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1 Introduct'ion

Consider data involving a positive response variable, which may be (right-) censored, and
one or more covariates. We think of the original, uncensored, response variable as having a
conditional density function, given the values of the covariates, that is positive on [0, oo).

A basic assumption of the proportional hazards model (Cox (1972)) is that the condi-
tional log-hazard function is an additive function of time and the vector of covariates or,
equivalently, that the conditional hazard function is a multiplicative function of time and
the vector of covariates. One of the main purposes of the present invest-igation is to develop
a practical approach to modeling the conditional hazard function that does not depend on
the validity of this assumption and which can, in fact, be used to assess departures from the
assumption.

In this paper, linear splines and their tensor products are used to estimate the logarithm
of the conditional hazard function. The maximum likelihood method is used to estimate
the unknown parameters of the model. We describe a fully automatic method for selecting
the final model, which involves stepwise addition, stepwise deletion and BIC. The method is
similar in spirit to MARS (Friedman (1991)). We also describe a user interface that makes
our procedure conveniently available within the S environment (see Becker, Chambers and
Wilks, 1988). In order to evaluate the procedure in its present form, we apply it to a
number of simulated and real data sets. Finally, various technical issues involved in the
implementation of the procedure are discussed.

Traditionally, in the proportional hazards model and in in some other survival analysis
models as well, the dependence of the survival time on the covariates is modeled fully para-
metrically, so that this regression function can be estimated independently of the baseline
hazard function (see for example Cox and Oakes (1984), Kalbfleisch and Prentice (1980) or
Miller (1981)). Typically the baseline hazard function is not estimated at all, but sometimes
it is modeled parametrically. In particular, Etezadi-Amoli and Ciampi (1987) use polynomial
splines to model this function.

Within the framework of the proportional hazard model, there have been a number of
papers in which the dependence of the survival time on the covariates has been modeled
using various nonparametric techniques, ignoring the baseline hazard function. In particu-
lar, Hastie and Tibshirani (1990) and O'Sullivan (1988) use smoothing splines, Sleeper and
Harrington (1990) use B-splines and LeBlanc and Crowley (1992) use a regression tree algo-
rithm. Hastie and Tibshirani (1993) introduce varying coefficient models. In the context of
survival analysis this allows them to fit an additive model with time-varying coefficients of
the covariates. Gray (1992) uses smoothing splines, and he allows time-varying coefficients
and some interaction terms.
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2 Linear Models for the Conditional Log-Hazard Func-
tion

Let T be a positive random variable whose distribution depends on M covariates xl,... , XM
which range over the subsets X1,...., XM respectively of R, each of which contains at least
two members. Then x = (x1, . . . , XM) ranges over the subset X = X1 x ... x XM of RM. Let
f (-jr) denote the dependence on x of the density function of T, which is assumed to exist and
to be positive on [0, oo). Since in typical practical applications xl, . . . , XM are possible values
of random variables, we refer to f(.I x) as the conditional density function of T given x. Let
F(.jx), Q(.jx), (IJx), h(.jx) and A(.Ix) denote the corresponding conditional distribution
function, quantile function, log-density function, hazard function and log-hazard function,
respectively.

Observe that F(tlx) = fj f(ulx)du for t > 0, Q(F(tlx)lx) = t for t > 0, and F(Q(pjx)jx) =
p for 0 < p < 1. Observe also that

p(tlx) =logf(tjx), h(tlx) = f(tlx) and A(tlI) = logh(tjIx), t > 0.
l-F(tjx)

Moreover,

1 - F(tlx) = exp (-j h(tutx)du) = exp (-| exp(A(uIx))du), t > 0.

Since F(tlx) < 1 for 0 < t < oo and lime DOO F(tlx) = 1, we conclude that fjT exp(A(ulx))du <
oo for 0 < t < oo and f exp(A(tIx))dt = oo. Furthermore, h(tjx) = exp A(tlx) for t > 0,

f(tjx) = exp(A(t Ix)) exp (- exp(A(uIx))du), t > 0

and
W(tx) = tl) - j exp(A(ulx))du, t > 0.

Let 1 < p < oo, let G be a p-dimensional linear space of functions on [0, 00) x X such
that g(.jx) is bounded on [0, oo) for g E G and x E X, and let B1,..., BP be a basis of this
space. Motivated in part by Kooperberg and Stone (1993b), we consider the model

p

A(tlx; 3) = ZjBj(tlx), t > 0 (1)
j=1

for the conditional log-hazard function, where 3= (BT,... , /3k, and we refer to G as the
corresponding model space. If none of the functions Bj, 1 <j < p, in (1) depend on both t
and x, then (1) is a proportional hazards model (Cox (1972)).
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Consider the special case of (1) in which p = 1 and B1 = 1. Here

A(tl)3) = A(tlx;,13) = ,3i, t> 0, (2)

which does not depend on t or the vector of covariates. The corresponding conditional
distribution of T given x is exponential with mean exp(-f1). We refer to (2) as the minimal
one-parameter model.

Given 3 E RP, set

h(tlx;,3) =exp(A(tlx;,3)), t > 0,

f(tlx;,3) = exp(A(tjx;,3))exp (-| exp(A(ulx;13))du), t > 0,

and
w(tl;,3) = log f(tlx;13) = A(tlx;13) - exp(A(uIx;13))du, t > 0.

Observe that f(.Ix;;,3) is a positive density function on [0, oo). The corresponding distribu-
tion function and quantile function are given, respectively, by

- r~~~~T
F(tlx;,3) -fj(uIx;13)du, t > 0,

and Q(-Ix;13) = F-(-lx;,3). Set p(y,l1x;,3) = (4ylx;,3) and W(y,0lx;,3) = log(1-
F(ylxr;3)) for y > 0. Then

W(y, 61x;,3) = 6A(ylx;,3)-j exp(A(ulx;13))du, y > 0 and 6 E {,1}1,

a3j W(y,6Ix;13) = 8B3(ylx) - Bj(ux) exp(A(ulx;13))du,

1< j < p, y > 0 and 6 E {0, 1},
and

ada^ 5jYx 13) =- Bj(uIx)Bk(U| x) exp(A(uIx; 13))du,
1 <j,k < p, y > 0 andS E{O0,1}.

