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Abstract

The logarithm of the conditional hazard function of a survival time given one or
more covariates is approximated by a function having the form of a specified sum
of functions of at most d of the variables. Subject to this form, the approximation
is clhosein to imiaximnize the expected conditional log-likelihood. Maximumii likelihood
and sums of tensor products of polynomial splines are used to construct an estimate
of this approximation based on a random sample. The components of this estimate
possess a rate of convergence that depends only on d and a suitably defined smoothness
parameter.
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1 Introduct'ion

Let T, C and X have a joint distribution, where T and C are nonnegative random variables
and X is an M-dimensional random vector of covariates. In survival analysis, T and C
are referred to as the survival time (or failure time) and censoring time, respectively. Set
Y = min(T, C) and 6 = ind(T < C). Then the indicator random variable 6 equals 1 if failure
occurs on or before the censoring time (if T < C) and it equals 0 otherwise. The observable
time Y is said to be uncensored or censored according as 6= 1 or 6 = 0. For identifiability,
T and C are assumed to be conditionally independent given X.

Let f(tlx) and F(tlx) denote the conditional density function and conditional distribution
function, respectively, of T given that X = x E fRM. The conditional survival, hazard and
log-hazard functions are defined by

F(tlx) = 1 - F(tlx), h(tlx) = f(tlx)/F(tlx) and A(tlx) = log h(tlx), t > 0.

Let Fc(zlx) denote the conditional distribution function of C given that X = x, and set
Fc(tlx) = 1 - Fc(tlx).

A popular choice for the analysis of censored survival data with covariates is the pro-
portional hazard model A(tlx) = Ao(t) + xTf, introduced by Cox (1972), where Ao(.) is the
baseline hazard function and 3 E IEtM is a vector of parameters; see also Andersen et al
(1993), Cox and Oakes (1984), Fleming and Harrington (1991), Kalbfleisch and Prentice
(1980) and Miller (1981). In practice, it is more desirable to examine the covariate effects
by using smooth, nonlinear functions. The generalized additive model

A(tIx) = Ao(t) + A)(xi) + A2(X2) + * * * + AM(XM)
considered by Hastie and Tibshirani (1990), Sleeper and Harrington (1990) and Gray (1992)
is a refinement of Cox's model. Here Ao(.), A( ),.... , Am(-) are smooth functionis. In order
to examine the interactions between covariates and time-varying coefficients, the generalized
additive models can be further refined as follows. To motivate this approach, suppose x -
(x1, x2) and write

A(tlx) = Ao(t) + A1(x1) + A2(x2) + A01(t, x,) + A02(t, x2) + A12(xi, x2),
where Ao(-),A1(.), A2( ),*..,A12(.) are smooth functions. Here Ao(.),A1(-) and A2(.) are re-
ferred to as main effects, A12(.) is the interaction and Ao1(.) and A02(.) are components
involving time-varying coefficients.

Given a random sample, consider an estimate

A(tlx) = Ao(t) + Ai(xi) + A2(x2) + Ao5(t, X1) + A02(t, X2) + A12(Xl, X2) (1.1)

having the same form, where each component is empirically orthogonal to the corresponding
lower order components. Such orthogonality will be defined precisely later in Section 2. We
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can think of A(.I.) as an estimate of the log-hazard function A(.I.). Alternately, we can think
of it as an estimate of the corresponding best theoretical approximation

A*(tlx) = AS(t) + A*(xi) + A*(X2) + A*1(t, xi) + A*2(t,X2) + A12(xl,x2) (1.2)
to the log-hazard function, where best means having the maximum expected likelihood sub-
ject to the indicated form and each component is theoretically orthogonal to the correspond-
ing lower order components. According to Stone (1992), the right sides of (1.1) and (1.2)
are referred to as the ANOVA decompositions of A and A*, respectively. If the components
of the ANOVA decomposition A* are estimated accurately by the corresponding ANOVA
components of A, then examination of the components of the ANOVA decomposition of A
should shed light on the relationship of the survival time T and the covariates X through
the funiction A* and, to a lesser extent, through the function A.

