about here

Since the covariance function is such a simple and crude measure of de-
pendence, it is natural to ask if more detailed information can be obtained.
We thus consider decomposing the covariance function:

7(t) = E[(Xo -=)(Xt- )]E [(Xo - )E[(Xt-)Xo]]
The hope is that E[(Xt-p) IXo] as a function of both Xo and t will reveal more
detailed aspects of the kinetics than will the covariance function. It might be
the case, for example, that when the channel is at some conductance levels
it relaxes more slowly to equilibrium than at others. Such iInformation might
be lost in the covariance function, which averages over all initial values xo,
including those corresponding to the very probable closed channel.

Figure 6 shows the estimate of E[(Xt- p)IXo] (the figure actually shows
the negative of this function). It was obtained by estimating the conditional
density f(xtjxo) as discussed in the previous section. Ridges corresponding
to conductance levels are perceptible, but not as clear as in the persistence
function, and there is no striking inhomogeneity in the decay of dependence.
(Calculations over larger ranges of t reveal little of additional interest).
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Figure 6 goes about here

Since this time series is highly non-Gaussian, it might be hoped that
measures of dependence other than the covariance function would be useful
in revealing kinetic behavior. We have estimated information-theoretic mea-
sures of dependency (Cover and Thomas, 1991), in particular, the mutual
information between Xo and Xt:

I(t)-=JJf(xo,xt)log f(xo xt) dxtdxof(X0)f(xt)
by estimating the joint and marginal densities. (We note that Robinson
(1991) proposed a test of independence in a time series context based on
estimating I(t) nonparametrically.)

:Z(t) measures the decay to equilibrium of the joint density of Xo and
Xt. Figure 7 shows two estimates of I(t), both obtained from histogram
estimates of the densities, one with 20 x 20 bins and one with 40 x 40 bins.

Figure 7 goes about here
It is initially striking that the curve based on 40 bins lies above that based
on 20 bins. Upon reflection, it is clear that such an estimate of l:(t) is
biased. Our estimate is essentially the value of a likelihood ratio test statistic
for testing independence in a two-way table and its expected value under
independence (large t in our case) depends upon the number of degrees of
freedom in the table (the number of bins in the histogram in our case). In
a standard test for independence in an m x n table, the expected value of
a chi-squared statistic under the hypothesis of independence is (m - 1)(n -
1). However, closer examination of the results reveals that not all the bias
is explainable in this way-the apparent limiting values are greater than
suggested by this degrees of freedom analogy. Dependence in the series, which
does not occur in the multinomial analogue, contributes to the limiting value
of the estimate for large t (we thank Peter Bickel for this observation). At
any rate, the time scale of dependence shown in Figure 7 is essentially that
shown by the covariance function, so the results do not justify the additional
complications of density estimation.

Finally, we considered a decomposition of I(t) similar to that of the
covariance function:

27(t) = JJf(xo,xt)logf(I0 xt) dxtdxof(X0)f(xt)
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= Jf(xo)Jf(xtlxo)log f (xt dx)ddof(xt)
which suggests that we estimate

V(xo, t) = J (xtIxo) log f (xtlxo) dxt.
This statistic, the Kullback I4eibler distance or relative entropy between
f(xtlxo) and f(xt), measures how fast the process decays to equilibrium from
an initial value xo. Figure 8 shows an estimate based on a kernel smoothing
of a finely binned histogram. Its resemblance to Figure 6 is remarkable and
disappointing. At least in this context, information-theoretic measures of
dependence have shown us nothing more than have the simpler measures.

Figure 8 goes about here

4 Concluding Remarks
We have shown how density estimation is a useful tool in revealing patterns
that occur in patch clamp recordings. The persistence function has been
particularly useful in analyzing recordings from the NMDA receptor. As will
be described elsewhere, we have used it to study how conductance patterns
change as experimentally controllable conditions such as voltage are varied.

Effective analyses of very long non-Gaussian time series, such as those
produced by patch clamp recordings, must go beyond estimation of covari-
ance functions and power spectra. Study of the joint density of x = (xo, xt)
both as a function of x and t is one path. Rosenblatt (1970), Robinson (1983)
and others have studied the statistical properties of density estimates from
stationary time series. Although we have not done so, it seems to us that,
ideally, estimates of such joint densities should take advantage of smoothness
in both x and t.
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Figure Captions
Figure 1 Two segments of a patch clamp recording.

Figure 2 The marginal density function, estimated from the recording by
smoothing a finely binned histogram with a kernel k(x) oc (1 - x2)2
with bandwidth .3pA.

Figure 3 Estimated persistence function for times up to 8 ms.

Figure 4 Estimated persistence function for times up to 50 ms.

Figure 5 Autocorrelation function.

Figure 6 Estimate of -E((Xt-p)lXo); the current axis corresponds to Xo.

Figure 7 Estimated mutual information, I(t), based on histograms with
20 x 20 bins (solid curve) and 40 x 40 bins (dashed curve).

Figure 8 Estimated Kullback-Leibler distance, D(xo, t), between the con-
ditional, f(xtIxo), and marginal, f(xt), densities as a function of xo
(current) and time.
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