It follows from the last result that (y, Sjx; -) is a concave function on RP for y > 0, 6 E {0, 1 }
and x C- X.

3 Maximum Likelihood Estimation

Let T be the survival time, C the censoring time, and x the vector of covariates for a
randomly selected individual. It is assumed that T and C are conditionally independent and
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that T has conditional density function f(-lx) given x. Set Y = min(T, C) and 6 = ind(T <
C); the random variable Y is said to be uncensored or censored according as 6 = 1 or 6 = 0.

Consider n such individuals. For 1 < i < n let Ti be the survival time, Ci the censoring
time, and xi the vector of covariates for the ith such individual, and set Yi = min(Ti, Cj) and
Si = ind(Ti < Ci). It is assumed that Tl,.. ., Tn i (Cl. .. , Cn) are conditionally independent
givenX1i,.-,z7n-

The log-likelihood function corresponding to the observed data (Yi, Si, xi), 1 < i < n, and
the linear model for the conditional log-hazard function that was discussed in the previous
section is given by

I(p3) = Z (Yi,SiIxi;/3), l3 E RP,

which is a concave function on RP. Moreover,

l 1(p3) = E >P(Yi,SiIxi;/3), 1 < j < p and /3 E RP,

and
O/3JOfJk = E &/3f3k 1 .j,k < p and 3Be RP.

The maximum likelihood estimate ,3 is given as usual by 1(p) = max,3 1(/3) and the
log-likelihood of the model is given by I = 1(/3). The corresponding maximum likelihood
estimates of the conditional log-hazard function, hazard function, density function, distribu-
tion function and quantile function are given by A(tlx) = A(tlx;3), h(tlx) = h(tlx;/3) and
so forth.

Let S(,3) denote the score at /3 (that is, the p-dimensional column vector with entries
0l(/3)/0fi), and let H(,3) denote the Hessian at /3 (that is, the p x p matrix with entries
021(3)/O/Pj,/3k). The Newton-Raphson method for computing 3 is to start with an initial
guess ,(o) and iteratively determine ,((m+i) from /3(m) according to the formula

-3ml -/3m [H(/3(m))]-1S(,l3(m)).

Here we employ the Newton-Raphson method with step-halving, in which 3,(m+) is deter-
mined from /3(m) according to the formula

13(m+i) =3f(m) 2[H(g(m))]lS(,(m)),

where y is the smallest nonnegative integer such that

1(X3(m) - 2-t[H(/3(m))]1S(3(m))) . l(j3(m) -2la[H(/33(m))] S(/3(m)))

We stop the iterations when l(/3(m+1)) -l(f3(m)) . 6, where e = 10-6.
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4 Linear Splines and their Tensor Products

The specific model spaces that are considered in this paper involve splines and their tensor
products. In order to avoid numerous numerical integrations with respect to t and added
complications in context of stepwise knot addition (see (34) and (35) of Friedman, 1991),
we confine our attention to linear (rather than quadratic or cubic) splines. In the present
context, it is convenient to define a model space by listing its basis functions.

Let Ko be a nonnegative integer; if Ko > 1 let tk, 1 < k < Ko be distinct positive
numbers, consider the basis functions Bok(t) = (tk - t)+, 1 < k < Ko, where t+ = max(t, 0).
Next, for 1 < m < M, let KIm be an integer with Km > -1; if Km > 0, consider the basis
function Bmo(xm) = xm; if Km > 1, let Xmk, 1 < k < Km be distinct real numbers and
consider the basis functions Bmk(Xm) = (Xm - Xmk)+, 1 < k < Kmin where x+ = max(x, 0).

Let G be the linear space having basis functions 1, Bok(t) for 1 < k < IKo, Bmk(Xm)
for 1 < m < M and 0 < k < Km, and perhaps certain tensor products of two such basis
functions. It is required that if Bmj(Xm)BOk(t) be among the basis functions for some j > 1,
then BmO(sm)BOk(t)= XmBOk(t) be among the basis functions. Similarly, it is required that
if Blj(xL)Bmk(xm) be among the basis functions for some j > 1, then Blo(xl)Bmk(Xm) -
XlBmk(xm) and hence xlxm be among the basis functions. Such a linear space G is said to
be allowable.

5 Model Selection

Initially, we fit the minimal one-parameter model (see Section 9.1). Then we proceed with
stepwise addition. Here we successively replace the (p-i )-dimensional allowable space Go by
a p-dimensional allowable space G containing Go as a subspace, choosing among the various
candidates for a new basis function by a heuristic search (described in Section 9.2) that is
designed approximately to maximize the absolute value of the corresponding Rao statistic.

Specifically, let ,3(o) be the maximum likelihood estimate of the coefficient vector ,3 -
(,B1,...,I3p)T corresponding to G, but subject to the constraint that the corresponding esti-
mate of the conditional log-hazard function be in Go, and let /3p be the coefficient of the basis
function that is added in going from Go to G. Then the Rao statistic for testing the hypothesis
that the conditional log-hazard function is in Go is given by R = [S( 3(o))]p/ [I-L (j(o))]pp,
where 1(1(°)) = -H(,B(°)) with S(.) and H(-) corresponding to G. (Here R is the signed
square root of the Rao statistic as usually defined; see (6e.3.6) of Rao (1973).)

Upon stopping the stepwise addition stage (according to a rule that is described in
Section 9.2), we proceed to stepwise deletion. Here we successively replace the p-dimensional
allowable space G by a (p -l)-dimensional allowable subspace Go until we arrive at the
minimal one-parameter model, at each step choosing that candidate basis function to delete
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whose Wald statistic is smallest in magnitude.

Specifically, let /3 = (I3,...., Pp)f be the maximum likelihood estimate of the coefficient
vector 1 = (i3, .., fp)T corresponding to G, where /p is the coefficient of the basis function
that is deleted in going from G to Go. Then the standard error SE(Lp) of /p is the positive
square root of the pth diagonal entry of [1()3)]-' = -[H(/3)]-1 with H(.) corresponding to
G, and the Wald statistic for testing the hypothesis that the conditional log-hazard function
is in Go equals Op/SE(flp).