In this paper, we consider the approximation A* to A = log h having the form of a specified
sum of functions of at most d of the variables t, x1, ... , xM and, subject to this form, chosen
to maximize the expected conditional log-likelihood. Given a random sample of size n from
the distribution of (Y, 6, X), maximum likelihood and sums of tensor products of polynomial
splines are used to construct estimates of A*. Its components are shown to possess the L2 rate
of convergence n-/(2p+d), where p is a suitably defined smoothness parameter corresponding
to A*. The problem of estimating the conditional density and survival functions are treated
similarly by observing that

F(tlx) = exp (- exp(A(ulx))du), t > 0

and
f(tlx) = exp(A(t x)) exp (- exp(A(ulx))du), t > 0.

The rest of the paper is organized as follows. Section 2.1 provides a preliminary discussion
of the ANOVA decomposition. The formula for the expected log-likelihood function is derived
in Section 2.2. The existence of the ANOVA decomposition of a specified form maximizing
the expected log-likelihood is considered in Section 2.3. Maximum likelihood estimation
based on a random sample is given in Section 2.4. Section 2.5 contains a discussion of works
related to the current paper. Proofs are given in Section 3.

2 Statement of Results

2.1 Preliminaries

Given a subset s of {o, l,... , M}, let Hs denote the space of functions on [0, oo) x EM that
depend only on the variables

t, if 0Es, and x;, if jEs n{1,...,M}.
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Let S be a nonempty collection of subsets of {o, 1, ... , M}. It is assumed that S is hierar-
chical; that is, that if s is a member of S and r is a subset of s, then r is a member of S.
Let H denote the collection of functions of the form a = Z,s a, with a, E H8 for s E S.

2.2 Expected Log-Likelihood Function

The conditional likelihood based on (Y, 6, X) equals [f(YIX)]6[F(YIX)]1-6. Observe that

E[Slog f(YIX) + (1 - 8) log F(YIX)IX = x]
- fJ<S log f(tlx) dF(tlx)dFc(zlx) + Jf log F(zlx) dF(tlx)dFc(zlx)

- f Fc(tlx) log f(tIx) dF(tlx) + J F(zIx) log F(z x) dFc(z x)

- J Fc(tlx) [log F(tlx) + log h(tlx)] dF(tlx) + J F(tlx) log F(tlx) dFc(tlx)

- f Fc(tlx) log h(tlx) dF(tlx) + flog F(tlx)[Fc(tlx)dF(tlx) + F(tlx)dFc(tlx)]

- J Fc(tlx) log h(tlx) dF(tlx)-J (j h(ulx) du) [Fc(tlx)dF(tlx) + F(tlx)dFc(tlx)]
- J Fc(tlx) log h(tlx) dF(tlx)-J (J Fc(tlx)dF(tlx) + F(tlx)dFc(tlx)) h(ulx) du

- f Fc(tlx) log h(tlx) dF(tlx) - J FC(Ulx)F(ulx)h(ulx) du.

Thus the expected conditional log-likelihood is given by

E[S log f(Y IX) + (1 -6) log F(YIX)]=
II Fc(tlx)[log h(tlx)f(tlx) - F(tlx)h(tlx)] dtfx(x) dx,

where fx( ) is the density function of the random vector X. The expected conditional
log-likelihood function A(-) is defined by

A(a) = J Fc(tlx) (a(tlx)f(tlx) - F(t IX)ea(tlx)) dtfx (x) dx, a E H.

Note that A(.) is maximized at A = log(f/F).

2.3 Existence

The first goal is to prove that A(.) has a maximum in H. Suppose the random vector X takes
values in a compact interval X C EM. Let T denote a compact interval of the form [0, r]
for some positive r. Without loss of generality, we assume that T = [0,1] and X = [0, 1]M.
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Condition 1 The joint density function of T and X is bounded away from zero and infinity
on T x X. Moreover, the survival function F(tlx) is bounded away from zero on T x X.

This condition implies that F(llx) = P(T > liX = x) > 0 on T x X and that IA(tlx)l
is bounded away from infinity on T x X.

Condition 2 P(C E T Ix) = 1 for x E X and P(C = 1lix) is bounded away from zero on
X.

This condition implies that Fc(tlx) is bounded away from zero on [0, 1) x X. According
to this condition, censoring automatically occurs at time 1 if failure or censoring does not
occur before this time.