During the combination of stepwise addition and stepwise deletion, we get a sequence
of models indexed by Iv with the vth model having pv parameters. Let L, denote the log-
likelihood of the vth model, and let AICa,V,- -21,, + ap, be the Akaike Information Criterion
with penalty parameter a for this model. We select the model corresponding to the value
v of v that minimizes AICc,. In light of Kooperberg and Stone (1992, 1993b) and our
experience in the present investigation, we recommend choosing a = log(n) as in the Bayesian
information criterion (BIC) due to Schwarz (1978).

6 User Interface

A program for implementing hazard regression (HARE) as described in this paper has been
written in C (see Section 9), and an interface based on S (see Becker, Chambers and Wilks,
1988, and Chambers and Hastie, 1992) has also been developed'. The interface consists
of nine S functions: dhare, hhare, phare, qhare, rhare, hare.fit, hare. summary and
hare. plot. (Detailed documentation of each of these functions is included in the Appendix
to this paper.) The functions dhare, phare, qhare, rhare are analogous to the S functions
dnorm, pnorm, qnorm and rnorm, respectively, and to similar four-tuples of S functions for
t distributions, F distributions, gamma distributions, and so forth. Thus dhare gives the
(estimated) conditional density function, phare gives the conditional distribution function,
qhare gives the conditional quantile function, and rhare gives a random sample from the
conditional distribution. The function hhare gives the conditional hazard function, hare . fit
performs the model fitting and model selection tasks and supplies the modest output that is
used as input to dhare, hhare and so forth. The function hare. summary, uses the output of
hare . f it to provide summary information about the fit and about the other fits that could
be obtained by using alternative values of the penalty parameter. Finally, hare. plot uses
the output of hare. fit directly to produce a plot of the conditional density, distribution,
survival or hazard function.

'HARE software is available from statlib. Send an email with the body send hare from S to
statlib©(stat.cmu.edu

7



7 Examples

In this section, we illustrate various ways of using HARE by analyzing three datasets. These
analyses are not meant to be definitive.

7.1 Lung Cancer Data

Our first example concerns data from a Veteran's Administration lung cancer trial. The data
has been examined in Kalbfleisch and Prentice (1980) and various other publications. The
response is survival time in days; the predictors are treatment (1=standard, 2=test), cell
type (squamous, small, adeno and large), a performance index (between 0 and 100, higher
scores are considered better), age and prior therapy (0=no, 1=yes). There are 137 cases, of
which 9 are censored.

When we applied the HARE algorithm to this data, we got a model with nine basis
functions, which is summarized in Table 1 below. Note that two of the nine basis functions
in this model involve both time and a covariate (for one of these functions the covariate is
performance status, for the other it is the indicator of cell type adeno), suggesting that a
proportional hazards model might not be appropriate.

TABLE 1. First HARE analysis of the lung cancer data.
Basis function Coefficient Standard error
1 -9.830 2.26
Performance status 0.250 0.108
(Performance status - 20)+ -0.260 0.108
Cell type: small cell -1.39 0.634
Cell type: adeno 2.43 0.47
(156 - t)+ 0.0245 0.0058
(Performance status) x (Cell type: small cell) 0.0387 0.0112
(Performance status) x (156 - t)+ -0.000433 0.000095
(Cell type: adeno) x (156-t)+ -0.0125 0.0045

The standard errors in the above table are obtained in the usual parametric manner as
the square root of the diagonal entries of the inverse of the estimated information matrix.
Thus, since they do not take the highly adaptive nature of HARE into account, they should
be regarded as merely suggestive.

The default HARE analysis should not automatically be accepted as definitive. In partic-
ular, when we apply this procedure one of the first things that we typically do is to transform
time such that the unconditional log-hazard function of the transformed time approximately
be constant. To achieve this we use the Hazard Estimation with Flexible Tails program
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(HEFT, Kooperberg and Stone (1993b)). In this manner we get a fitted model having the
form

h(tlx) = ho(t)exp qo

for the conditional hazard function, where ho is the HEFT fit to the unconditional hazard
function and qo - -log(1 - FO), with Fo being the distribution function corresponding to
ho.

When we applied HEFT to the lung cancer data, as described in Kooperberg and Stone
(1993b), we obtained

ho(t) e1 643(t + 145.75)0583
(145.75 is the upper quartile of the uncensored survival times). The results of the application
of HARE to the transformed data are summarized in Table 2 below. In Figure 1 we show the
coefficient of performance status and the hazard function for a person with specified values of
the relevant variables for the fits with and without the transformation of time using HEFT.

-0-0 Z~~~~~~°c XC/ I 0

.~~~~~~~~~~~~~~~~~~~~~~ 0 ~ ~ ~~~~~~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

co

a) 0)

0 200 400 600 800 1000 0 200 400 600 8001000C)(0 ~~~~~~~~~~~~~0CD

0 -o3
0.0 C-0C
CoC

o 0 0~~~~~~~~~~~~~~~c:
0 N~~~~~~~o 0 0~~~~~~~~~~~~~~~~~c

a) Ti
0 C

cmJ

0 200 400 600 800 1000 0 200 400 600 800 1000

time time (days)

Fig. 1. Fitted coefficient of performance status as a function of time
and fitted hazard function for a person with cell type squamous and
performance status 40. Solid=transformed, dashed=untransformed.