Theorem 1 Suppose Conditions 1 and 2 hold. Then there exists an essentially uniquely
determined function A* E H such that A(A*) = maxaEH A(a). If A E H, then A* = A almost
everywhere.

The uniqueness of ANOVA decomposition will be considered next. We first define inner
products and orthogonality for functions on T x X. Set

(al,a2) = f (J al(ylx)a2(Ylx)f(ylx)Fc(yIx)dy) fx(x)dx

and lall2= (a, a) for square integrable functions a1, a2, a on T x X. For s E S, let H2 denote
the space of square integrable functions in Hs and set

H=, {a E H2: a l H,2 for r c s with r# s}.

(Here a I H, means that (a, a,) = 0 for a, e H,2.) Let H2 denote the space of all functions
of the form y:5E a,, as E H,2 for s e S. Under Conditions 1 and 2, it can be shown that
every function a E H2 can be written in an essentially unique manner as ,sES a, where
a, E H° for s e S; see Lemma 3.1 of Stone (1992). We refer to ZsEs aS as the ANOVA
decompositions of a, and we refer to H', s e S, as the components of H2.

Let #(s) denote the number of members of s, set d = maxses #(s), and assume that
d > 1. The component Ho is referred to as the constant component if #(s) = 0, as a main
effect component if #(s) = 1, and as an interactive component if #(s) > 2.

Suppose A* in Theorem 1 is in H2. Then it can be written in an essentially unique manner
in the form A* = ZsEs A* where A* e HO° for s E S. The rate of convergence in estimating
A* depends on a smoothness condition on A*, s e S, which will now be described.

Let 0 < fi < 1. A function a on T x X is said to satisfy a Holder condition with exponent
/ if there is a positive number 7y such that la(z) - a(zo)l <'lz - zol3 for z,zo e T x X;
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here |Z12 = z2 is the square of the Euclidean norm of z = (zo, zl,. .zM). Given an
(M + 1)-tuple a = (ao,a,,...,,aM) of nonnegative integers, set [a] = ao + a1 + + aM
and let Do denote the differentiable operator defined by

D
azciO . .. azeeM

Let m be a nonnegative integer and set p = m + ,B. A function a on T x X is said to be
p-smooth if a is m times continuously differentiable on T x X and Daa satisfies a H6lder
condition with exponent ,3 for all a with [a] = m. In the following condition, it is assumed
that p > d/2.

Condition 3 There are p-smooth functions A* C Hs, s S, such thatA* = ZEs A* E H
and A(A*) = maxaE AA(a).

2.4 Maximum Likelihood Estimation

Let K = K,, be a positive integer, and let Ik, 1 < k < K, denote the subintervals of [0, 1]
defined by Ik= [(k - l)/I,k/kI) for 1 < k < K and Ix = [1- /I, 1]. Let m and q be
fixed integers such that m > 0 and m > q > -1. Let S = S, denote the space of functions
g on [0, 1] such that

(i) the restriction of g to Ik is a polynomial of degree m (or less) for 1 < k < K;

and, if q > 0, then

(ii) g is q-times continuously differentiable on [0,1].
A function satisfying (i) is called a piecewise polynomial, and it is called a spline if it

satisfies both (i) and (ii). Let B,, 1 < < J, denote the usual basis of S consisting of B-
splines [see de Boor (1978)]. Then J= (m+1)K-(q+ 1)(K -1), so K+m < J < (m+1)IK.
Also, Bj > 0 on [0,1], Bj = 0 on the complement of an interval of length (m + 1)/K for
1 <~j< J, and Bj =1 on [0, 1]. Moreover, for 1 < < J, there are at most 2m + 1
values of j' E {1, . . , J} such that BjBj, is not identically zero on [0, 1].

Let G0 denote the space of constant functions on T x X. Given a subset s of {0, 1, . . . , M},
let Gs denote the space spanned by the functions g on T x X of the form

g(z) = g,(z,), wherez = (zo,zl...,ZM) and gj E Sfor j Es.
jEs

Then Gs has dimension J#(s). Moreover, Gr C G. for r C s.

Consider a random sample (T1, Cl, X1), . . . , (Tn, Cn, X,) from the distribution of (T, C, X),
and set Yi = min(Ti, Ci) and Si = ind(Ti < C2) for 1 < i < n. Let (., ),)n denote the sample
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inner product defined by

(gi,~)~n-E 91(YIjXi)92(YIIX').n i:61=1

Let Go denote the space of functionis in GC, s C S that are orthogonal (relative to (, ),z)
to each function in GC for every proper subset r of s, and set

G={ZCg: gs E Go for s E S}
sES

The space G is said to be nonidentifiable if there is a nonzero function g in the space such
that g(YjjXj) = 0 for every i C {1,. . I,n} such that Si = 1; otherwise this space is said to
be identifiable. Suppose G is identifiable, and let g be a member of this space. Then g can
be written uniquely in the form ZSES gS, where g, E GC for s C S; see Lemma 3.2 of Stone
(1992).

Condition 4 j2d = o(nl-) for some 6 > 0.

It follows from Conditions 1, 2 and 4 [see Lemnma 3.8 of Stone (1992)] that

P(G is nonidentifiable) = o(1). (2.1)

The likelihood corresponding to (Y1, 61,X1),... (Yn I n I Xn) is giveni by

t|[f YiN'X6 [F(Yi jXj)]1s
and the log-likelihood is given by

[6i log f(Yi IXT) + (1 -i) log F(Yi jXj)].

For s C S, let J, denote the collection of ordered #(s)-tuples J', I E s, with j C {1, ... , J}
for I E s. Then #(J,) = J#(s). For j E J,, let BI- denote the function on T x X given by

B,j(ylx) = J7BjB (x1), x = (x, .. ., M) and xo = y.
lEs

Then the function B j C Js, which are nonnegative and have sum one, form a basis of
rf~~~~~~SCs.
Set I = Es #(Js). Given an I-dimensional (column) vector 6 having entries %sj, s E S

and j E J., set
gS( ;)= Osj Bsj.), sES,

j EJs
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and
g( I ;) = Egs3l ;6).

sES

Then the log-likelihood function can be written as

£(6) = E &tg(Yi xt; 6) exp(g(uIXi; 6)) du.

Define 0 so that £(6) = max (6), and consider A = g( l ; 6) as the maximum likelihood
estimate of A* in G.

Theorem 2 Suppose Conditions 1, 2 and 4 hold. Then, except on an event whose probability
tends to zero with n, G is identifiable, the maximum likelihood estimate A in G exists, and
it can be written uniquely in the form ZSES A. with A. E Go for s E S.

Theorem 3 Suppose Conditions 1-4 hold. Then

lAs- AII = O +J-P+Jd/n) s E S,

so

IA - A*11 = O +-P Jd/n)

Given positive numbers an and bn for n > 1, let an -- bn mean that an/bn is bounded
away from zero and infinity.

Corollary 1 Suppose Conditions 1-3 hold and that J nl(2p+d) Then

lAs - As11 = O (n-P/(2P+d)) s E ,

so

IA- A*11 = Op (n-P/(2p+d))

The L2 rate of convergence in Corollary 1 depends on d, not on the dimension M of the
random vector X. This provides a nontrivial justification of the heuristic dimensionality
reduction principle discussed by Stone (1985). When d = M, the rate is optimal according
to Stone (1982) and Hasminskii and Ibragimov (1990).
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2.5 Related Work

An excellent discussion of the literature on the estimation of hazard and survival functioins
from the counting process viewpoint is contained in Anderson et al (1993); see also Fleming
and Harrington (1991). Here we discuss various approaches related to the theory developed
in the present paper.

In the absence of censored observations, the theory for additive and generalized additive
regression (d = 1) was considered by Stone (1985, 1986, 1989, 1990, 1991). The general
ANOVA decomposition and its corresponding rates of convergence in nonparametric estima-
tion were given in Stone (1992).