The fit in Table 2 is fairly similar to the fit in Table 1 above with respect to the basis
functions. However, as can be seen in Figure 1 below, the fits are quite different as far as the
estimated conditional hazard rate is concerned. This difference is caused by the fact that
HARE, when applied to untransformed data, will always give an estimate for the conditional
hazard rate that is constant beyond the last knot in time.
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TABLE 2. HARE analysis of the transformed lung cancer data.
Basis function Coefficient Standard error
1 -7.06 2.60
Performance status 0.272 0.110
(Performance status - 20)+ -0.230 0.108
(Performance status - 85)+ -0.273 0.117
Cell type: small cell -1;16 0.65
Cell type: adeno 2.239 0.622
(2.665 - qo(t))+ 2.24 0.62
(Performance status) x (Cell type: small cell) 0.0339 0.0115
(Performance status) x (2.665 -qo(t))+ -0.0421 0.0095
(Cell type: adeno)x(2.665 -qo(t))+ -2.00 0.54

Hastie and Tibshirani (1993) analyze the same data. In their analysis, the coefficient of
performance status varies with time, but no other interactions enter the model. Kooperberg
and Stone (1993a) show a similar model for the data using HARE after a transformation of
time by HEFT. This fit, summarized in Table 3 below, was obtained by using the option
linear for performance status, which prevents HARE from entering any knots for perfor-
mance status, and the option include for the combination (time, performance status), which
makes basis functions that depend on time and performance status the only allowable in-
'teractions in the model. (The options of hare .f it are described in detail in the appendix.)
The function qo is as above.

TABLE 3. HARE analysis forcing a model similar
to the model in Hastie and Tibshirani (1993)

Basis function Coefficient Standard error
1 0.229 0.617
Performance status -0.00216 0.00085
Cell type: small cell 0.739 0.222
Cell type: adeno 0.963 0.255
(1.032 - qo(t))+ 2.25 0.77
(Performance status) x (1.032 -qo(t))+ -0.0518 0.0126

Are the two interaction terms in Table 2 but not in Table 3 real or spurious? In order to
investigate this question, we carried out a small-scale simulation study. First we estimated
the distribution of the censoring times under the assumption that the censoring was inde-
pendent of the covariates (an assumption which we investigate in more detail for our third
example, the breast cancer data). We used HEFT on the original survival times, but used
1 - 6 instead of 6 as was done in the calculations leading to Figure 4 in Kooperberg and
Stone (1992). HEFT yielded that a constant hazard function, corresponding to an exponen-
tial distribution with mean 1851, fitted well. (Since there were only 9 censored datapoints,
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it is not surprising that we obtained a very simple estimate for the unconditional hazard
function.)

For each simulation we first generated a new set of survival times T1* = qO(ti), 1 <
i < 137, where ti, 1 < i < 137, is an independent sample generated using rhare, the fit
summarized in Table 3 and the same covariates as in the original data. Then we generated
the censoring times C*, 1 < i < 137, as a random sample from the exponential distribution
with mean 1851. For each i we set Y* = min(Ti*, C7 ) and 6, = ind(TE* < CO). Using
heft .f it with the default options, we transformed Yi*, 1 < i < 137, after which we used
hare .f it, also with the default options, to fit a model to the conditional log-hazard function
of ( i(X*),S,xi), 1 < i < 137.

We carried out 100 such simulations. In Table 4 the fitted models are summarized with
respect to the variables involved in the two-dimensional (tensor product) basis functions,
with differences in the coefficients and knot locations being ignored.

TABLE 4. Summary of the simulation study for the lung cancer data.
Interactions in model Frequency
No interactions 16
Only a (qo(t)) x (Performance status) interaction 57
One interaction, not (qo(t)) x (Performance status) 10
A (qo(t)) x (Performance status) interaction and one other interaction 12
Two interactions, but none (qo(t)) x (Performance status) 3
Three or more interactions 2
Of the 57 simulations that yielded the correct interactions, 23 had six basis functions
that coincided with those in the model in Table 3 with respect to the variables involved.

From Table 4 we see that in only 2 out of 100 simulations did the model fit by HARE
have 3 or more interactions. Since the models in Tables 1 and 2 both have three interactions,
it seems reasonable to conclude that more interactions than the one in Table 3 should be
included in the model.

7.2 PBC Data

Our second example illustrates many of the features of hare . f it that facilitate the search
for the model that best fits the data. It involves data from a double-blinded randomized trial
involving primary biliary cirrhosis of the liver (PBC). The data is discussed extensively in
Fleming and Harrington (1991). There were 312 patients in the clinical trial. The response is
survival time (days), and there are 17 covariates listed in Fleming and Harrington (1991). Of
the 312 observations 187 were censored. We took the logarithm of five of the covariates, serum
bilirubin, alkaline phosphatase, urine copper, SGOT and Triglycerides, since the empirical
distributions of these quantities are highly skewed to the right.
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As the first step in the analysis of the PBC data, we used HEFT to estimate the un-
conditional hazard function, getting ho(t) - exp(-8.498). Therefore no transformation was

needed to make the unconditional hazard function approximately constant.

We continued our analysis by applying the HARE algorithm with the default options to
the 274 cases that had no missing values for any of the covariates. This analysis yielded
a model with 13 basis functions. None of these basis functions involved the covariates
treatment, serum cholesterol, log(triglycerides) or platelet count, each of which had one
or more of missing values. No matter which options for HARE we chose, none of these
covariates entered the model. Therefore, in further analysis, we excluded these four covariates
and included all 310 of the 312 cases that were complete with respect to the remaining
13 covariates. The other two cases have missing values for alkaline phosphatase. Since
log(alkaline phosphatase) did appear frequently in the initial HARE fits, we excluded those
two cases during the rest of the analysis. (There are other methods, such as imputation, to
deal with missing data; for an overview see Little and Rubin (1987).)

Applying HARE to these 310 cases and 13 covariates, we got a fairly complicated model
with 15 basis functions, which is summarized in Table 5 below. Since the model selection
algorithm described in Section 5 does not guarantee an optimal model, it is reasonable to
search for a model that either fits better with respect to AIC or fits about as well but is
easier to interpret. HARE has several options that facilitates this search process.

TABLE 5. HARE analysis of the PBC data - 310 cases, 13 covariates.

Basis function Coefficient Standard error
1 -18.1 3.1
age 0.0486 0.0099
(age-71.9)+ -0.503 0.230
ascites -0.284 0.517
edema 0.149 0.410
log(serum bilirubin) -7.56 2.61
(log(serum bilirubin)+0.916)+ 8.60 2.64
albumin -0.848 0.239
log(alkaline phosphatase) 0.514 0.141
prothrombin time 0.0516 0.1293
(1170 - t)+ -0.00770 0.00232
(4079 - t)+ -0.000469 0.000140
(ascites) x (edema) 1.88 0.73
(1170 - t)+xlog(serum bilirubin) -0.000729 0.000240
(1170 - t)+ x (prothrombin time) 0.000667 0.000196

It is possible to specify the maximum number of basis functions in a model, overriding
the default Pmax (Section 9.2). For the PBC data changing the option maxdim in hare.f it
consistently resulted in the same fitted model as described above. It is also possible to use
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a model that was previously fitted using hare. fit as the starting value for a new search.
This is useful when combined with the output of hare. summary, which indicates whether
the various models were fitted during the addition stage or during the deletion stage. In the
latter case, a user could specify the model fit by HARE as the starting point for a new fit. If
the resulting model is different from the starting model, the new model has a lower AIC. If
the original model was fitted during the part of the process when basis functions were added,
HARE will inevitable return the same model. The later was the case for the PBC data.

The hare. summary command also provides information about the influence of the choice
of the penalty parameter a. Table 6 consists of a part of the output of hare. summary, when
applied to the model from Table 5, above.

TABLE 6. Part of the output of hare. summary,
when applied to the model from Table 5.

dim A/D loglik AIC penalty
min max

1 Add -1180.79 2367.31 113.84 inf
2 Add -1123.87 2259.20 27.86 113.84
3 Add -1110.50 2238.22 na na
4 Del -1096.00 2214.95 17.99 27.86
5 Del -1087.01 2202.69 10.47 17.99
6 Del -1081.77 2197.96 7.90 10.47
7 Del -1078.54 2197.24 na na
8 Add -1075.81 2197.51 na na
9 Add -1069.92 2191.46 5.83 7.90

10 Add -1067.78 2192.94 na na
11 Add -1064.42 2191.94 na na
12 Add -1061.70 2192.23 na na
13 Del -1058.29 2191.15 na na
14 Del -1055.61 2191.53 na na
15 Add -1052.42 2190.89 5.51 5.83
16 Add -1049.97 2191.73 na na
17 Add -1047.38 2192.29 na na
18 Add -1044.15 2191.56 0.00 5.51

For each possible dimension of the model, the output shown in Table 6 indicates whether
the best model of that dimension was fitted during the addition stage or the deletion stage
and shows the log-likelihood and its AIC value with the choice of the penalty parameter a

used in hare. fit. The last two columns indicate the effect of a different choice of a. For
example, with n = 310, the default value of a is log 310 _ 5.74. As can be seen from Table 6,
any a between 5.51 and 5.83 would have resulted in the same model with 15 basis functions.
However, if a were to increased to 6, HARE would have fitted a model with 9 basis functions.
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The model that was obtained with HARE using penalty=6 resulted in an additive model.
Besides the constant basis function, the other eight basis functions were as follows: a knot
in time, age, a knot in age, ascites, log(serum bilirubin), albumin, log(alkaline phosphatase)
and prothrombin time.

This led us to fit a model, using the default a = log 310, while forcing the model to be
additive (additive=T). The resulting fit is summarized in Table 7 below.

TABLE 7. HARE analysis of the PBC data - forcing an additive model.
Basis function Coefficient Standard error
1 -18.9 3.0
age 0.0480 0.0100
(age-71.9)+ -0.502 0.218
log(serum bilirubin) -7.20 2.60
(log(serum bilirubin)+0.916)+ 8.06 2.62
albumin -1.03 0.21
log(alkaline phosphatase) 0.485 0.140
prothrombin time 0.274 0.085
(4079 - t+ -0.000627 0.000096

As it turned out, this model has a lower value of AIC than the model in Table 5 (2189.83
versus 2190.89). Further analysis could not improve upon this model. Note that the model
in Table 7 is a proportional hazards model. As such, we can compare it with the models
obtained in Fleming and Harrington (1991). In their Table 4.4.3c, they end up fitting a
model that includes age, albumin, serum bilirubin, edema and prothrombin time. Thus
there is a discrepancy in that we include log(alkaline phosphatase) but not the indicator of
edema.

7.3 Breast Cancer Data

The dataset for our last example is considerable larger than those for the two previous ex-
amples. The data, discussed in Gray (1992), come from 6 breast cancer trials conducted by
the Eastern Cooperative Oncology Group2. There were 2404 patients in these studies. The
response is survival time (years). There are six covariates, estrogen receptor status (ER: 0 is
'negative', 1 is 'positive'), the number of positive auxiliary lymph nodes at diagnosis, size of
the primary tumor (in cm), age at entry, menopause (0 is premenopause, 1 is postmenopause)
and body mass index (BMI: defined as weight/height2 in kg/M2). Since the empirical distri-
bution of the number of nodes is highly skewed to the right, we used log(number of nodes),
instead of the number itself in our analysis. Of the 2404 cases, 1116 were uncensored and
1288 were censored. There were no missing values for any of the covariates.

2The data for this example was kindly provided by the Eastern Cooperative Oncology Group.
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Again, we started our analysis by estimating the unconditional log-hazard function using
HEFT, getting the estimate shown in the left side of Figure 2. We then transformed time,
as described in Section 7.1, so that the unconditional log-hazard function of the transformed
time be approximately equal to one. Specifically, we set qo(t) -log( - Fo(t)), where Fo is
the distribution function corresponding to the HEFT estimate of the unconditional hazard
function. The function qo(t) is shown in the right side of Figure 2.

time (years)time (years

..-0

C)~~~~~~~~~~~~~~~~~~~~~~~~~~~j

0 C)

0~~~~~~~~~
cco 0

N C) Ctie_yar) im (eas

Fig. 2. Estimated unconditional hazard function and the corresponding
transformation of time using HEFT for the breast cancer data.

When we applied HARE to the transformed data, we obtained the fit summarized in
Table 8. Further analysis, along the lines of that in Section 7.2, did not yield a better
fit. When HARE was applied to the untransformed data, the resulting fit was similar, but
included one more knot in time. In Figure 3 we show the hazard function and the survival
function for a person with specified values of the relevant covariates for the fits with and
without the transformation of time using HEFT. Note that we chose values of the covariates
that are all close to the median value as observed in the study.