Except for the estimation of the baseline hazard function, numerical procedures for esti-
mating main effects based on the generalized additive models were discussed by Hastie and
Tibshirani (1990), Sleeper and Harrington (1990) and Gray (1992). The problem of density
estimation (without covariates) under right, left and interval censorings was considered by
Kooperberg and Stone (1992). From a methodological point of view, hazard regression based
on adaptive model selection as in MARS (Friedman, 1991) was considered by Kooperberg,
Stone and Truong (1993). The current paper lends theoretical support to such an adaptive
methodology. Extensions of the present theory to handle time-dependent covariates as con-
sidered by Zucker and Karr (1990) and Hastie and Tibshirani (1993) should be practically
useful.

3 Proofs

3.1 Proof of Theorem 1

WNrrite
A(a) = ]](ah - e')FcFfx, a E H.

According to Condition 1, h(.I.) is bounded away from zero and infinity on f x X. Thus,
by elementary algebra, there are positive constants A and e such that

ah-ea < A-eIal, a E H.

It follows from Conditions 1 and 2 (with E appropriately redefined) that

A(a) < A- JJIalffx, a E H.

Thus, if ff Ialffx = oo, then A(a) = -oo. Moreover, the function A(.) is bounded above
by A. Hence, the numbers A(a), a E H, have a finite least upper bound L. Choose ak E H
such that A(ak) > -oo and A(ak) -* L as k -* oo. Observe that the numbers ff laklffx,
k> 1, are bounded.
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Let A1 and A2 be functions in H such that A(A1) > -X and A(A2) >-oo. For u e [0,1],
set A( = (1 -u)Aj + uA2 and @(u) = A(A(u)). Then by the concavity of u '-* A(u)h - (u),
T(.) is a concave function. (Note that if A1 and A2 are bounded, then

=V/ JJ(A2 2A)eA(U)Fft!"()=-|() 2-) )2>Al FcFfx.)

It follows from the argument of Theorem 4.1 in Stone (1992) that there is an integrable
function A* such that ak -÷ A* in measure. By Lemma 4.1 of Stone (1992), we can assume
that A* e H. It follows from Fatou's Lemma that A(ak) -* A(A*) = L = maxaEHA(a).
Furthermore, if a e H and A(a) = A(A*), then a = A* almost everywhere. Hence the first
statement of the theorem is valid. The second statement follows from the fact that the
function a H-> ah -ea has a unique maximum at A = log h.

3.2 Proof of Theorem 2

Throughout this subsection, it is assumed that Conditions 1-4 hold. Also, set Ilglo =
suptET,xex Ig(tlX)I.

Lemma 1 Let U be a positive constant. Then there are positive constants M1 and M2 such
that

-Milla - A*112 < A(a) - A(A*) < -M2IIa - A*112
for all a E H such that tjalk0o < U.

Proof. Given a E H with t1al,0 < U and given u E [0,1], set

A(u) -(1-u)A* + ua.

Then
d
d A(A(u))IU=O=du

and by integration by parts

A(a)-A(A*) = j u)( ())

- - (I -u) JJ(a - A*)2eA(U)FcFfxdu.

The desired result now follows from Conditions 1 and 2. 0l

The next result is Lemma 4.3 of Stone (1992).

Lemma 2 There is a positive constant M3 such that llgiloo < M3Jd/2jjgjj for g E G.
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Under Conditions 1 and 2, by an argument similar to that used to prove Theorem 1,
there is a unique function A* E G such that A(A*) = maxgeG A(g)A

Lemma 3 II A* - A*112 = O(J-2p) and lA* - A*1I0 o Q(Jd/2-p).

Proof. By Condition 3 and Theorem 12.8 of Schumaker (1981), there are functions gn C G
for n > 1 and a positive constant M4 such that

lgz- A*11K . M4J-P.
Consequently,

Ilg9j - A* 112 < M42J-2p.
By Lemma 1, there is a positive constant M5 such that

A(g,j) - A(A*) > -M5J-2p. (3.1)

Let b be a positive constant. Choose g E G with

ig - A*H12 = bJ-2p.
Tlieii

- .112 < 2(Ilgn - A*112 +IA* - g112) < 2(b + M42)J-2p.
By Lemma 2, for J sufficiently large,

Il9lloo < 1g -gnloo + llgn - A*IKoo + llloo < 1 ±+ IiA*Hlo,
since p > d/2. Thus by Lemma 1, there is a positive constant M6 such that, for J sufficiently
large,

A(g) - A(A*) < -M6bJ2P for all g E G with Jig-A*11 = bJ- (3.2)

Let b be chosen so that b > M42 and M6b > M5. By (3.1) and (3.2), for J sufficiently large,

A(g) < A(gn) for all g E G with lg -A*11 = bJ-2P.

Therefore, A(.) has a local maximum on JIg - A*11 < bJ-2p, and by its concavity,

A*- A*II <bJ-2p

for J sufficiently large. It follows from Lemma 2 and IIA*-g, 112 O(J-2p) that

IlA* - g II0 = o(jd/2-p).

Consequently,
K|A* - A*Ioo = 0(jd/2-p). E

Suppose Condition 4 holds. Let n, n > 1, be positive numbers such that JdT2 = 0(1)
and Jd log n = o(nTn2). Let 9* be given by

An*( |) = gt | ; *) = Zgs(| ;. *)
sES
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Lemma 4 Given b > 0 and E > 0, there is a-c > 0 such that, for n sufficiently large,

( n(g)-e(A~) - [A(g) - A(A*)] > 6Tn) < 2exp(-cnT,2)

for all g E G with llg-AA*j < bT7.

Proof. Write

(g) -£(n)_ [A(g) - A(A*)] = n- Z[Wi -E(Wi)],n

where

Wi = Sig(YiJX; )-f exp(g(uIXi; 6)) du
rYl-&ig(Y1jXi; 6*) + j exp(g(ujXi; 6*)) du.

By Lemma 2,
IIg(-- ) - g(+| ; 0*)j|oo = 0(Jd/2Tn)

for g(j. ; 6) satisfying ig -A*11 < bTn. Thus there is a positive constant M7 such that

| exp(g(ulXi; 6)) - exp(g(ulXi; 6*))I du < M7f Ig -A*1

for g( ( ; 6) satisfying 19- A*I < b-rn. Hence, according to Condition 1, IWi = O(Jd/2Tn).
Moreover, by Condition 1,

E ( Ig - A*.1< E Ig - A 12) < (bTn)2

and

E{[6ig(YiIXi; 6) - g(ViXi; 9*)]2} < E{[g(T IXi; 6) - g(TIX; 9*)]2} = O(7n2)
for g(-I ; 6) satisfying jLi - A*hI < bTn. Hence var(Wi) = O(,rn2). The desired result now
follows from Bernstein's inequality [see (2.13) of Hoeffding (1963)]. 0

Define the diameter of a set £ of functions on T x X by

sup{gI -g21100 : 91,g2 E £}.

The next result is essentially the same as that of lemma 4.8 of Stone (1992).
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Lemma 5 Given b > 0 and c > 0, there is a M8 > 0 such that, for n sufficiently large,

{g:gEG and llg-A* 1j<bTn}
can be covered by O(exp(MsJdlogn)) subsets each having diameter at most CT,2.

Lemma 6 Let b > 0. Then, except on an event whose probability tends to zero with n,
£(g) <e(A*) for all g E G such that g - A* = bTn.

Proof. Choose g E G such that llg - A*jj = bTn. By Lemma 2,

ll- A>*| =0 (Jd/2jg -A>*11) = O(Jd/2Tn) = 0(l).
Thus by Lemma 3, jIgIj(, = 0(1). Hence,

|(g2) - '(gl) = O(11g2-gillo) and jA(g1)-A(g2)I = O(Ijg2-glKjoo)n

for 91,92 e G such that ljg- - A* < bmn for i = 1,2. The desired result follows from Lemma
1, with A* replaced by A* and H by G, and Lemmas 4 and 5. 0l

Lemma 7 The maximum likelihood estimate A E G of A = log h exists, and is unique except
on ana event whose probability tends to zero with n. Moreover, 1A - A iloo = op (1).

Proof. The set Go = {g E G: llg - A* < bT,} is a compact set, with boundary
{g E G: g - A* = bnrI}. By Lemma 6, the function t(.) has local maximum in the interior
of Go. It follows from the strictly concavity of the function £(.) that A -AI = op(rn) and
hence from Lemma 2 that

||A - A* ll=oo= op (jdl2/n) = op(1). 0l

The proof of Theorem 2 now follows from Lemmas 3.2 and 3.8 of Stone (1992) and Lemma
7.