A plausible assumption in survival analysis is that the censoring time is independent of
the vector of covariates. This assumption can be investig-ated using HEFT and HARE by
treating T1, . . . ,Tn as the censoring times and Cl, ... ., C,- as the survival times; that is by
applying these procedures to (Yi, 1 - i, xi), I < i < n.

The estimated fit to the censoring distribution that we obtained using HEFT is sur-
prisingly complicated, the corresponding density estimate being shown in Figure 4. After
applying HARE to the transformed data, we obtained a model with two basis functions,
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TABLE 8. HARE analysis of the transformed
breast cancer data 2404 cases, 6 covariates.

Basis function Coefficient Standard error
1 -0.0443 0.3990
ER 0.426 0.119
log(nodes) 0.686 0.070
size 0.158 0.035
age -0.0401 0.0093
(age-43)+ 0.0408 0.0115
menopause 0.409 0.105
(0.194 -q -6.58 1.33
(0.514 - qo(t))+ 2.66 0.41
log(nodes) xsize -0.0650 0.0181
(0-514 - qo(t))+xER -2.91 0.39
(0.194 - qo(t))+xsize 0.878 0.266
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Fig. 3. Fitted hazard and survival functions for a premenopausal woman of age
50 with negative estrogen receptor status, 4 nodes, body mass index 25 and
tumor size 3 cm. Solid=transformed using HEFT, dashed=untransformed.
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summarized in Table 9 below. This analysis suggests that the conditional distribution of the
censoring times depends on whether a woman is premenopausal or postmenopausal. The
hazard of censoring is about 27% larger for postmenopausal women.
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Fig. 4. Estimated unconditional density function for
the censoring distribution for the breast cancer data.

TABLE 9. HARE analysis of censoring times
for the breast cancer data

Basis function Coefficient Standard error
1 -0.109 0.039
menopause 0.236 0.056

In order to investigate the sensitivity of the fit summarized in Table 8 to random fluc-
tuations in the data, we carried out the following simulation 200 times. First we generated
a new set of survival times T* = qol(ti), 1 < i < 2404, where ti, 1 < i < 2404, is an
independent sample generated using rhare, the fit summarized in Table 8 and the same
covariates as in the original data, while q'o is the inverse of the transformation displayed in
the right hand side of Figure 2. Then we generated the censoring times Ci*, 1 < i < 2404,
as a random sample from the distribution corresponding to the density displayed in Figure
4. For each i we set Y* = min(TI*, Ci ) and fit = ind(Ti* < Ci*). Using heft .f it with the
default options, we transformed-Yi*, 1 < i < 2404, after which we used hare. fit, also with
the default options, to fit a model to the conditional log-hazard function of( i(17), X,*,xi),
1 < i < 2404.
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Fig. 5. Conditional hazard and survival functions for

the fit of Table 8 (solid) and five random samples from
this model (dashed). Same covariates as in Figure 3.

In Figure 5 we show, for the fit from Table 8 and five randomly selected simulations from
that fit, the fitted conditional hazard and survival functions for the same vector of covariates
as used in Figure 3. In Figure 6 we summarize these same quantities for all 200 simulations.
In particular for every time t we computed the 2.5th and 97.5th percentile of the simulated
fit to the conditional hazard and survival functions. At each time 95% of the simulations
fell in the gray band (the solid line is again the fit from Table 8).

Figures 7 and 8 summarize the effect of some of the covariates. The bootstrap bands in
these figures are constructed as in Figure 6. In the left side of Figure 7 we show log(hazard
ratio) A(tlxl) - A(tIa2) as a function of time; here x1 and X2 are identical to the vector of
covariates used in Figure 3, except that Estrogen Receptor status equals 1 (ER is positive)
in xl and it equals 0 (ER is negative) in x2. The right side of Figure 7 displays the effect of
the number of nodes on the log hazard. Specifically, in this figure we show

g(x) = )42lnodes = x, Age = 50, ER = 1, BMI = 25, size = 3, menopause = 1)
- A(21nodes = 4, Age = 50, ER = 1, BMI = 25, size = 3, menopause = 1).

That is, we show log(hazard ratio) when time is 2 years and all covariates are kept fixed at
the same value as in Figure 3, except that the number of nodes is allowed to vary and is
compared with nodes = 4. The fact that both the estimate corresponding to Table 8 and
the width of the 95% bootstrap band are 0 when nodes = 4 is a consequence of the fact that
g(4) = 0 by definition.
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Fig. 6. Conditional hazard and survival functions for the fit of Table 8 and
95% bootstrap bands from that model. Same covariates as in Figure 3.

Similarly, the left side of Figure 8 shows log(hazard ratio) when time is 2 years and all
covariates are kept fixed at the same value as in Figure 3, except that the tumor size is
allowed to vary and is compared with size = 3. The right side of Figure 8 shows log(hazard
ratio) when time is 2 years and all covariates are kept fixed at the same value as in Figure
3, except that age is allowed to vary and is compared with age = 50.

It is interesting to observe that our results are similar to those in Gray (1992). In
particular, compare the left and right sides of Figure 7 and the left and right sides of Figure 8
with Figures 3a, 4a, 4c and 4d in Gray (1992) respectively. Furthermore, the only interaction
between covariates that is significant in Table 3 of Gray (1992) is Nodal Group x Tumor
Size. Similarly, in Table 8 the only interaction between covariates that ends up in the model
is that between log(nodes) and size.