3.3 Proof of Theorem 3

The proof of the next result is similar to that of Lemma 5.3 of Stone (1992).

Lemma 8 Suppose Conditions 1-4 hold. Then

IIA* -A* 112 = O(j-2p + Jd/n), s E S.
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Recall that the log-likelihood function is given by

t(6) = 6ig(YiIXi; 6) - j exp(g(uIXi; 6)) du

and that I =Z #(Js). Let

aoS(6)= ae(6)

denote the score at 6; that is, the I-dimensional vector with entries

&k' ) ZSiBj (Yi Xi) - j B 1(uIXi) exp(g(uXi; 0)) du.

Let
02t(6)
aaT

denote the Hessian of £(6); that is, the I x I matrix having entries

°ji° = E oBs j (u lXi )Bs (u X )exp (g (u Xi; ) ) du. (3 3 )
si) 1 9S423

The maximum likelihood equation S(6) = 0 can be written as

j dS(* + u(6 - 0*))du = -S(6*).

This can further be written as D(0 - 6*) =-S(9*), where D is the I x I matrix given by

D TJo006Te(* + u( -0*))du.

It follows from the maximum likelihood equation that

(O - 6*)TD(6 - 6*) = (6- *)TS(6*). (34)

We claim that
IS(6*)12 Op (n) (3.5)

and that there is positive constant Mg such that

(6 - 6*)TD(f - 6*) < -MsnJ-dI0 -o*12 (3.6)
except on an event whose probability tends to zero with n. Since

|(6 - 6*)TS(6*)l < 6 - 6*IIS(*)I|
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it follows from (3.4)-(3.6) that 16 - *12 = p(J2d/n) and hence that

IIA A-*s12 = °p(jd/n),
and

11A-A>* 2 = 0p (jd/n).
Theorem 3 follows from (3.7), (3.8) and Lemmas 3 and 8.

Proof of (3.5). By the definition of 6*, we have

E (a *) -
Hence

)osj 2

a(do(*)
aOGs

= var ( 6iBsj (Y IX )- JO

It follows from

var (&iBj (YiIX-)-

B,, (ulXi) exp(g(ulXi; 6*)) du) .

B j(uIXi) exp(g(uIXi; 0*)) du= 0(1)

that
EIS(6*)12 = 0(n).

So (3.5) holds.

Proof of (3.6). It follows from (3.3) that

j oTT)3 = - S g2(uXi; 13) exp(g(ulXi; 0)) du.

By Lemmas 3 and 7, there is a positive constant U such that

lim P (itAtto . U and IIAI .< U) = 1.

It follows from (3.9) and (3.10) that there is a positive constant e such that, except on an

event whose probability tends to zero with n,

3TD3 < -EE j '(uIXi; ) du. (3.11)

ss2(u Xi;) du < Bsj(ulXi) du = 0 (J 3s2gs XE;/3) jsj I

i i~~~~~~~~~~
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(3.9)

Since

(3.10)



it follows from Condition 4 and Chebyshev's inequality that

|Yi g(uIXi;,3) du- E JYi g2(UIX;d)du = o, (nJdl312) (3.12)

By Conditions 1 and 2, there is a M1o > 0 such that

E (| g2(uXi; 3) du)

- fJj g2(ulx; ,3)du[Fc(ylx)dF(ylx) + F(ylx)dFc(ylx)]fx(x) dx

- JJg2(uIx; /)Fc(ulx)F(ulx)fx(x) dudx

> M1o JJ g2(uIx; /3) dudx. (3.13)

According to Conditions 1 and 4 and Lemma 3.6 in Stone (1992), there is a M1l > 0 such
that, except on an event whose probability tends to zero with n,

IJ Tg(ulx;I3)dudx > MlZJfg 2(uIx;/3)dudx, / E ]RI. (3.14)

It follows from the basic properties of B-splines that, for some E > 0,

I fTg2'(ulx;/3) dudx s SE S and 3 E ]RI,

and hence
ZfJxJtgs2(UIX;3) dudx > jJ-d1l312 / e1 (3.15)
sES'

Equation (3.6) follows from (3.11)-(3.15) applied to 3 = 6- *. This completes the proof
of Theorem 3.