The bootstrap bands in Figures 6 through 8 reflect the contribution of the variance of the
corresponding point estimates but not their bias. To see this in a simple manner, consider
just the HARE procedure by itself and its dependence on the penalty parameter a. If a is
sufficiently large (say, a = 200), when HARE is applied to the real data it estimates the
conditional log-hazard function by a constant j3O. Similarly, when applied to the simulated
data from the initial fit, it typically estimates the conditional log-hazard function by a
constant that is rather close to /Bo. Thus the corresponding bootstrap bands, obtained as in
Figures 6 through 8, are very narrow. In the opposite direction, when a is extremely small
(in particular, when a = 0), the corresponding bootstrap bands are very large. Clearly,
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left side: as a function of time for the ratio ER positive/ER negative; right side: as a

function of nodes, relative to nodes = 4 after 2 years; other covariates as in Figure 3.
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Fig. 8. Log of the hazard ratio for the fit of Table 8 and 95% bootstrap bands
for that fit after 2 years; left side: as a function of size relative to size = 3; right
side as a function of age, relative to age = 50; other covariates as in Figure 3.
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however, we should not think of the various estimates as steadily improving in accuracy as
a increases from zero to infinity.

The reservations about the bootstrap bands that we have just described and similar
reservations about standard errors apply much more generally in statistics, especially in the
context of highly adaptive procedures but even in the context of parametric models that are
not exactly valid, and these reservations deserve much greater emphasis in the literature.

8 Concluding Remarks

In light of the examples in Section 7 and considerable additional experience with HARE
and its user interface, we are convinced that the methodology is of considerable practical
value. The available features make it very easy to try a variety of models on a given set of
data. In particular linear proportional hazard models, additive proportional hazard models,
proportional hazard models with time-varying coefficients and non-parametric proportional
hazard models can conveniently be fitted and compared.

As Figure 3 illustrates, it is very easy to plot hazard and survival functions for an individ-
ual with a given vector of covariates after a model has been fitted. Thus HARE is potentially
useful for a health care practitioner in coming up with a prognosis for a particular patient.

Under suitable conditions, Kooperberg, Stone and Truong (1993) obtain the L2 rate of
convergence for a nonadaptive version of the methodology treated in the present paper.This
result lends theoretical support to HARE.

9 Numerical Implementation

9.1 Starting Values

As the starting value for the maximum likelihood estimate of the conditional log-hazard
function having the form of the minimal one-parameter model, we use the maximum like-
lihood constant estimate A = log(Z2 Si/ i Yi) of this function. In the context of stepwise
addition, the starting value for the next step is the exact maximum likelihood estimate from
the previous step, which is possible since the new space contains the previous one as a proper
subspace.

A A

In the context of stepwise knot deletion, let P3i B1 + pp+fB be the maximum likelihood
estimate of the conditional log-hazard function having the form corresponding to the p-
dimensional linear space G with basis B1,..., Bp, and let B, ...., Bp-l be the basis of an
allowable (p -1)-dimensional subspace Go of G. Also, for 1 < j < p, let EP=1 ajkBk be the
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orthogonal projection of Bj onto Go relative to the inner product

(hi, h2) = hi (Yi|xj)h2(YijXi).

As the starting value for the maximum likelihood estimate of the conditional log-hazard
function corresponding to Go, we use

p p-l p- P

Ei ( aikBk E Eajk Bk
j=1 ik=1 k=1 ij=1

9.2 Stepwise Addition of Basis Functions

Let Go be the linear space having basis functions 1, Bok(t) for 1 < k < Ko, Bmk(Xm)
for 1 < m < M and I < k < Ki,, and perhaps certain tensor products of two such basis
functions. To decide which basis function to add to this model, we compute the Rao statistic,
as described in Section 5,

* for all spaces that can be obtained from Go by adding a basis function Blo(xi) = xi to
Go;

* for all allowable spaces that can be obtained from Go by adding a basis function to Go
that is a tensor product of two basis functions B13, Bnk, 1 : m, that are in Go;

* for a space that can be obtained from Go by adding a basis function based upon a
potential new knot in time, located using the algorithm described below; and

* for a space that can be obtained from Go by adding a basis function based upon a
potential new knot in covariate m, for 1 < m < M, located using the algorithm
described below.

As new space G we choose the one corresponding to the largest absolute value of the Rao
statistic among those candidates listed above that are nonvacuous.

To find a potential new knot in covariate m, let t < t2 < < tKm be the corresponding
knots presently in the model, to which we want to add one more knot, and let X(i),..., X(n)
be the values XIm, ... , Xnm of covariate m written in nondecreasing order. Define li and ui
by

i = 6 + arg max X(j) < ti, i = 1, ..., k, (3)

ui= -6+arg min X(j)>ti+l, =O,... ,k-, (4)
= 1 and

Uk = n.
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For those i = 0,.. ., Km for which ui > li we compute the Rao statistic ri for the model
with (xm -X(ji))+ as new basis function, where i = [(li + ui)/2]. Because of the 6 and
-6 in (3) and (4) it is possible that ui < li for some i; if so, then no knot can be added
between ti and ti+1. This forces knots for a given covariate in the model to be at least 6
order statistics apart, which improves the numerical and statistical stability. If there is no i
for which ui > li, then no knots can be added to the model.

We place the potential new knot in the interval [X(,I*), X(i,*)], where i* = arg max jri1.
We proceed by computing the Rao statistic ri, for the model with (x -X(1))+ as new basis
function, where I = [(1,. + ji*)/2], and ru, for the model with (xm - X(u))+ as new basis
function, where u = [(ji* + ui*)/2]. If iri*I > IrlI and Iri*I > Iru , we place the new knot at
T(mi*); if Iri* < Iril and iril > Irul, we continue searching for a knot location in the interval
[X(l,*), X(j,*)]; if Jri* < IruI and Jrtl < iruI, we continue searching for a knot location on the
interval [X(j,*), X(u.* )].

To find a potential new knot in time we proceed identically, except that we select the
location of the potential new knot based on the ordered statistics of just the uncensored
data.

Note that for each candidate for the new basis function only one column of H(.) and
one element of S(-) have to be computed, all other elements having already been computed
during the most recent set of iterations.

We stop the addition of basis functions when one of the following three conditions is
satisfied:

* the number P of basis functions is equal to Pmax, where Pmax = min(6n 2, n/4, 50);

* p-Ip < "(P - p) - 0.5 for some p with 3 < p < P -3, where IP is the log-likelihood
for the model with p basis functions;

* the search algorithm, as described above, yields no possible new basis function.
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Appendix: Documentation of S Functions

Hare Hazard Regression Hare|

dhare(q, cov, fit)
hhare(q, cov, fit)
phare(q, cov, fit)
qhare(p, cov, fit)
rhare(n, cov, fit)

ARGUMENTS
q: vector of quantiles. Missing values (NAs) are allowed.
p: vector of probabilities. Missing values (NAs) are allowed.
n: sample size. If length(n) is larger than 1, then length(n) random values are

returned.
cov: covariates. There are several possibilities. If a vector of length fit$ncov is

provided, these covariates are used for all elements of p or q or for all random
numbers. If a matri-x of dimension length(p) or length(q) or n by fit$ncov is
provided, the rows of cov are matched with the elements of p or q or every row
of cov has its own random number. If a matrix of dimension m times fit$ncov
is provided, while length(p)=1 or length(q)=1 or n=1, the single element of
p or q is used m times, or m random numbers with different sets of covariates
are generated.

fit: a list like the output from hare.fit.
VALUE

Densities (dhare), hazard rates (hhare), probabilities (phare), quantiles
(qhare), or a random sample (rhare) from a hare density.

I hare.fit Hazard Regression hare.fit

hare.fit(data, delta, cov, penalty, maxdim, exclude, include,
prophaz = F, additive = F, linear = F, fit, silent = T)

ARGUMENTS
data: vector of observations. Observations may or may not be right censored. All

observations should be nonnegative.
delta: binary vector with the same length as data. Elements of data for which the

corresponding element of delta is 0 are assumed to be right censored, elements
of data for which the corresponding element of delta is 1 are assumed to be
uncensored. If delta is missing, all observations are assumed to be uncensored.

cov: covariates: matrix with as many rows as the length of data. May be omitted
if there are no covariates.
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penalty: the parameter to be used in the AIC criterion. The method chooses the num-
ber of knots that minimizes -2*loglikelihood+penalty*(dimension). The de-
fault is to use penalty=log(samplesize) as in BIC. The effect of this parameter
is summarized in hare.summary(.

maxdim: maximum dimension (default is 6*1ength(data)°2).
exclude: combinations to be excluded - this should be a matrix with 2 columns - if for

example exclude(l,1)=2 and exclude(1,2)=3 no interaction between covariate
2 and 3 is included. 0 represents time.

include: those combinations that can be included. Should have the same format as
exclude. Only 1 of the exclude and include can be specified

prophaz: should a proportional hazard model be fitted?
additive: should an additive model be fitted?
linear: vector indicating for which of the variables no knots should be entered. For

example, if linear=c(2,3) no knots for either covariate 2 or 3 are entered. 0
represents time.

fit: object created by hare.fit. If a fit is specified, hare.fit adds basis functions
starting with those in the specified fit.

silent: suppresses the printing of diagnostic output about basis functions added or
deleted, Rao-statistics, Wald-statistics and log-likelihoods.

VALUE
The output is organized to serve as input for hare.plot, hare.summary, dhare,
hhare, phare, qhare and rhare.
The function returns a list with the following members:

ncov: number of covariates
ndim: number of dimensions of the fitted model
fcts: matrix of size ndim x 6. each row is a basis function. First element: first

covariate involved (O=time);
second element: which knot (O means: constant (time) or linear (covariate));
third element: second covariate involved (NA means: this is a function of one
variable);
fourth element: knot involved (if the third element is NA, of no relevance);
fifth element: beta;
sixth element: standard error of beta.

knots: a matrix of size ncov x ? one row for each dimension. Covariate i has row
i+1, time has row 1. first element - number of knots in this dimension other
elements - the knots, appended with NAs to make it a matrix

penalty: the parameter used in the AIC criterion.
max: maximum element of data.
ranges: column i gives the range of the i-th covariate.
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logl: matrix with two columns. The i-th element of the first column is the loglikeli-
hood of the model of dimension i. The second column indicates whether this
model was fitted during the addition stage (1) or during the deletion stage
(0).

sample: sample size.

hare.plot Hazard Regression hare.plot
hare.plot(fit, cov, n = 100, which = 0, what = "d", time, add =
F, ...)

ARGUMENTS
fit: a list like the output from hare.fit.
cov: a vector of length fit$ncov, indicating for which combination of covariates the

plot should be made. Can be omitted only if fit$ncov is 0.
n: the number of equally spaced points at which to plot the fit.
which: for which coordinate should the plot be made. 0: time; positive value i:

covariate i. Note that if which is the positive value i, then the element corre-
sponding to this covariate must be given in cov even though its actual value
is irrelevant. (See example 2 below.)

what: what should be plotted: d (density), p (distribution function), s (survival
function) or h (hazard function).

time: if which is not equal to 0, the value of time for which the plot should be made.
add: should the plot be added to an existing plot?

all regular plotting options as desired.
This function produces a plot of a hare fit at n equally spaced points roughly
covering the support of the density. (Use xlim=c(from,to) to change the range
of these points.)

EXAMPLES
fit <- hare.fit(time, delta, covs)
hazard curve for covariates like case 1
hare.plot(fit, covariates[1,], what = "h")
survival function as a function of covariate 2, for covariates as case 1 at t=3
hare.plot(fit, covariates[1,], which = 2, what = "s", time = 3)

hare.summary Hazard Regression hare.summary

hare . summary(f it)
ARGUMENTS
fit: a list like the output from hare.fit.
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VALUE
This function produces only printed output. The main body consists of two
tables.
The first table has six columns: the first column is a possible number of
dimensions for the fitted model;
the second column indicates whether this model was fitted during the addition
or deletion stage;
the third column is the log-likelihood for the fit;
the fourth column is -2*1oglikelihood + penalty*(dimension), which is the AIC
criterion - hare.fit selected the model with the minimum value of AIC;
the last two columns give the endpoints of the interval of values of penalty
that would yield the model with the indicated number of dimensions (NAs
imply that the model is not optimal for any choice of penalty).
At the bottom of the first table the dimension of the selected model is reported,
as is the value of penalty that was used.
Each row of the second table summarizes the information about a basis func-
tion in the final model. It shows the variables involved, the knot locations, the
estimated coefficient and its standard error and Wald statistic (estimate/SE).
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