References

Andersen, P. K., Borgan, 0., Gill, R. D. and Keiding, N. (1993). Statistical Models Based
on Counting Processes. Springer-Verlag, New York.

Cox, D. R. (1972). Regression models and life tables (with discussion). J. Roy. Statist.
Soc. Ser. B 34, 187-220.

Cox, D. R. and Oakes, D. (1984). Analysis of Survival Data. Chapman and Hall, London.

de Boor, C. (1978). A Practical Guide to Splines. Springer-Verlag, New York.

16



Fleming, T. R. and Harrington, D. P. (1991). Counting Processes and Survival Analysis.
Wiley, New York.

Friedman, J. H. (1991). Multivariate adaptive regression splines (with discussion). Ann.
Statist. 19, 1-141.

Gray, R. J. (1992). Flexible methods for analyzing survival data using splines, with appli-
cations to breast cancer prognosis. J. Amer. Statist. Assoc. 87, 942-951.

Hasminskii, R. and Ibragimov, I. (1990). Kolmogorov's contributions to mathematical
statistics. Ann. Statist. 18, 1011-1016.

Hastie, T. and Tibshirani, R. (1990). Generalized Additive Models. Chapman and Hall,
London.

Hastie, T. and Tibshirani, R. (1993). Varying-coefficient models (with discussion). J. Roy.
Statist. Soc. Ser. B 55. To appear.

Hoeffding, W. (1963). Probability inequalities for sums of bounded random variables. J.
Amer. Statist. Assoc. 58, 13-30.

Kalbfleisch, J. D. and Prentice, R. L. (1980). The Statistical Analysis of Failure Time Data.
Wiley, New York.

Kooperberg, C. and Stone, C. J. (1992). Logspline density estimation for censored data.
J. Comput. Graphical Statist. 1, 301-328.

Kooperberg, C., Stone, C. J., and Truong, Y. K. (1993). Hazard regression. Technical
Report No. 389, Department of Statistics, University of California, Berkeley.

Miller, R. G. (1981). Survival Analysis. Wiley, New York.

Schumaker, L. L. (1981). Spline Functions: Basic Theory. Wiley, New York.

Sleeper, L. A. and Harrington, D. P. (1990). Regression splines in the Cox model with
application to covariate effects in liver disease. J. Amer. Statist. Assoc. 85, 941-949.

Stone, C. J. (1982). Optimal global rates of convergence for nonparametric regression. Ann.
Statist. 10, 1040-1053.

Stone, C. J. (1985). Additive regression and other nonparametric models. Ann. Statist.
13, 689-705.

Stone, C. J. (1986). The dimensionality reduction principle for generalized additive models.
Ann. Statist. 14, 590-606.

17



Stone, C. J. (1989). Uniform error bounds involving logspline models. In Probability,
Statistics and Mathematics: Papers in Honor of Samuel Karlin. (T. W. Anderson, K.
B. Athrya, and D. L. Iglehart, eds.) 335-355. Academic Press, Boston.

Stone, C. J. (1990). Large-sample inference for log-spline models. Ann. Statist. 18,
717-741.

Stone, C. J. (1991). Asymptotics for doubly logspline response models. Ann. Statist. 19,
1832-1854.

Stone, C. J. (1992). The use of polynomial splines and their tensor products in multivariate
function estimation. Ann. Statist. To appear.

Zucker, D. M. and Karr, A. F. (1990). Nonparametric survival analysis with time-dependent
covariate effects: A penalized partial likelihood approach. Ann. Statist. 18, 329-353.

DEPARTMENT OF STATISTICS DEPARTMENT OF STATISTICS
UNIVERSITY OF WASHINGTON UNIVERSITY OF CALIFORNIA
SEATTLE, WASHINGTON 98195 BERKELEY, CALIFORNIA 94720

SCHOOL OF PUBLIC HEALTH
DEPARTMENT OF BIOSTATISTICS
UNIVERSITY OF NORTH CAROLINA
CHAPEL HILL, NORTH CAROLINA 27599-7400

18


